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Abstract

Machine learning offers many powerful tools for prediction. One of these tools, the
binary classifier, is often considered a black box. Although its predictions may be
accurate, we might never know why the classifier made a particular prediction. In the
first half of this dissertation, I review the state of the art of interpretable methods
(methods for explaining why); after noting where the existing methods fall short, I
propose a new method for a particular type of black box called additive networks. I
offer a proof of trustworthiness for this new method (meaning a proof that my method
does not “make up” the logic of the black box when generating an explanation), and
verify that its explanations are sound empirically.

Sparse coding is part of a family of methods that are believed, by many researchers,
to not be black boxes. In the second half of this dissertation, I review sparse coding
and its application to the binary classifier. Despite the fact that the goal of sparse
coding is to reconstruct data (an entirely different goal than classification), many re-
searchers note that it improves classification accuracy. I investigate this phenomenon,
challenging a common assumption in the literature. I show empirically that sparse
reconstruction is not necessarily the right intermediate goal, when our ultimate goal
is classification. Along the way, I introduce a new sparse coding algorithm that
outperforms competing, state-of-the-art algorithms for a variety of important tasks.
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Introduction

Machine learning is the study of algorithms that attempt to learn patterns from data

in order to predict something useful about yet-unseen data. In the binary classification

problem, the algorithm predicts one bit of information about each datum. Informally,

the algorithm attempts to answer one yes-or-no question about each datum, after

having seen previous data. For example, previous weather patterns might be analyzed

in order to decide whether or not it will rain tomorrow; similarly, a machine-learning

algorithm might use previous stock-trading data in order to decide whether or not a

particular stock ought to be sold today. As a final example, a computer-vision system

might learn from pictures with and without faces in order to predict whether or not

a new image contains a face, as in Figure 1.

In the first half of my dissertation, I will focus on explaining the predictions made

by one popular family of such algorithms. I consider a family of networks whose

predictions are often very accurate on difficult machine-learning tasks; however, it

is difficult to determine why a network makes a certain prediction. In Figure 1, for

example, we might like to ask the black box prediction algorithm (the classifier)

which aspects of a test image causes it to give one classification or the other (face or

no-face).

After reviewing the state of the art of interpretable machine learning (methods

2



Training: Testing:
face images no-face images

Figure 1: (All figures in this dissertation are best viewed in color.) A simplified
illustration of a binary-classification task. First, a learning algorithm is given access
to “training” data (left), in which each datum is associated with one of two classes
(face or no-face). The learning algorithm trains a classifier, which attempts to predict
the classes of yet-unseen “test” data (right). Example images are taken from the
Caltech101 dataset (Fei-Fei et al., 2004).

3



that attempt to explain which aspects of the datum led to the classification), I will

derive an explanation method that can answer these types of questions for a popu-

lar family of classifiers called hierarchical networks. Under simplifying assumptions,

I will prove that the explanations are trustworthy, meaning that the explanation is

faithful to the logic behind each decision made by the network. I will empirically test

the trustworthiness of my explanation method with a variety of synthetic and natural

datasets. I hypothesize that, for some modern datasets, an hierarchical network can

achieve high accuracy by exploiting unintended artifacts in the data. For example,

even though the data in Figure 1 was gathered in order to train a classifier to detect

faces, the same data could be just as easily classified by detecting indoor photographs

(note that in the figure, all face photos were taken indoors, and all no-face photos are

outdoors). My hypothesis is that similar unintended strategies exist in benchmark

datasets widely used in the machine-learning community, and that hierarchical net-

works will sometimes classify data with high accuracy while using such an unintended

strategy.

Some researchers point to generative models as a panacea for the black boxes of

machine learning. One of the most widely used generative models is sparse coding,

in which an algorithm learns how to “reconstruct” the data before learning how to

classify it. For example, in Figure 2, a sparse-coding algorithm first learns how to

encode and decode data with as little loss as possible (similar to compression). Next,

the encoded versions of the data are passed to a classifier for training and testing.

Researchers often view sparse coding as an interpretable method (as opposed to a

black box) because we can manually inspect the reconstructions to verify that the

algorithm is encoding information from the relevant parts of the image.

In addition to this interpretable aspect, sparse coding is favored by many re-
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searchers because it often increases classification accuracy compared to using the

raw, original data. The standard justification for this increase in accuracy comes in

two parts: (1) being able to reconstruct the data from a sparse encoding means that

the encoding has captured the relevant information, and (2) sparsity (which will be

discussed in detail below) is an effective form of regularization1, which helps increase

the classifier’s ability to generalize to new data. In the second half of my dissertation,

I investigate and challenge this standard justification for the increase in classification

accuracy that we often observe with sparse coding. Along the way, I develop a new,

highly efficient sparse coding algorithm that achieves state-of-the-art reconstruction

performance for a variety of tasks.

In the remainder of Part I, I review the notation, definitions, and relevant back-

ground of machine learning that I will refer to later in the dissertation. In Part II,

I develop the notion of interpretable classifiers, and I propose and evaluate a novel

method for understanding classifications. In Part III, I tease apart two different goals

of sparse coding (to reconstruct the data with sparsity, and to increase classification

accuracy). I describe a new sparse coding algorithm that performs well on difficult

reconstruction tasks in Part IV. In Part V, I review the key points of this dissertation,

and I propose directions for future work.

The main results and contributions of this dissertation are the following:

• I develop novel algorithm for explaining individual classifications of hierarchical

networks (Section 4.2).

• Using this algorithm, I demonstrate that several popular image datasets (which

1Regularization is a common approach to preventing a model from becoming too complex, in
hopes of capturing only the aspects of the training data that will generalize well to the test data.
Regularization will be discussed more in Part III.
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Figure 2: In sparse coding, each datum is encoded into a sparse vector (meaning most
of its entries are zero). This vector (z) is chosen such that it reconstructs the original
datum well. After such a vector is found, it is sent to the classifier for training or
testing. Face image from Caltech101 (Fei-Fei et al., 2004)
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are often used for benchmarking computer-vision systems) contain spurious cues

in the backgrounds of the images that can “give away” the identity of the object

in the foreground (Section 5.3.3).

• I provide evidence that the sparse reconstruction performance of sparse coding

algorithms is not necessarily tied to the classification difficulty of the dataset

(Section 8.2).

• Although sparse coding can increase classification performance, I show that the

reason for this increase is not well understood. In particular, I show that there

exist sparser codes that reconstruct the data better, but which achieve worse

classification accuracy than a competing set of sparse codes (Section 8.3).

• I develop a new sparse-coding algorithm that outperforms state-of-the-art meth-

ods when sparsity is low and noise is moderate (Chapter 10).

These results and contributions also appear in Landecker et al. (2013) and Landecker

et al. (2014).
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Chapter 1

Notation and Definitions:

Datasets, Classifiers, Features

In this section, I introduce the mathematical notation that will be used in the rest of

this dissertation.

Recall the binary classification task. Informally, a binary classification task starts

with a dataset (sometimes called the data) and a yes-or-no question. For example, the

data might be a collection of images, and the question might be “does a given image

contain a face?” The task is to analyze the data in such a way that the question can

now be answered (as accurately as possible) for yet-unseen data.

More formally, let a dataset X ⊆ Rn be a set of real vectors of fixed length1.

An element of a dataset is called a datum, and is denoted x = (x1, x2, . . . , xn). I

refer to xi as the ith dimension of x. For much of this dissertation, x will be an

image2, in which case xi may be called a pixel. When discussing regions of x, I mean

1I will relax these constraints shortly.
2We form a vector from an image by reading the intensities (i.e., the grayscale values) or colors

of pixels across the image’s rows.
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some collection of pixels near each other in an image. When it becomes important

to enumerate the data in a dataset, I may write either xi or xi to indicate the ith

datum in the dataset. Any confusion between indices that enumerate dimensions of

a datum and indices that enumerate data in a dataset will be addressed in the text.

Let the classes (or labels) be a set Y with two elements. Informally, the elements

of Y are the possible answers to the yes-or-no question we would like to ask about our

data. Thus one may choose, for example, Y = {face, no-face}, or Y = {rain, no-rain}.

Generally, one formally defines Y = {1,−1} and interprets these numerical values

after the analysis3.

A labeled dataset is a set of pairs {(x1, y1), (x2, y2), . . .} where for each i, we have

xi ∈ X , yi ∈ Y , and moreover yi is the correct class for xi. Thus a labeled dataset is

a subset of X × Y .

A classifier is a function

ŷ : X → Y

which tries to correctly predict yi from xi. Informally, ŷ tries to answer the yes-or-no

question about new data. The notation ŷ is meant to suggest that ŷ(xi) is an estimate

(or an “informed guess”) of yi. One usually considers ŷ to be parameterized by a set

of numerical values. For example, these parameters might be the coefficients of a

function computed by ŷ. Let θ be an assignment of the parameters, and let Θ be the

set of all possible parameter assignments. I denote the classifier with parameters θ

by ŷθ(·).
3Some texts define Y = {1, 0}. This only changes the equations slightly, and does not represent

a serious difference in methodology from what is developed here.
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A learning algorithm (which I treat as a function) has the signature

L : (X × Y)+ → Θ.

In particular, a learning algorithm takes a labeled dataset (with some positive number

of labeled data) as input, and returns the parameters θ that will later be used for

classification.

Recall my earlier summary of the binary classification task: to analyze data in

order to answer a yes-or-no question about yet-unseen data. Note that this is a

somewhat ill-posed problem: if x has never been seen before, how can we know that

ŷθ(·) will correctly calculate y? In general one cannot be sure that it will, but one

might hope that ŷθ(·) does well on unseen data if it also did well on the data that it

has seen. That is to say, one might choose a learning algorithm L which chooses the

parameters θ∗ such that ŷθ∗(xi) = yi for all i (or for as many i as possible).

Given a datum x, calculating ŷ(x) is called classifying the data. The proportion

of correct classifications of a data set is called the classifier’s accuracy over that set.

The accuracy over the training set is called the training accuracy. The unseen data

is often called the test data, and the accuracy over this set is called the test accuracy.

Thus I can rephrase the earlier strategy by stating that one might expect the test

accuracy to be high if the training accuracy is high. This is called the inductive

learning hypothesis (Mitchell, 1997).

To solve a new binary classification task, a researcher wishes to find two algo-

rithms: the learning algorithm and the classifier. I will review, at a very high level,

some typical classifiers and their associated learning algorithms in Sections 2.1 and

2.2.
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It should be noted that there are many machine-learning tasks that do not fall un-

der the umbrella of binary classification, such as clustering, regression, and non-binary

classification (Mitchell, 1997). In this dissertation, however, I will focus primarily on

binary classification for two reasons. Firstly, binary classification is relatively well-

defined and simple in concept. Secondly, binary classification is extremely useful

to researchers concerned with prediction. Note that in Part IV of this dissertation,

I will shift the discussion to a task more closely related to regression than binary

classification.

I conclude this section with a few mathematical definitions that will be used

throughout the dissertation. Let x,x′ ∈ Rn. The `p norm of x, denoted ‖x‖p, is

defined by

‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

.

The dot-product, or standard inner product, of x and x′ is denoted 〈x,x′〉, and is

defined by

〈x,x′〉 =
n∑
i=1

xix
′
i

The cardinality of a set S is denoted |S|, and is equal to the number of elements in

the set. A set S is convex if, given any s and s′ ∈ S, we have ts + (1 − t)s′ ∈ S for

all 0 ≤ t ≤ 1. A function f is convex if

f(tx+ (1− t)x′) ≤ tf(x) + (1− t)f(x′) for all 0 ≤ t ≤ 1.

The composition of two functions is denoted f ◦ g(x) = f(g(x)).
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1.1 Classifier Confidence

Although a binary classifier is a mapping from the data to the discrete set Y =

{−1,+1}, it is often constructed from a real-valued function cθ, where

cθ : X → R.

One then defines

ŷθ(x) = sgn[cθ(x)]

where

sgn[x] =


1 if x ≥ 0

−1 otherwise.

The function cθ is called the scoring function, and cθ(x) the score of the classifier on

x. The subset of data for which y = 1 are called the positive data, and likewise the

data for which y = −1 are called the negative data. The learning algorithm, then,

attempts to find parameters θ for which cθ(x) ≥ 0 for all (or many) positive data,

and cθ(x) < 0 for all (or many) negative data4.

The value |cθ(x)| is considered to be the confidence of the classifier (Dredze et al.,

2008). That is to say, if

cθ(x1) > cθ(x2) > 0

then the classifier will classify both x1 and x2 as positive, but it is more confident in

its classification of x1.

In a slight abuse of notation, I will sometimes refer to cθ as the “classifier”, even

4There are often additional criteria required by the learning algorithm. For example, I will review
the maximum-margin constraint in Section 2.1.
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though I have defined this term to be the thresholded function ŷθ. This abuse is

common in the literature, and should not be confusing: when discussing the discrete

set Y I mean ŷθ, and when discussing the real-valued output (the confidence) I mean

cθ.

1.2 Feature Extraction

So far I have assumed that the data X is a subset of Rn. However, real-world data

does not necessarily come in real vectors of a fixed dimensionality. For instance, a

researcher might be asked to classify non-vector objects such as graphs or strings of

text. Even when the data are real vectors, the vectors are often of variable length.

For a classifier and learning algorithms to succeed, then, one requires a mapping

from the (possibly non-uniform length, possibly non-vector) real-world data to Rn.

This mapping is called feature extraction. Formally, given a set X of (real-world)

data, feature extraction is a function

g : X → Rn

that transforms the data into an appropriate format for learning and classification.

The output zi = g(xi) is a vector called the features extracted from datum xi. As

an example, when the data are strings of text, the features might be word counts or

word frequency for n important words. Features extracted from graphs might include

the number of nodes that have k edges for 1 ≤ k ≤ n.

The performance of a classifier can depend heavily on the choice of features ex-

tracted from the data. Choosing high-performing features often relies heavily on
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domain expertise. This extensive hand-tuning can be disappointing for machine-

learning researchers who wish to develop methods of automatically learning from

data.

In fact, the hand-tuning of features is often beneficial even when the data are real

vectors of fixed length. That is to say, the accuracy of a machine-learning system

can be improved when each datum is transformed in some way that provides task-

relevant information to the classifier. In Sections 2.4, 2.5, 5.3 and 7, I will review

several common types of feature extraction that are relevant to this dissertation.
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Chapter 2

Machine Learning Background and

Examples

In this Section, I review some common examples of classifiers and features that will

be useful later in the document. For notational simplicity, I will use the notation of

classifiers ŷ(·) that take data x directly, rather than features z. However, the following

classifiers are equally capable of training and testing with feature vectors rather than

raw data.

2.1 Support Vector Machines

While I have reviewed the abstract definitions of learning algorithms and classifiers,

I have not yet given a specific example. In this section, I review the popular Support

Vector Machine (SVM) classifier at a high level (Cortes and Vapnik, 1995). The

purpose of this review is both to provide a concrete example of a classifier and to

prepare the reader for the discussion of SVMs later in this dissertation.
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In order to simplify the presentation, let us assume that the data are linearly

separable. That is to say, the n-dimensional data can be separated by an (n − 1)-

dimensional hyperplane such that the positive data lie on one side of the hyperplane

and the negative data lie on the other. An example is shown in Figure 2.1.

Figure 2.1: Example training data and a linear support vector machine (SVM). The
positive data are represented by red x’s, and the negative by blue o’s. The SVM at-
tempts to learn the separating hyperplane (green, dashed) that maximizes the margin
(the distance between the hyperplane and the data).

A linear classifier is of the form

ŷθ(x) = sgn(〈w,x〉+ b)

where θ specifies the choice of vector w, “bias” b ∈ R, and 〈·, ·〉 is the standard dot

product. The separating hyperplane (also called the decision surface) is defined by

the function 〈w,x〉+ b = 0.
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Clearly, there can be many values for θ which will separate the data. The goal of

the SVM learning algorithm is to choose θ∗ = (w∗, b∗) that maximizes the distance

between the separating hyperplane and the data. This distance is known as the

margin, and is illustrated in Figure 2.1. Boser et al. (1992) proved that this method

produces an optimal classifier for generalizing to (unseen) test data, under certain

assumptions of the data.

It turns out that, without loss of generality, the margin is exactly ‖w‖2. Therefore,

one can find w∗ and b∗ by solving the constrained optimization problem

minimize
w,b

1

‖w‖2
(2.1)

subject to 1− yi (〈w,xi〉+ b) < 0 for 1 ≤ i ≤ N

where N = |X |. In the above formulation, 1 − yi (〈w,xi〉+ b) < 0 is merely the

constraint that each training datum be correctly classified. The constrained mini-

mization problem of (2.1) is known as the primal of the SVM (Cortes and Vapnik,

1995).

Training the SVM involves solving this constrained optimization problem in order

to find parameters w∗ and b∗. Problem (2.1) can be efficiently solved with a variety

of linearly-constrained quadratic programming techniques. One of the most popular

such methods is the Sequential Minimal Optimization algorithm of Platt (1999). Once

the optimal parameters are found, new data are classified with the function

ŷθ(x) = sgn(〈w∗,x〉+ b∗). (2.2)
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(A) (B)

Figure 2.2: Linear versus nonlinear (kernel) SVMs. (A) When a linear SVM is fit
to the data, the maximum margin is small. (B) When a nonlinear SVM is fit to the
same data, the margin can be much larger.

2.2 The Kernel Trick

While SVMs offer a well-motivated theory for how to achieve good generalization

performance (i.e., choose the hyperplane that maximizes the margin between the two

classes), the above examples come with the strict constraint of a linear hyperplane sep-

arating the classes. In some cases, however, one might have some a priori knowledge

that the data is best classified by a nonlinear classifier. The kernel trick allows the

same maximum-margin strategy to be applied to this nonlinear case (Shawe-Taylor

and Cristianini, 2004).

The kernel trick extends many machine-learning methods (including SVMs) by

replacing the dot product 〈·, ·〉 with a new function κ(·, ·) (called the kernel function),

specifically tailored to help solve the task at hand. For example, one might choose
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the polynomial kernel of degree d with constant c, defined by

κ(x′,x) = (〈x′,x〉+ c)d,

or the radial basis function (RBF) kernel with scaling parameter σ, defined by

κ(x′,x) = exp

(
−‖x

′ − x‖22
2σ2

)
.

While there are mathematical restrictions on the form of κ(·, ·), I do not detail them

here. I refer the interested reader to the lecture notes by Ng (2014, chapter 8). For

the purpose of this dissertation, the reader needs only a broad overview of the kernel

trick’s application to SVMs, after which I will dive deeper into an example kernel

called Spatial Pyramid Matching (SPM) which will be used in Section 8.

For SVMs, the kernel trick is enabled by the realization that the vector w defining

the maximum-margin hyperplane lies in the subspace spanned by the training data,

w =
n∑
i=1

αixi. (2.3)

for some αi ∈ R. (Recall that n is the dimensionality of each xi.)

This fact allows us to rewrite Equation (2.2) as

ŷθ(x) = sgn

(
n∑
i=1

αi〈xi,x〉+ b

)

= sgn

(∑
s∈S

αs〈xs,x〉+ b

)
(2.4)

where S is the set of indices i for which αi 6= 0, and the set {xs} are known as the

19



support vectors. Interestingly, it is often the case that |S| � n — that is to say,

trained SVMs often have very few support vectors.

Equation (2.4) is known as the dual formulation of the SVM classifier (Cortes and

Vapnik, 1995). Applying the kernel trick gives us

ŷθ(x) = sgn

(∑
s∈S

αsκ(xs,x) + b

)
, (2.5)

Thus training a kernel-SVM involves finding the coefficients αs that lead to the

maximum-margin hyperplane in the space “induced” by the kernel — though this

is more detail than necessary for this dissertation.

2.3 The Spatial Pyramid Matching Kernel

In Part III of this dissertation, I will use the Spatial Pyramid Matching (SPM) kernel

to classify images. Recall that a kernel works by replacing the dot product; thus a

kernel yields a new way to compare two pieces of data. The SPM kernel was developed

by Lazebnik et al. (2006) as a way to compare the features extracted from two images.

I describe the SPM kernel here.

First, let us review the idea of histogram intersections. A histogram is a vector

(or list of numbers) h = [h1, h2, . . . , hn] where each entry hi in the list represents the

number of elements that h has counted in the ith “bin.” One can generate a new

histogram based on the intersection of the first two, g = h ∩ h′. This new histogram

is defined by

gi
def
= min(hi, h

′
i).

The simple process of generating g is illustrated in Figure 2.3. One way to measure
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Figure 2.3: Histogram intersection illustrated. Given two 4-dimensional histograms, h
(blue) and h′ (red), histogram intersection yields a new histogram g (purple), formed
by taking the minimum of each entry in h and h′, gi = min(hi, h

′
i). For each i, the

minimum between hi and h′i is outlined in black. All figures in this dissertation are
best viewed in color.

the intersection of two histograms with a function I is to merely sums the dimensions

of the intersection,

I(h,h′) =
n∑
i=1

min(hi, h
′
i)

The SPM kernel generalizes this type of measure to the case where we want

to compare two different sets of points which have not yet been aggregated into

histograms. Let X ⊂ Rn and O ⊂ Rn be two finite sets. Let c be the smallest

n-dimensional hypercube containing all the elements of both X and O. At level `,

SPM “dices” the volume c into (2`)n equal-sized bins, as demonstrated in Figure 2.4

with n = 2 and ` = 0, 1, 2. This results in the histograms X` and O`, which count the

number of elements of X (O, respectively) in each of the bins. The measure computed

by the kernel at layer ` is,

I`(X,O) = I(X`, O`)
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Figure 2.4: The Spatial Pyramid Matching (SPM) kernel generalizes histogram in-
tersection to sets of points in high-dimensional spaces using multiple scales. At level
`, the kernel divides the space into a 2` × 2` grid (in higher-dimensional spaces, an
2`×2`× . . .×2`-grid), and each bin in the grid is scored. A bin’s score is the minimum
number of elements from each set (either x or o) in that bin.

The SPM kernel measures the similarity between the sets X and O by computing

κSPM(X,O)
def
=

1

2L
I0(X,O) +

L∑
`=1

1

2L−`−1
I`(X,O). (2.6)

where L is the number of “levels” in the pyramid. Higher values of L mean that X

and O are compared at higher levels of granularity.

Note that larger values of ` are scored higher by κSPM. This is because the bins

are smaller when ` is larger (see Figure 2.4, right), and thus I` measures similarity

at a finer scale. That is to say, it is less likely for X and O to have points near each

other by chance when ` is larger. In practice, we choose L = 3.

I have introduced how an SVM uses a kernel κ(·, ·) to define a measure of similarity

between two pieces of data, x and x′. I have also discussed how κSPM(·, ·) allows the

SVM to measure the similarity of two sets of points, X and O. In order to apply

κSPM in an SVM, then, we need a mapping from a datum x to a set of points X. In

the next section, I describe a method which does exactly that.
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Figure 2.5: An image (left) and the key points extracted by SIFT (right, in red).
Images from Wikipedia (2014)

2.4 SIFT

This dissertation includes many examples of image classification. Classifying images

with good accuracy often relies on good feature extraction methods, as discussed in

Section 1.2. In Part III of this dissertation, I will use a feature extraction method

called SIFT (Scale Invariant Feature Transform). SIFT is a popular type of feature

for classification tasks in computer vision (Lowe, 1999). SIFT features indicate the

locations of key points in an image. The SIFT features of a single image is a set

containing many such key points. These key points are designed to be invariant to

rotation, scale, and shift of objects in that image. For example, in Figure 2.5, we see

an image and its key points (in red).

There are many types of features extracted by SIFT. They include the gradient

of pixel intensity values at multiple orientations in the image to detect high-contrast

edges and corners, and differences-of-Gaussians (DoG) to detect small features such

as salient dots. The key points are smoothed and various post-hoc analyses are
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performed in order to weed out key points that might not be useful for image- or

object-recognition.

2.5 Generative Models

Part II of this dissertation will focus on methods that explain, given a datum x and

its classification ŷθ(x), how each dimension xi of x affected the classification. This

mapping from the classification back to the datum being classified is reminiscent of a

large class of statistical models called generative models. These models are capable of

generating new data based on features that are learned from the training data. The

generation of new data is sometimes referred to as the model “dreaming” (Hinton

et al., 2006).

Formally, a generative model defines a distribution over both the input space and

model space, P (x, θ). With such a distribution, one may choose a particular model

(which defines P (θ)), and one can then sample from the distribution

P (x|θ) =
P (x, θ)

P (θ)
.

Sampling from P (x|θ) generates new data from the model itself. This is how a

generative model “dreams” new data.

Having such a model generate data allows the user to verify that the model is

capturing relevant statistics of the data. Thus generative models, such as deep belief

networks (Hinton et al., 2006; Ranzato et al., 2011), deconvolutional networks (Zeiler

et al., 2010, 2011) and various latent-variable probabilistic models (Fei-Fei et al., 2004)

are often considered to be interpretable. In particular, sampling new data from a
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Examples of training data for a generative model:

Examples of generated data from the trained generative model:

Figure 2.6: Training data and generated data from a deep belief network, a popular
type of generative model (Ranzato et al., 2011). The second row of images were
sampled from the model’s learned distribution over images. The fact that these images
are convincingly face-like is good evidence for the model having learned parameters
θ that accurately describe faces.

learned distribution can help us develop some intuition about the learned distribution.

In this way, generative models give us some understanding of the statistics learned

by the model. While sampling allows for many important types of learning and

feedback to the user, I will discuss in Section 3.1 why sampling does not suffice as an

explanation method for the purposes of this dissertation.

It should be noted that generative models are not explicitly discriminative — that

is to say, they are not necessarily classifiers in their own right. In the work considered

in this dissertation, a generative model is typically used to extract features that are

then fed to a classifier such as a linear SVM (Zeiler et al., 2010, 2011), much as was

shown in Figure 2. In fact, the sparse coding methodology described in that figure is

formally a type of generative model. I will discuss this in greater detail in Parts III

and IV.
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Part II

Explaining Classifications
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The motivation for this part of the dissertation comes from the black-box nature

of many classifiers. Recall the training and testing procedures outlined in Figure 1, in

which the test image could be correctly classified as face for several different reasons:

perhaps the classifier had learned to recognize the geometry of faces; or perhaps

it learned to recognize bookshelves or grass. Because machine-learning is gaining

use with “real-world” data (meaning datasets that researchers have not carefully

manipulated or curated to control for any biases), the machine-learning practitioner

is often left to wonder if a classifier’s accuracy comes from having learned to solve the

intended problem (recognizing faces) or from learning some spurious statistics that

have accidentally “leaked through” in the dataset.

Understanding which problem the classifier is truly solving should not be con-

sidered an extraneous branch of machine learning; it is crucial for many real-world

applications. Kononenko (2001) surveyed medical professionals, finding that machine-

learning methods were untrusted — even methods that provided higher diagnostic

accuracy than physicians — because the methods did not explain how they came to

their decision. Poulin et al. (2006) found the same need for interpretable methods

among (non-medical) biological researchers. Tickle et al. (1998) note how financial

markets are another setting where each individual decision can be critical, and there-

fore the interpretability of classifiers is crucial for those interested in using machine

learning in this domain.

So far, the term “interpretable” has been a vague notion. I will now develop the

definition of interpretability in a more concrete way. Intuitively, a classification is

interpretable if it comes with some explanation of what caused a given classification.

More concretely, I desire a per-instance explanation method. That is to say, given

a single datum x and a classifier ŷθ, I want to know how each dimension xi of the
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datum x affected the classification ŷθ(x). I believe that this type of explanation can

add a degree of trustworthiness to the machine-learning tools that have not yet been

widely adopted in medicine (Kononenko, 2001), financial analysis (Tickle et al., 1998),

and other research areas where each individual classification is crucial (Poulin et al.,

2006).

For example, in the context of machine-learning applications in medicine, imagine

an algorithm trained to detect whether or not a patient has high risk for develop-

ing hypertension (the classes are high risk or low risk) based on features extracted

from the patient’s record. Even if an algorithm can predict such risk more accurately

than physicians, Kononenko (2001) found in a survey that hospitals and healthcare

administrators would not trust and employ such an algorithm in the absence of some

explanation of the resulting predictions. In this context, a per-instance explanation

might contain the information, “predict high risk for patient 0589 mostly because

blood pressure > 160-over-100 and smoker = true; additionally, but less impor-

tantly, because age > 65.” Such an explanation could provide an amount of trust-

worthiness to the prediction, such that the machine-learning algorithms could find

more real-world use.

This type of explanation method contrasts with other methods which provide an

aggregate description of the classifier (Fu, 1994), but which do not explain how the

classifier considers an individual datum. An aggregate description might tell us what

general rules a classifier uses when detecting high risk (continuing the above example),

such as “Look for high blood pressure, history of kidney disease, history of smoking,

etc.” However, this type of aggregate description does not tell us the reason behind

an individual classification. While such aggregate descriptions are certainly useful,

this dissertation will focus on explaining individual classifications.
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Recall that a classifier ŷ is a mapping from a datum (we again assume that the

data X ⊆ Rn) to a finite set Y called the classes, parameterized by θ ∈ Θ:

ŷθ : Rn → Y .

Let us define a mapping Explain, whose job is to explain a classifier’s classification.

In particular, Explain takes a datum x and a classifier ŷθ, and returns a vector of the

same dimensionality as the datum. Let Ỹ = { ŷθ | θ ∈ Θ }. Then we have:

Explain : Rn × Ỹ → Rn.

The output of Explain will be an explanation of how each dimension of the datum

affected the classification. This definition is still fairly vague and nontechnical, and

different researchers disagree on the best way to explain a classification (i.e., the best

definition of Explain). I review several common definitions below.
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Chapter 3

Explaining Classifications:

Background

3.1 The Bayesian Approach to Explanations

In Bayesian machine learning (Bishop, 2006), a system learns parameters θ in order

to calculate an explicit posterior distribution Pθ(x|y)1. This is the distribution of

datum x (treated as a random variable) given the class y. A datum x is classified by

1Note that the subscript θ implies that the distribution is parameterized by the learned model
θ; this parameterized distribution is over x and y. For example, under a Gaussian assumption, one
might have θ = {(µi, σi)}i, where the choice of the class y determines which index i is used. Some
works write this distribution instead as P (x|θ, y).
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determining the most likely class y given the datum x,

ŷθ(x) = arg max
y
Pθ(y|x) (3.1)

= arg max
y
Pθ(x|y)Pθ(y)

1

Pθ(x)
(3.2)

= arg max
y
Pθ(x|y)Pθ(y) (3.3)

where Equation (3.2) comes from Bayes’ Theorem, and Equation (3.3) follows from

the fact that the prior probability of the data, Pθ(x), is not a function of y.

After classifying a datum as ŷ = ŷθ(x), a researcher might try to gain some

understanding of the classifier by sampling from the distribution

Pθ(X|ŷ). (3.4)

where X is a random variable (which can be sampled), and ŷ is the predicted class

of the given datum x. In fact, this is exactly the “dreaming” ability of generative

models described in Section 2.5. Thus one can “explain” the classification ŷθ(x) of a

generative model by sampling from the posterior of that class, as in Figure 2.6 (Hinton

et al., 2006; Ranzato et al., 2011; Fei-Fei et al., 2004). In the figure, note how sampling

functions as a type of explanation: because the model in Figure 2.6 appears to do a

good job of sampling new images of faces from its learned distribution, a researcher

may find confidence that the classifier has learned the relevant information from the

data.

When tractable, one might choose to remove the randomization by defining the
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function Explain(x, ŷθ) to calculate the maximum-likelihood estimate from 3.4,

Explain(x, ŷθ) = arg max
X

Pθ(X|ŷθ(x)), (3.5)

or some other statistic of the distribution at hand.

However, sampling from the class’s posterior (or calculating a statistic from the

posterior, as in Equation (3.5)) is different than asking how each dimension of the da-

tum affected the classification. Sampling (or computing a statistic from) the posterior

tells us which data are likely given the model of the chosen class; thus two different

data classified the same way would give the same explanations (modulo the random-

ization of sampling)2. The type of explanation I seek, however, is not which data are

likely to appear; rather, I want to determine the importance of the dimensions of a

particular datum that is classified by a given classifier.

3.2 Approximating the Classifier

Another method to understand the classifications of a black-box classifier is to ap-

proximate the classifier with a simpler, interpretable classifier. Rule generation is a

popular example of this method, in which complicated classifiers (such as multilayer

perceptrons (Cybenko, 1989)) are approximated with simpler “rule-based” classifiers

(Fu, 1994). Then the classifications of the original black-box classifier are explained

based on the simpler classifier.

The simpler “rule-based” classifier is often a decision tree. A decision tree is a

2Some methods generate more datum-specific explanations by conditioning the distribution on
some mid-level features extracted from the data. While this does allow two different data to have
two different explanations, it does not change the fundamental fact that asking “Which data were
likely?” is not the question that I pose in this dissertation.
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tree where each node is a simple logic statement (e.g., x1 < 0). Traveling from the

root of the tree to a leaf results in a long logic statement as well as a classification

(“If x1 < 0, then if x6 > 4, then . . . then classify as +1”). In this case, Explain(x, ŷθ)

is exactly the logic statement that explains how the datum traveled to a leaf of the

decision tree. Unfortunately, the depth of these trees can be quite large when applied

to a difficult problem (Breslow and Aha, 1997). As a result, this method adds two

new difficulties to the explanation problem. First, the explanatory logic statement

is often excessively long and cumbersome, making the explanation itself difficult to

understand (“The datum was classified as positive because x1 < 0 and x6 > 4 and...”).

Second, the explanations are based on an approximation to the original classifier, and

thus might include misleading information where the approximation is poor.

Baehrens et al. (2010) perform a similar type of classifier-approximation, and

combine the result with a gradient-based explanation. The simpler, approximat-

ing classifier is a Gaussian Process Classifier (GPC). GPCs are known to be able

to approximate any function (with enough training data). The gradient of the re-

sulting GPC is then used to explain classifications. However, as I will explain in

Section 3.4, the gradient does not provide satisfactory explanations with even simple

linear classifiers, and there is no reason to expect the gradient of a GPC to be any

more illuminating.

A general problem for this class of methods is the extra time needed to learn the

approximation of the classifier. This can also require an enormous amount of data in

order for the approximation to be close. Moreover, as I noted above, the explanation

might be incorrect and misleading when the approximation does not provide a good

fit to the original classifier.
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3.3 Exhaustive Data Search

Given a classifier ŷθ and a datum x, some methods explain the importance of feature

xi by modifying x itself and re-evaluating ŷθ. For example, Robnik-Šikonja and

Kononenko (2008) and Strumbelj et al. (2009) measure the importance of dimension xi

by calculating the expected value of ŷθ(x) over all possible changes in the dimensions

xj 6=i. That is to say, the value xi is held fixed while the value of all other entries in the

vector x are changed (over a very large range). The idea is that xi is very important

to the positive classification of x if ŷθ(x) is often positive when xi takes on the given

value.

One clear difficulty with this approach is the computational cost of varying all xj 6=i

through all possible values. This requires sampling from a set that is exponential in

the dimensionality of x. The authors compensate for this by using approximate

sampling techniques such as Markov Chain Monte Carlo (Metropolis et al., 1953;

Geman and Geman, 1984). However, this introduces an unwanted dependence on the

quality of the approximation (to the distribution over which the expected value will

be calculated), as I described in Section 3.2.
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3.4 The Gradient Approach to Explanations

The gradient approach (also called sensitivity analysis) defines Explain as follows.

Given a datum x ∈ Rn and a classifier ŷθ,

Explain(x, ŷθ) =



∂ŷθ(x)
∂x1

∂ŷθ(x)
∂x2

...

∂ŷθ(x)
∂xn


. (3.6)

The gradient approach to explanations follows the logic that xi was largely responsible

for the classification if ŷθ is very sensitive to small changes in xi in a neighborhood

around the datum x.

Baehrens et al. (2010) use the gradient approach to explain the classifications of

any classifier3. Indeed, the benefit of this type of analysis is that it can be applied to

any differentiable classifier ŷθ. While this is certainly a desirable trait, let us pause

to question whether the information conveyed by the gradient approach truly tells

us how each dimension of the datum affected the classification, or whether it tells us

something else altogether. Let us look at a pair of examples.

3Baehrens et al. (2010) first approximate the classifier as a Gaussian process, then apply the
gradient approach to the approximation.
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Let ŷθ(x) = x1 + 2x2, and let x =

 5

−2

. In this case,

ŷθ(x) = 1(5) + 2(−2)

= 5− 4

= 1, and

Explain(x, ŷθ) =

 1

2

 .
Thus the gradient approach appears to tell us that x2 was twice as important to the

classification as x1 was.

Now let x =

 −3

2

, and let ŷθ be as before. Then we have

ŷθ(x) = 1(−3) + 2(2)

= −3 + 4 (3.7)

= 1, and

Explain(x, ŷθ) =

 1

2

 .
Thus the gradient approach still explains that x2 was twice as important to the

classification as x1 was.

It would seem that under the gradient approach, Explain omits some useful in-

formation. In the first example, the dimension x2 actually pulled the classification

toward the negative class, but the classification was positive due to the large positive
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value of x1. In the second example, these roles were reversed: the dimension x1 pulled

the classification toward negative, but was “overpowered” by the large positive value

contributed by x2. None of this information is present in the gradient approach’s

version of Explain.

Recall the type of explanation I seek in this dissertation: given a single datum x, I

wish to know how each dimension xi of x affected the classification ŷθ(x). In general,

the gradient approach does not give us this information. Given a datum x classified

by ŷθ, the gradient approach answers the question “how sensitive is the classifier to

each xi?” which is, in general, a different question to ask. Rather than determining

how sensitive ŷθ is to small changes in xi (as in the gradient approach), I want to

know the responsibility of xi at exactly the value it assumed in the datum x. Thus

the gradient approach is not suitable for my goal.

3.5 The Contribution Approach to Explanations

Given a datum x ∈ Rn, let the classifier ŷθ have the form

ŷθ(x) = sgn

[
n∑
i=1

fi(xi)

]
(3.8)

for real-valued functions fi. Using the terminology of Poulin et al. (2006), a function

ŷθ in the form of Equation (3.8) is called additive4 and fj(xj) is called the contribution

of dimension xj. Thus the contribution of a variable is exactly the amount that it

contributes to the overall sum used in classification.

4In an additive classifier, the parameters θ define the functions fi, meaning θ = {f1, . . . , fn}
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Under the contribution approach, the explanation of a classification is defined by

Explain(x, ŷθ) =



f1(x1)

f2(x2)

...

fn(xn)


. (3.9)

Thus xi was important to the classification if xi contributed a large summand to the

overall sum in ŷθ(x) (i.e., if |fi(xi)| is large).

Recalling our examples from Section 3.4, when ŷθ(x) = x1 +2x2 and x =

 5

−2

,

we have

ŷθ(x) = 1(5) + 2(−2)

= 5− 4 (3.10)

= 1.

The contribution-based explanation gives us

Explain(x, ŷθ) =

 5

−4

 .
This explanation perfectly captures the intuition in Equation (3.10): namely that

ŷθ(x) = 1 because x1 added a value of 5 to the overall sum, and x2 added a value of

−4. Note that this information was lacking in the gradient approach.
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Similarly, when x =

 −3

2

, we have

ŷθ(x) = 1(−3) + 2(2)

= −3 + 4 (3.11)

= 1,

and the contribution approach gives us the explanation

Explain(x, ŷθ) =

 −3

4

 ,
which accurately reflects what is calculated in Equation (3.11): ŷθ(x) = 1 because x1

contributed a value of −3 to the overall sum, and x2 added a value of 4.

In general, the contribution approach tells us very useful information about the

responsibility of each xi in the classification ŷθ(x). Given a datum x and an additive

classifier ŷθ(x) =
∑

j fj(xj), it is clear that fi(xi) is exactly the amount that dimension

xi adds to the overall classification. In other words, the contribution of xi tells us

how the ith dimension of the datum affected the classification, based on how much

it “pulled” the sum toward the positive or negative class. This is exactly the type of

information that I would like to capture in order to understand how responsible each

dimension xi was for a classification.

The contribution approach gives us a good explanation about what caused the

classification, though it is only defined when the classifier is additive. Note that many

common classifiers are additive. Any linear classifier (such as a linear support vector
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machine (Cortes and Vapnik, 1995), seen in Section 2.1) is additive by definition.

Even Näıve Bayes (Webb et al., 2005) can be written as an additive function. Thus

the constraint of additivity still allows us to examine a large cross-section of machine-

learning methods.

One challenge with this approach is that the data are usually transformed by

feature extraction, as discussed in Section 1.2, before being passed to the additive

classifier. In this case, the contribution approach tells us how much each dimension

of the feature vector contributed to the classification, but does not directly explain

the contributions of the original datum. Extending the contribution approach to a

particular family of popular feature transformations, called hierarchical networks, is

exactly the focus of Chapter 4.
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Chapter 4

Contribution Propagation

In Section 3.5, I showed that contributions are a helpful way to understand how

each dimension of the datum affected the classification. Recall that given an additive

classifier, which is of the form

ŷθ(x) = sgn

(
n∑
i=1

fi(xi)

)
, (4.1)

the contribution of dimension j is precisely the jth summand; namely fj(xj). Intu-

itively, it is clear that the contribution is precisely the amount that the jth dimension

of x affected the overall sum being calculated.

In Section 1.2 I discussed how sometimes the classifier does not take the datum x

as input directly; instead, ŷθ may classify some features z calculated from the datum

x. That is to say, when classifying x, one may first calculate the features z = g(x)

(for some chosen function g), and then apply the classifier to the features, ŷθ(z). In

this setting, contributions only tell us the importance of the dimensions of z, yet one

may still want to know how the dimensions of x affected the classification.
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Figure 4.1: Contributions explain how each dimension of the classifier’s input affected
the classification. When the feature vector z is extracted from the datum x (1), the
feature vector is given as input to the classifier (2). Contributions can then explain
the importance of the different dimensions zi of the feature vector z (3). However,
contributions alone do not tell us the importance of the dimensions of the original
datum (4), which is my ultimate goal.

This problem is illustrated in Figure 4.1, where a classifier attempts to classify the

given test image as face or no-face. Here, x is an image (each dimension representing

one pixel’s intensity or grayscale value), and some features z are extracted from the

image. For example, one may calculate the features by convolving the image with

different filters known to help detect a face. In such a case, the contributions of Poulin

et al. (2006) only tell us how the dimensions of z affected the classification, but the

explanation does not tell us how the different regions of the image (dimensions of

x) contributed to the classification. A machine-learning practitioner might like to

verify, for instance, that the face classification is due to pixels from the person’s

face, rather than from the necktie or some spurious statistics in the background that

(unintentionally) correlate with the face class in the training data.

In this section, I will develop an extension of contributions that allow us to cal-
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culate, for a certain family of feature extraction methods, the contributions of the

dimensions of the input x. That is to say, as long as the features z are calculated in by

a certain family of methods (called hierarchical networks), my proposed method will

explain how each dimension of the datum x affected the classification, even though

the features z were the input to the classification function ŷθ(·). I will derive this

method in Section 4.2, and I will prove several important properties of this method

in Section 4.3 before applying it to real machine-learning tasks in Sections 5.1 and

5.3.

4.1 Preliminaries

Let G = (V , E) be a directed, acyclic graph. V is the set of nodes in the graph, and

E the set of edges. I write

(U → V ) ∈ E

to mean that U ∈ V , V ∈ V , and there is an edge from U to V . For any node V ∈ V ,

let

ch (V )
def
= {U ∈ V : (U → V ) ∈ E}

denote its children nodes (the set of all nodes with outgoing edges to V ). I will

abuse the notation slightly by sometimes referring to ch (V ) as a vector of nodes; the

intended use will be clear from context. By convention, when discussing the edges

incoming to V from its children, I refer to V as the parent node; in general a node

can have many parents. Let us further define

pa (U)
def
= {V ∈ V : (U → V ) ∈ E}
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to be the set (or vector) of parents of U .

Figure 4.2: A network is a directed, acyclic graph, where each node computes a
function of the values of its children. Left: the network is organized into layers ; the
first layer is called the input, and the last the output. Right: each node in the network
computes a function f ; the arguments of the function are passed in by the children
of the node.

Let the graph be organized into layers, as in Figure 4.2 (left). Each node in

the network computes a simple function whose arguments are given by the children

(Figure 4.2, right). When a graph is endowed with this layered topology and the

nodes compute such functions (where each function’s input is a subset of the previous

layer), I refer to the graph as a hierarchical network (or network for short). The

nodes with no incoming edges are called the input of the network, and those with no

outgoing edges the output. In a further abuse of notation, I will sometimes use an
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upper-case variable to refer to the identity of a node, as in the statement

Ui ∈ ch (V ) ,

and sometimes I will use the same upper-case variable to refer to the value computed

by that node’s function, as in the statement

V = f(U1, U2, . . . , Un).

I will even mix these two notations into a single statement when it simplifies the

exposition. For example, one can combine the above two statements into the compact

form

V = f(ch (V )). (4.2)

In Equation (4.2), the V on the right-hand side refers to the identity of a node, and

on the left-hand side its computed value.

Networks are often used to extract features from a datum x by passing each

dimension xi into a separate input node of the network, and using the output of the

network as the features z, as in Figure 4.3 (left). This is a common methodology in

machine learning; examples include artificial neural networks (Mao and Jain, 1995),

the neocognitron (Fukushima, 1980), HMAX (Riesenhuber and Poggio, 1999), deep

belief networks (Hinton et al., 2006), convolutional networks (LeCun et al., 1998;

Krizhevsky et al., 2012), and deconvolutional networks (Zeiler et al., 2010, 2011).

In fact, using networks for feature extraction is so popular in machine learning that

it would be nearly impossible to detail all such methods in an exhaustive list. I will
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focus the discussion slightly by considering networks where the function calculated by

each node (seen in Figure 4.2, right) is additive. That is to say, every node computes

V =
n∑
i=1

fi(Ui)

where (U1, U2, . . . , Un) = ch (V ). For the moment, I place no restrictions on the

functions fi(). In particular, the fi do not need to be the same for each node V .

Thus it would be more mathematically rigorous to index V, f , and U by their position

in the network, as well as the parameters θ that define the network; however, this

notation would quickly become too cumbersome, and so I use the simpler version

above. Note that, among others, the networks of LeCun et al. (1998), Krizhevsky

et al. (2012), and Zeiler and Fergus (2013) are (or very nearly are) networks of this

type. I will refer to these as additive networks. Formally, an additive network is a

layered network together with the functions fi computed by each node in the network.

To cut down on notation, I will refer to the whole network ensemble (the graph as

well as functions) as G.

Recall that an additive classifier has the form

ŷθ(z) = sgn [cθ(z)]

= sgn

[
m∑
i=1

fi(zi)

]

When the classifier’s scoring function cθ (whose output is called the classifier’s “con-

fidence”) is also additive (as in Equation (4.1)), it can be considered “just another
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node” in the network. In this case, the output layer (say, layer L) has only one node

(the classifier), and what were previously called the features are now calculated by

the penultimate layer (layer L− 1) of the network. This does not change any of the

computation; the reorganization is merely conceptual, and will aid in the theory and

notation below. This conceptual reorganization is illustrated in Figure 4.3 (right). In

what follows, I will refer to this topmost node as Y . I will sometimes call Y the clas-

sifier node, even though technically the classifier incurs an additional sgn [·] around

the output of Y .

Figure 4.3: Networks are often used for feature extraction in machine learning. Left:
the datum x = (x1, x2, x3, x4) is passed as input to the network, and the network’s
output z = (z1, z2) acts as features for classification. Right: when the classifier is
additive, the whole of feature extraction and classification can be considered one
large network, with one output node. The “sgn [ ]” over the outgoing edge is meant
to evoke the final thresholding of the additive function in the classifier.

Recall the problem with using contributions when the classifier takes as input

the features extracted from the datum, rather than classifying the datum itself (Fig-

ure 4.1). In particular, I seek to determine how each dimension of the datum affected
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the classification of that datum. Using the vocabulary of networks, I want to know

how each input of the network affected the value of the output node. Contributions

(Equation 3.9) give such an explanation for the features of the network (layer L− 1),

but not the input (layer 1). In this section, I will extend the notion of contributions

from merely explaining the importance of the features to explaining the importance

of the input nodes (as well as every other node in the network).

Rather than determining the contribution of each input by treating the entire

classifier and network as one large black box, my approach is to analyze each layer

of nodes sequentially. Working from the classifier back to the inputs, my method

will determine the contributions of feature nodes (layer L− 1) to the classifier (layer

L), then the contributions of the nodes in layer L − 2 to the nodes in layer L − 1,

and so on until we have calculated the contribution of the inputs. I call this process

contribution propagation.

4.2 Deriving Contribution Propagation

The central idea of contribution propagation is that a node contributes to the classi-

fication if it contributes to its parents and its parents contribute to the classification.

This idea is abstract at the moment, but I will make it concrete shortly. In addition to

this idea, I list here three properties that should be fulfilled by any good explanation

method for additive networks:

(i) Given features z and a classifier ŷθ(z) = sgn [
∑

i fi(zi)], the contribution of

feature zi is fi(zi).

(ii) The sum of the contributions of all nodes in a layer is equal for all layers.
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(iii) The explanation method is trustworthy, meaning that the explanations faithfully

explain the logic of the network.

I will clarify and expand on these three properties below.

Property (i) merely states that given an additive classifier ŷθ(z) = sgn
[∑

j fj(zj)
]
,

the contribution of zi is fi(zi), the amount that it influenced the overall sum of ŷθ(·).

I have already shown concrete examples of this approach in Section 3.5 and in par-

ticular Equation (3.9), where I reviewed why these explanations are very informative

for the type of question I am asking (“how did each part of the datum affect the clas-

sifier?”). Thus property (i) states that whatever equations and algorithm I derive for

contribution propagation, they must agree with Equation (3.9) on the contributions

of the features.

Property (ii) extends the idea of property (i) to all layers of the network. The

beauty of the contributions defined in Equation (3.9) is that they divide the classi-

fier’s confidence (Section 1.1) into its summands, thus indicating which dimensions

provided the evidence for the confidence. By enforcing this property at all layers in

the network, I hope to have an explanation that is as informative of the nodes at any

layer as Equation (3.9) is at the feature layer. In particular, the explanation should

explain what portion of the classifier’s confidence came from which node, at any layer

of the network.

Property (iii) appears to be the least well defined, but perhaps the most impor-

tant. In short, I do not want an explanation method to “make up” its explanations.

The explanations should be faithful to the logic employed by the network when clas-

sifying a datum. Proving trustworthiness will require that I formalize this property,

meaning that I will ultimately have to express the notion of trustworthiness mathe-

49



matically. This formalization, as well as a proof that contribution propagation obeys

this property, will appear in Theorem 3. For the moment, let us turn our attention

back to deriving contribution propagation from the properties listed above.

Recall the core idea of contribution propagation, that a node contributes to the

classification if it contributes to its parents and its parents contribute to the classifica-

tion. It follows from this statement that there are two different types of contributions.

First, a node will contribute a certain amount to the overall classification. Let us de-

fine the signature of a function which will compute this value,

C (·) : V → R, (4.3)

Second, the method’s core idea implies that a node contributes to its parents. Let us

define the signature of a second function which will compute this value,

C (· → ·) : E → R. (4.4)

I have not yet defined these two functions, but already their signatures can be

used to translate the core idea of contribution propagation into an equation. Given

a node Ui ∈ V , define the contribution of node Ui to be

C (Ui)
def
=

∑
Vj∈pa(Ui)

C (Ui → Vj) C (Vj) . (4.5)

This formula agrees with the core idea of contribution propagation: if a node con-

tributes to its parents (the value defined by C (Ui → Vj)) and its parents contribute to

the classification (defined by C (Vj)), then the node itself contributed to the classifica-
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tion (defined by C (Ui)). Note as well that one can already begin to see the outline

of an algorithm in Equation (4.5), as the C (Ui → Vj) terms allow us to propagate

the contributions from Vj (in layer `+ 1) down to Ui (in layer `). It remains to

define the functions C (· → ·) and C (·) concretely. I will derive their formulae using

Equation (4.5) and properties (i) and (ii).

I begin by deriving the formula for C (Y ), where Y is the classifier node (that

is to say, when the classifier is considered the topmost node of the network, as in

Figure 4.3, Y refers to this node). Let the children of Y (also called the features) be

denoted with Zi (1 ≤ i ≤ m). Because I have assumed that the network is additive,

it follows that Y is an additive function of the nodes Zi,

Y =
m∑
i=1

fi(Zi). (4.6)

Property (i) tells us that

C (Zi) = fi(Zi).

Summing over all Zi in the feature layer, we have

∑
i

C (Zi) =
∑
i

fi(Zi)

= Y (4.7)

Thus the contributions of all the nodes Zi in the feature layer sum to the value

output by Y (recall that this value is the confidence of the classifier, as discussed in

Section 1). Now recall property (ii), that the contributions of any layer must sum to
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the same value. Equation (4.7) says that the contributions in the feature layer sum

to the value output by Y ; it follows that the contributions of all nodes in any single

layer must sum to the value output by Y as well. Because the classifier node Y is the

only node in its layer, it follows that

C (Y ) = Y. (4.8)

Equation (4.8) defines the contribution of the topmost node in the network. Equa-

tion (4.5) defines how to propagate the contribution down through the network, layer

by layer. It remains only to define C (Ui → V ), the contribution of a child node Ui to

its parent V . Once again considering the topmost node Y and its children Zi, note

that each Zi has only one parent (Y ), and thus Equation (4.5) becomes

C (Zi) = C (Zi → Y ) C (Y )

= C (Zi → Y )Y

⇒ fi(Zi) = C (Zi → Y )Y

⇒ C (Zi → Y ) =
fi(Zi)

Y
(4.9)

Although I have only derived Equation (4.9) for the edges between the features and

the classifier node (Zi → Y ) ∈ E , I will show in Section 4.3 that the same formula,

when applied to any edge in the network, allows contribution propagation to satisfy

properties (i), (ii) and (iii).

Further note that, in some cases, the denominator of Equation (4.9) may be

equal to zero, in which case C (Zi → Y ) would be undefined. I will discuss this issue

immediately after defining the contribution propagation algorithm in full, which I do
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now.

Definition 1. (Definition of contribution propagation)

Let G = (V , E) be an additive network with L layers. Let Y denote the topmost

node in the network (the only node in layer L). For any node V ∈ V, let V compute

the additive function

V =
∑

Ui∈ch(V )

fi(Ui)

Furthermore, let

C (Y )
def
= Y, (4.10)

C (U)
def
=

∑
V ∈pa(U)

C (U → V ) C (V ) , and (4.11)

C (Ui → V )
def
=

fi(Ui)

V
(4.12)

Finally, the contribution-propagation algorithm is defined in Figure 4.4.

// Given an additive network G with L layers,
// which classifies a datum x = (x1, x2, . . . , xn),
for layer ` = L→ 1 do

for all nodes Ui in layer ` do
Calculate C (Ui)

return (C (x1) , C (x2) , . . . , C (xn)) // the contributions of the datum (layer 1).

Figure 4.4: The contribution-propagation algorithm. C (Ui) is the total contribution of
node Ui, defined by Equations (4.10), (4.11) and (4.12). Recall that x = (x1, . . . , xn)
is the input to the network, thus C (xj) is the total contribution of input dimension
xj.

Equation (4.12) is defined by a fraction, and thus I must immediately ask whether

the denominator can be equal to zero. The denominator is equal to the value of
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the parent node, and I have placed no restrictions on this value (other than being

computed by an additive function), thus it may indeed be equal to zero in some

cases. This presents a problem for Equation (4.12), and it is a shortcoming of this

method in the most general setting. However, when I apply contribution propagation

to two specific and popular types of networks in machine learning in Sections 5.1 and

5.3, I will show a remedy for the divide-by-zero problem for each of these networks.

Until those sections, I will assume that no node outputs a value of zero, and thus

Equation (4.12) is well defined.

4.3 Theorems about Contribution Propagation

Now that I have defined contribution propagation (Definition 1), a new method for

explaining the classifications of an additive network, I will prove that this method

satisfies the three properties of a good explanation method stated at the top of Sec-

tion 4.2. I will prove each of these in turn. It may already be clear that some of these

properties are satisfied due to the derivation above; nonetheless, I formally state and

prove the three properties of contribution propagation here for completeness.

The central result of this section is Theorem 3, which proves property (iii) by

formalizing the notion of a “trustworthy” explanation. The reader who wishes to

skip the theorems and proofs may benefit from at least reading the text immediately

above, and the theorem statement of, Theorem 3.

I begin by proving property (i), that the contribution of feature Zi is exactly

fi(Zi).

Theorem 1. (Contribution propagation satisfies property (i))

Let G = (V , E) be an additive network. Let Y ∈ V be the output node (the
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classifier), calculating the function Y =
∑m

i=1 fi(Zi) where each Zi ∈ V is a child of

Y (a feature). Then

C (Zi) = fi(Zi)

Proof. Recalling that each feature-level node Zi has only the single parent Y (i.e.,

there is only one classifier), Equation (4.11) becomes

C (Zi) = C (Zi → Y ) C (Y ) .

Plugging in Equations (4.10) and (4.12), we have

C (Zi) =
fi(Zi)

Y
Y

= fi(Zi).

�

Before proving that contribution propagation satisfies property (ii), I will state

and prove a lemma that will simplify the following theorem.

Lemma 1. Let G = (V , E) be an additive network. Let V ∈ V be a node which

calculates the additive function

V =
∑

Ui∈ch(V )

fi(Ui).

Then ∑
Ui∈ch(V )

C (Ui → V ) = 1
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Proof. The proof follows straight from the definition in Equation (4.12),

C (Ui → V ) =
fi(Ui)

V

⇒
∑

Ui∈ch(V )

C (Ui → V ) =
∑

Ui∈ch(V )

fi(Ui)

V

=
1

V

∑
Ui∈ch(V )

fi(Ui)

=
1

V
V

= 1

�

I will now prove property (ii), that the sum of the contributions of all nodes in a

layer is equal to the sum of the contributions of all nodes in any other layer. In fact,

I will prove something even more specific: that the sum of any layer’s contributions

are always equal to the value output by Y .

Theorem 2. (Contribution propagation satisfies property (ii))

Let the nodes Ui (where 1 ≤ i ≤ n) be all the nodes in layer ` of the network.

Then

n∑
i=1

C (Ui) = Y (4.13)

Proof. The proof is by induction. I already have the base case from Equation (4.10).

I will prove the inductive step by assuming that Equation (4.13) is true for layer `+ 1,

containing the nodes Vj (where 1 ≤ j ≤ m). I will then prove that Equation (4.13) is
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also true for layer `, containing nodes Ui (where 1 ≤ i ≤ n).

To begin the inductive step, I assume that

m∑
j=1

C (Vj) = Y.

In the following equations, I am aided by one extra definition. Let E` be the set of

all edges between layer ` (with nodes Ui) and layer `+ 1 (with nodes Vj),

E`
def
= {Ui → Vj ∈ E : Ui ∈ layer `, Vj ∈ layer `+ 1}.

Now Equation (4.11) gives us

C (Ui) =
∑

Vj∈pa(Ui)

C (Ui → Vj) C (Vj)

⇒
n∑
i=1

C (Ui) =
n∑
i=1

 ∑
Vj∈pa(Ui)

C (Ui → Vj) C (Vj)


=

∑
(Ui→Vj)∈E`

C (Ui → Vj) C (Vj)

=
m∑
j=1

 ∑
Ui∈ch(Vj)

C (Ui → Vj) C (Vj)


=

m∑
j=1

C (Vj)

 ∑
Ui∈ch(Vj)

C (Ui → Vj)


=

m∑
j=1

C (Vj) (from Lemma (1))

= Y.

�
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Let us now turn our attention to property (iii), that “the explanation method

is trustworthy, meaning that the explanations faithfully explain the logic of the net-

work.” At first glance, formalizing such a statement presents a serious paradox: in

order to state that an explanation method is trustworthy, one needs to know what

faithfully explaining the logic of the network looks like; but in order to understand

the logic of the network, one needs a trustworthy method for explaining it.

The trick presented in the statement of Theorem 3 is to find a single network that

can be defined in two different ways: one in which the logic is known a priori, and

another in which one can apply contribution propagation. Both of these properties

are found in a linear network — that is to say, an additive network where the function

computed by each node is a linear one. Using a linear network, the function computed

by the network can be rewritten in multiple equivalent ways, due to the flexible nature

of linear functions.

Consider the linear network in Figure 4.5 (a), with a classifier node Y , layer `+ 1

containing nodes Vj, and layer ` containing nodes Ui. Because a linear function

of linear functions is itself linear, I can rewrite a linear network of arbitrary depth

as a single linear function. That is to say, even though the nodes Ui are not the

features nodes, I can still write the output Y as a linear function Y =
∑

i γiUi (for

some γi ∈ R). Moreover, a linear function fits perfectly within the framework of

Poulin et al. (2006) given in Equation (4.1). Therefore, we know a priori that the

contribution of node Ui is given by γiUi (which is guaranteed by Theorem 1). The

theorem then states that the a priori explanation is always equal to the explanation

generated by contribution propagation (meaning the application of Definition 1 to

the full network, including the Vj nodes). That is to say, I will prove that the result

of contribution propagation on a (deep) linear network is equal to the contributions
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Classifier →

Layer

`+ 1→

Layer `→

−→

← Classifier

← Layer `

(a) (b)

Figure 4.5: Illustration of Theorem 3. Every node in network computes a linear
function of its children (a). Because a linear function of linear functions is linear, the
output node Y can be rewritten as a function of the layer-` nodes Ui (b). This gives
us two equivalent networks, one in which the nodes Ui are not the direct inputs to Y
(a) and one in which they are (b). I apply contribution propagation to the “deeper”
network (a), and verify that the results are consistent with the contributions defined
by Property (i) when applied to the “shallower” network (b). Dashed arrows indicate
more layers in the network, omitted from the drawing.

of the (squashed) linear function. This “squashing” of linear networks, which is at

the core of Theorem 3, is illustrated in Figure 4.5.

Theorem 3. (Trustworthiness of contribution propagation with linear networks.)

Let G be a network with L layers. The topmost layer (layer L) contains only

the classifier node Y , and the `th layer contains n nodes U1, . . . , Un. This network

is illustrated in Figure 4.5 (a). Assume each node computes a linear function of its

inputs. Because a linear function of linear functions is linear, I can write

Y =
n∑
i=1

γiUi
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for some γi (Figure 4.5, b).

Then C (Ui) = γiUi, where C (Ui) is calculated using Definition 1, applied to the

full network (Figure 4.5, a).

Proof. The theorem is proved by induction. The base case is covered by Theorem 1.

The sketch of the inductive step is as follows. First, I assume that the theorem

statement holds true for layer `+ 1 of the network. From this, I will derive the

formula for γi. Then Theorem 1 implies that the contribution of Ui must be γiUi.

Finally, I will apply contribution propagation to the full network to calculate C (Ui),

and I will show that these two methods yield the same result.

Moving onto the inductive step in full detail, assume that the theorem statement

holds for layer `+ 1, containing m nodes V1, . . . , Vm. That is to say, assume that the

output node Y can be written as a function of the Vj nodes,

Y =
m∑
j=1

αjVj (4.14)

and, moreover, assume that

C (Vj) = αjVj. (4.15)

Now I must prove the same to be true of the `th layer, containing n nodes

U1, . . . , Un. Because the Vj are the parents of the Ui, it follows that

Vj =
∑

Ui∈ch(Vj)

βjiUi (4.16)

for some fixed coefficients βji ∈ R. Because all functions in this network are linear,
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one can also write

Y =
n∑
i=1

γiUi (4.17)

for some yet-unknown values γi.

In order to define γi, I am aided by rewriting Equation (4.16) as

Vj =
n∑
i=1

βjiUi (4.18)

with the convention that βji = 0 if there is no edge from node Ui to Vj. The subscript

j = 1, . . . , n indicates that the sum now runs over all nodes in layer ` (see Figure

4.5), rather than only the children.

This deserves a brief explanation. I previously defined the value of a node Vj

in terms of its children ch (Vj). By extending the definition of βji to be 0 when

Ui /∈ ch (Vj), I can now describe the same network by considering each layer-`+ 1

node Vj to be a function of all nodes in layer `. It is important to note that I am not

actually changing the network, but merely introducing a mathematical notation that

will simplify the proof.

Let us return to the task of defining the γi of Equation (4.17). To this end, expand
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Equation (4.14) into

Y =
m∑
j=1

αjVj

=
m∑
j=1

αj

n∑
i=1

βjiUi

=
n∑
i=1

m∑
j=1

αjβ
j
iUi

=
n∑
i=1

γiUi (4.19)

where one can finally see that

γi
def
=

m∑
j=1

αjβ
j
i . (4.20)

If Y =
∑

i γiUi, then Theorem 1 implies that the contribution of Ui must be γiUi.

Plugging in Equation (4.20), it follows that the contribution of Ui is
∑m

j=1 αjβ
j
iUi.

This is the a priori explanation of the network: I have written Y as a linear function

of the Ui nodes, and therefore the contribution of Ui was defined by Theorem 1

It remains only to prove that C (Ui) =
∑m

j=1 αjβ
j
iUi as well (where C (Ui) is calcu-

lated using the equations of Definition 1 on the “full” network of Figure 4.5-a, rather

than the “squashed” network of Figure 4.5-b). Note that applying Equation (4.12)

to the linear functions in Equations (4.14) and (4.18) yields

C (Vj → Y ) =
αjVj
Y

, and

C (Ui → Vj) =
βjiUi
Vj

. (4.21)
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Plugging Equations (4.19) and (4.21) into Definition 1,

C (Ui) =
∑

Vj∈pa(Ui)

C (Ui → Vj) C (Vj)

=
∑

Vj∈pa(Ui)

C (Ui → Vj) C (Vj → Y ) C (Y )

=
∑

Vj∈pa(Ui)

βjiUi
Vj

αjVj
Y

Y (4.22)

=
∑

Vj∈pa(Ui)

αjβ
j
iUi

=
m∑
j=1

αjβ
j
iUi (4.23)

= γiUi

Note that, in Equation 4.23, I have again used the convention that βij = 0 if there is

no edge from Uj to Vi. This completes the proof. �

Theorem 3 proves that the explanations generated by contribution propagation

are trustworthy (given my mathematical interpretation of the word, which is that a

“squashed” network should exhibit the same contributions as a deep network if it

calculates the same function) if the network is linear. Theorems 1 and 2, however,

apply to the much more general case of additive networks. I would like to prove an

analogous theorem to Theorem 3 in the additive setting as well. Unfortunately, I have

no such theorem. The problem is not a lack of proof, but rather a lack of theorem

statement: crucial to the statement of Theorem 3 is the fact that one can “squash” the

edges between two layers when the network is linear. Because one cannot “squash”
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a more general additive function in the same way, the proof of trustworthiness for

additive networks must be expressed in some other way. I leave this for future work,

but I will show empirical evidence of this method’s trustworthiness with additive

networks in the sections ahead.

I will briefly summarize Section 4 before moving on. In Section 4.2, I gave three

desirable properties of any explanation method for additive networks. Using these

three properties, I derived a new method called contribution propagation. In Sec-

tion 4.3, I proved that the three properties are satisfied by contribution propagation

(with the third property only being proved for linear networks). At this point, I have

discussed the encouraging theoretical guarantees about the method, but I have yet

to implement it. In Sections 5.1 and 5.3, I will apply contribution propagation to

two types of networks: a simpler network that is nearly linear, and a more complex

network called HMAX (Riesenhuber and Poggio, 1999).
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Chapter 5

Implementing and Evaluating

Contribution Propagation

In Section 5.1, I will introduce a simple network and image-classification task which

uses synthetic data. I will apply contribution propagation to this network in Sec-

tion 5.2; the controlled nature of the data will empirically demonstrate the trustwor-

thiness of the explanations provided by contribution propagation. In Section 5.3, I

will apply contribution propagation to a more complex network, and several more

complex tasks. The results will provide new insight into how these networks are able

to solve difficult problems in computer vision.

5.1 The Linear/Max Network

Let G = (V , E) be a network organized into layers. Let Vk ∈ V denote a node in an

odd-numbered layer, and let Ui ∈ V denote a node in an even-numbered layer. Let
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nodes in odd-numbered layers compute the linear function

Vk =
∑

Ui∈ch(Vk)

βki Ui (5.1)

and let nodes in even-numbered layers compute a maximum operation,

Ui = max
Wj∈ch(Ui)

Wj. (5.2)

This network is a simplified sketch of a convolutional neural network (LeCun et al.,

1998; Huang and LeCun, 2006; Kavukcuoglu et al., 2010; Zeiler and Fergus, 2013).

Many researchers have justified the alternation between these two operations (or other

similar operations), stating that they approximate the circuitry of the mammalian

visual cortex (LeCun et al., 1998; Riesenhuber and Poggio, 1999; Serre et al., 2007),

though I make no such claims here. However, I will borrow some terminology from the

neuro-inspired community, referring to the odd-numbered, linear layers as S layers

(from Simple cells), and the even-numbered max -layers as C layers (from Complex

cells) (Riesenhuber and Poggio, 1999).

My interest in the recipe presented above, as well as elaborations on it, is due to

the fact that these types of networks are capable of solving some machine-learning and

computer-vision tasks. In general, pattern-matching functions like the dot-product

are believed to increase the network’s specificity (meaning that the S layers help the

network recognize specific patterns in the input) whereas the maximum functions

help build invariance (meaning that the C layers help the network recognize objects

despite subtle differences in appearance) (Fukushima, 1980). By alternating between

these two types of operations, one hopes to find an algorithm that can recognize
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complex objects while being robust to changes in orientation, position, lighting, and

other common transformations in the appearance of an object.

Figure 5.1: A network with alternating layers taking an image as input. Only a small
subset of each layer is shown. Each small circle is a node in the network. Processing
flows from bottom (Image) to top (ŷ). Arrows illustrate the local connectivity of the
network: a small subset of each layer (purple group of nodes) is fed as input to a
single node (green) in the following layer. The vector consisting of each C2 output is
the feature vector used for training and testing the classifier.

Figure 5.1 illustrates a network with five layers: two S layers interleaved with

two C layers, and a final classifier. The input of each node is a local region of the

previous layer. Associated with each node Vk in an S layer is a vector of coefficients

βk = (βk1 , . . . , β
k
m), as in Equation (5.1). In layer S1, the coefficients βk are tuned
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so that nodes detect edges of various orientations, at all locations of the image. For

example, note in Figure 5.2 that β2 is tuned to detect vertical edges. This can be

seen in the S1 outputs of β2, where the vertical edges of the input are much brighter

(representing a higher output value) than the other lines. Nodes in the second layer

C1 take a local maximum, meaning a maximum over S1 outputs which are near each

other. This creates a blurring effect in the C1 outputs of Figure 5.2.

A node Vk in S2 has coefficients βk tuned to recognize junctions of edges in the

image (such as corners, or rotated >-shapes) using the imprinting method1, and

finally a node in C2 performs a maximum over all locations in the image. The

classifier is a linear support vector machine (SVM).

5.2 Implementing Contribution Propagation with

the Linear/Max Network

In order to implement contribution propagation with the network described in Sec-

tion 5.1, I must adapt Equations (4.10), (4.11) and (4.12) to the functions evaluated

in this particular network. The linear nodes Vk fit perfectly within the additive frame-

work, as discussed in the proof of Theorem 3. Recall from Equation 4.12 that the

contribution to a linear parent is defined by

C (Ui → Vk) =
βki Ui
Vk

. (5.3)

The maximum nodes Ui, on the other hand, are not additive, and thus I can-

not immediately define C (Wj → Ui) which is necessary to implement contribution

1I do not discuss the specifics of imprinting here. Details will be given in Section 5.3.
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C1

outputs:

S1

outputs:

Image:

↑ ↑ ↑ ↑

↖ ↑ ↑ ↗

β1 = β2 = β3 = β4 =

Figure 5.2: Example output from the first two layers of the network. There are four
types of nodes at the S1 layer, each with coefficients β chosen to detect an edge at
one of four orientations. Each C1 node takes a maximum over a local region of S1
nodes, blurring the output and reducing its dimensionality. This alternation between
pattern-matching and local pooling is repeated for S2 and C2 layers (not shown).
For visualizing the S1 and C1 output maps, as well as the coefficients βk, a darker
colored pixel represents a lower value, and a lighter color represents a larger value.
The range of each output map is scaled so that the lowest value is black, and the
largest is white.
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propagation. To remedy this, I will rewrite the maximum function as

Ui =
∑

Wj∈ch(Ui)

δijWj (5.4)

where δij = 1 if Wj was the maximum (of all children of Ui), and 0 otherwise. Com-

bining Equation (5.4) with Equation (4.12) allows us to define the contribution to a

maximum function by

C (Wj → Ui) = δij. (5.5)

This definition for “contribution to a maximum function” is very intuitive: the largest

input contributed, and the rest did not2. Note that this interpretation and explanation

of maximum functions is also used by Zeiler et al. (2011) and Liu and Wang (2012).

The classifier node Y is a linear SVM, taking as input the values of the fourth

layer of the network (the features; “C2” in Figure 5.1). I refer to these nodes as Zi

to be consistent with the previous notation for features. A linear classifier is merely

a linear function, which is already additive. Thus the linear SVM fits well within the

contribution propagation framework. If Y is a linear SVM with support vectors Zs

and coefficients αs, then we have

C (Zi → Y )
def
=

Zi
(∑

s∈S αsZ
s
i

)
Y

. (5.6)

The derivation for Equation (5.6) appears in Appendix A. Note that Equation (5.6)

2It is possible to have multiple maxima among the inputs (that is to say, multiple Wj may have
shared the largest value). To remedy this, I define δij = 1/p if Wj was one of the p maxima, and 0
otherwise; in practice, the value of p is almost always 1.
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assumes that the SVM has a bias b equal to zero.

Before implementing and evaluating contribution propagation on this network, I

must revisit the divide-by-zero problem of Equation (4.12). Because the denominator

in that equation could be zero, I must ask whether the above equations are well-

defined for all possible inputs. It turns out that, in the case of linear equations, the

denominator cancels out in a fortuitous way. Recall Equation (4.23), which shows

exactly how the denominator cancels for linear functions. In particular, by rewriting

the network as a single linear function, the equation for calculating the contributions

of the input nodes (the pixels) simplifies to a form without the possibility of dividing

by zero. Thus in what follows, I will use the simplified form of Equation (4.23) in

calculating contributions. The details of this process are given in Appendix B.

5.2.1 Methodology

Now that the contribution propagation equations are defined for all nodes in the

network, I evaluate the contribution-propagation method by training and testing this

network on synthetic data. The data are generated so as to constrain the logic of the

network. That is to say, there are no spurious statistical correlations in this simple

dataset. Examples of training data are shown in Figure 5.3 (top). Positive training

images contain a ∨ shape, and negative training images a ∧ shape. The shape is

placed in a random location of the image, and randomly rotated within ±5 degrees

and scaled within ±20%. I generated the data and implemented the network and

contribution propagation in Matlab.

I trained the network using twenty positive and twenty negative images. There

were four types of S1 nodes, responding to edges at orientations of 0◦/180◦, 45◦/225◦,
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90◦/270◦ and 135◦/315◦ in every location of the image. C1 nodes pooled over a 4× 4

neighborhood of S1 units at a single orientation; each C1 node is centered on every

other S1 node, which reduces the number of C1 nodes needed to cover the whole

image. The output of the S1 and C1 layers for a test image is shown in Figure 5.2.

A single S2 node receives as input a 5 × 5 region of each C1 output map, allowing

the S2 node to find patterns that have components at any orientation. Each S2 node

is centered on every other C1 node, further reducing the number of nodes required.

There are two types of S2 nodes at every such location: those that respond to a ∨

shape, and those that respond to a ∧ shape. There are only two C2 nodes: one taking

a maximum of all S2 outputs for the ∨ shape, and the other for the ∧ shape. These

two C2 outputs comprise the entirety of the feature vectors passed to the SVM.

5.2.2 Results

Figure 5.3 shows four example training images (A) and two example test images

(B). Figure 5.3 also shows the results of applying contribution propagation (whose

algorithm is defined in Figure 4.4) to the classification of a test image (C). Note that

there is no correct class for the test image: it contains both the positive shape (∨) and

the negative shape (∧). Nonetheless, contribution propagation tells us how strongly

each pixel pulled the image toward positive or negative classification; this value is

exactly C (xi).

The results of contribution propagation are shown in Figure 5.3 (C) using false

color. Over a low-contrast version of the original image, I add red if the contribution

of the pixel was positive, and blue if it was negative. The saturation of the color

is proportional to the magnitude of the contribution, as shown in the legend. The
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results are perfectly consistent with the only logical strategy that exists in the data:

the pixels belonging to the ∨ pulled the classification toward positive (red), the pixels

belonging to the ∧ pulled the classification toward negative (blue), and the rest did

not contribute at all (grey).

It may be surprising that the red and blue colors do not evenly color the ∨ and

∧ shapes in Figure 5.3 (C), indicating that some pixels of the ∨ and ∧ shapes had a

significantly larger contribution than others. There are two reasons for this. The first

is that in each layer, some nodes have more parents than others, and therefore have

more opportunities to contribute to the classification. For instance, in Section 5.2.1

I described how an S2 node pools over a 5 × 5 neighborhood of C1 nodes, and the

S2 nodes are centered on every other C1 node. This means that a C1 node can have

as many as nine parents, and an adjacent C1 node can have as few as four parents.

Nodes with more parents have more opportunities to have a large contribution (which

can be seen in Equation 4.11), and thus some C1 nodes will inherently influence the

classification more than others. Also, some S1 nodes do not contribute since they

were not a local maximum, which further causes the “splotchy” appearance of the

contributions.

The results in Figure 5.3 provide empirical evidence that validates Theorem 3.

In particular, when asked to distinguish between ∨ shapes and ∧ shapes, the pixels

belonging to the ∨ and the ∧ are solely responsible for the decision. The fact that

contribution propagation provides such a clear explanation despite noise in the data

(variance in the appearance in the shapes, random noise in the background, clutter

in the test images) speaks to both its robustness and its utility.

Ultimately, the above experiment was meant only to empirically demonstrate the

trustworthiness of contribution propagation in a controlled setting. The data was
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Example positive Example negative
training images: training images:

(A)

Test images: Legend

(B)

← C (xi) > 0 (red):
Pixel contributed
toward positive class.

← C (xi) = 0 (gray):
Pixel did not con-
tribute.

← C (xi) < 0 (blue):
Pixel contributed
toward negative class.

Explanations from
contribution propagation:

(C)

Figure 5.3: Example showing that contribution propagation provides trustworthy ex-
planations. Positive training images contain a ∨ shape in a random location, rotated
randomly within ±5◦, and randomly scaled within ±20% (A). Negative training im-
ages contain a ∧ shape randomized in the same way. A test image contains both
shapes, as well as other new shapes (B). All image backgrounds are 1/f noise. Con-
tribution propagation (C) explains which pixels xi pulled the classification toward
positive (red), which toward negative (blue), and which did not contribute to the
classification (grey).
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chosen so that there was only one possible strategy for good classification (i.e., there

were no spurious statistics in the background), and thus I was able to verify that the

explanations provided by contribution propagation look trustworthy. However, the

task being solved (∨ vs. ∧) is by no means a challenging one. In the next section, I

will apply contribution propagation to a more challenging classification task, requiring

a more elaborate network.

5.3 HMAX

This section applies contribution propagation to a popular type of network called

HMAX (Riesenhuber and Poggio, 1999; Serre et al., 2007). I will evaluate HMAX with

both controlled synthetic data as well as two well-known computer vision datasets.

Finally, I will use contribution propagation to shed light on the behavior of the HMAX

system. Much of the research presented in this section appeared in Landecker et al.

(2013).

I begin by briefly reviewing the architecture of the HMAX network. Details of the

network’s implementation are given in Section 5.3.2. As in Section 5.1, I will examine

a 5-layered network: two interleaved S and C layers, and a final linear SVM. In a

trained HMAX network, a node Vj in layer 1 or layer 3 (the S layers) computes the

radial basis function (RBF)

Vj = exp(−α ‖ ch (Vj)−Pj ‖2), (5.7)

where Pj and α > 0 are parameters of the model. The vector Pj is called the prototype

of node Vj. Equation (5.7) is one of the primary differences between HMAX and the
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linear/max network of Section 5.1. Both the RBF and the linear function (5.1) are

meant to recognize specific patterns in their inputs. It is thought that the nonlinearity

of the RBF allows HMAX to recognize more complex patterns than a simple linear

function (Riesenhuber and Poggio, 1999).

As in the linear/max network, nodes Ui in layers 2 or 4 (the C layers) compute a

maximum of their inputs:

Ui = max
Vj∈ch(Ui)

Vj.

Figure 5.1 shows a network with two S layers and two C layers, whose input

x consists of the gray-scale pixel values of an image. The output of the network

(i.e., the output of the C2 layer) is the feature vector given to a linear SVM. This

illustration depicts HMAX just as well as it depicts the linear/max network of the

previous section.

5.3.1 The Contribution-Propagation Algorithm for HMAX

Recall that the contribution-propagation algorithm starts with the contribution C (Y )

of the classifier (which is equal to the confidence of the classifier). The algorithm then

iteratively descends through the layers of the network, calculating the contributions

of each node in layer `, for ` = L− 1 down to 1.

In order to complete the description of contribution propagation for HMAX, I need

to adapt the contribution propagation equations for the types of nodes in HMAX. I

have already derived the equations for the max -nodes and linear SVM in Section 5.1,

so it remains only to define C (Ui → Vj) for nodes that calculate the RBF. Recall

that the definition for C (Ui → Vj), in Equation (4.12), assumes that Vj computes

an additive function. Clearly, the RBF is not additive! Nonetheless, I will derive a
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formula for propagating contributions based on an approximation to the RBF.

Consider a node Vj in an S-layer. For convenience, let U = ch (Vj) and P = Pi.

Then the function computed by Vj is the RBF

Vj = exp(−α ‖ U−P ‖2). (5.8)

The immediate goal is to define a function CRBF (Ui → Vj) which faithfully describes

the degree to which Ui contributed to the value of Vj.

Equation (5.8) is a measure of distance between the vectors V and P. Because

α > 0, a closer distance yields a larger RBF value, and a further distance yields a

smaller value. Thus CRBF (Ui → Vj) should be higher if Ui is closer to Pi, meaning

when (Ui − Pi)2 is smaller3 . Moreover, the distance calculated by the RBF is tuned

by the function s(x) = exp(−αx). Thus, let us define CRBF (Ui → Vj) as:

CRBF (Ui → Vj) =
s((Ui − Pi)2)

Z

=
exp(−α(Ui − Pi)2)

Z
, (5.9)

where Z is a yet-undefined normalization term.

Recall Lemma (1), which tells us that
∑

i C (Ui → Vj) = 1. This lemma is required

in order to prove that contribution propagation satisfies properties (ii) and (iii). To

ensure that this lemma still holds, I simply set the denominator Z in Equation (5.9)

to equal the sum over all children of the RBF, and we arrive at the full definition:

CRBF (Ui → Vj)
def
=

exp(−α(Ui − Pi)2)∑
Uk∈ch(Vj) exp(−α(Uk − Pk)2)

. (5.10)

3Note that Ui and Pi refer to the ith entries in the vectors U and P, respectively.
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Equation (5.10) captures some of our intuition about a radial basis function: those

children Ui that are close to their target Pi have a higher contribution. Moreover,

note that the denominator in Equation (5.10) can never be zero, since the exponen-

tial function is strictly positive. Therefore, Equation (5.10) is always well-defined,

regardless of the value output by Vj.

Despite these facts, I stress that Equation (5.10) attempts to explain, in an addi-

tive way, contributions to a non-additive function. Thus it formally falls outside of

the guarantees in Section 4.3. I will train and test an HMAX network on the simple

task shown in Section 5.1 to obtain empirical evidence of the trustworthiness of the

definitions give in this section. These experiments are reported in Section 5.3.3.

5.3.2 HMAX Implementation

The code that implements HMAX and its variant of contribution propagation was

written by Mick Thomure; the code was implemented based on the equations I derived

for contribution propagation (both the general equations from Section 4.1 as well

as the HMAX-specific equations from Section 5.3.1). The subsequent experiments

were run by me. I describe here the parameters for HMAX that were used in the

experiments.

The code implements a four-layer network (Figure 5.1), based on the network of

Serre et al. (2007). The input image is preprocessed to form a 256 × 256 gray-scale

image with local contrast enhancement. An S1 prototype is an 11 × 11-pixel Gabor

filter (a type of edge-detector). Using Equation (5.8), the S1 layer applies a battery

of Gabors at 8 orientations, 2 phases, and 4 scales, with α = 1 for all S1 nodes. For

each Gabor configuration, an S1 node is centered at every other pixel, resulting in
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a set of 64 S1 output maps, each of size 128 × 128. A C1 node pools over the two

phases and a 5× 5 spatial neighborhood of S1 outputs, again centered at every other

S1 output. This results in 32 C1 output maps, each of size 64× 64. For an S2 node,

the input is a 7×7 neighborhood of C1 nodes at all orientations, but at a single scale.

The input vector and the prototype of each S2 node are each scaled to unit length

(‖U‖2 = ‖P‖2 = 1). I use α = 5.0 for every S2 node. For each prototype, there is a

corresponding S2 node centered at every other C1 node, resulting in multiple 32× 32

S2 output maps, one for each prototype and scale. Finally, a C2 node applies a max

operation to all locations and all scales of a single prototype’s S2 map. Thus the

output of the C2 layer is a vector with one component per S2 prototype. This feature

vector is passed to the linear SVM. I use the SVMlight package (Joachims, 1999)

with an unbiased SVM (b = 0). This allows a simpler derivation of contribution

propagation, without impacting the accuracy of the network.

Each S2 node is parameterized by a vector P, called the prototype. There are

a variety of methods for learning the prototypes in the literature (Thomure et al.,

2013); I use the imprinting method for its simplicity and noted performance (Serre

et al., 2007). To imprint a prototype, the S1 and C1 features are first extracted from

a training image. The S2 prototype is imprinted by setting P equal to some cropped

region of the C1 outputs. This region may be chosen explicitly or randomly. Thus in

the full HMAX network, the S2 nodes are comparing the C1 outputs of test images

to the C1 outputs of regions in training images.

5.3.3 Experiments and Results

Simple Shapes
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In the first experiment, I use synthetic data similar to that described in Sec-

tion 5.1 to verify that the approximations made for the RBF have not compromised

the trustworthiness of my explanation method. The data from this experiment is

illustrated in Figure 5.4. Although the dataset is very similar to Section 5.1, I de-

scribe it here for completeness. Each training image contains a simple shape, either

an ‘L’ shape (Figure 5.4 (B), positive class) or an inverted ‘L’ shape (Figure 5.4 (C),

negative class). Noise is added by rotating the shape uniformly randomly within ±5

degrees and translating the shape to a random location, and 1/f noise is added to

the background. The noise ensures that the learned classifier is nontrivial.

Figure 5.4 (A) shows the two imprinted S2 prototypes around the vertex of the

‘L’ and inverted ‘L’ shapes. I train the SVM with 20 training images (10 positive

and 10 negative) by giving the images to the network, and using the resulting feature

vectors for training.

The test images contain 9 possible shapes (Figure 5.4 (D)), including both an ‘L’

and inverted ‘L’, each placed at a random position in a 3×3 grid and rotated randomly

within ±5 degrees. Again, 1/f noise is added to the background. As in Section 5.1,

because both the positive and negative objects are present in the test image, I do not

expect one classification over the other. The test images were designed to illustrate

the trustworthiness of the contribution-propagation algorithm rather than to test the

classification accuracy of HMAX (accuracy will be addressed in the next experiment).

All test images in this toy example were very near the decision boundary, which is

reasonable given that both the positive and negative classes are present in each test

image.

I used contribution propagation to explain a test image’s classification using false
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color4 as follows. First, the contribution propagates down through the layers of the

network (Figure 5.4E-H) using the algorithm presented in Figure 4.4. Figure 4.4 (E)

shows the contribution of each node in the S2 layer, Figure 4.4 (F) shows the contri-

bution of each node in the C1 layer, and so on. This results in the calculation of the

contribution C (xi) of each pixel xi (Figure 5.4 (H)). Red-colored pixels contributed

to a positive classification (‘L’); blue-colored pixels contributed to a negative classifi-

cation (inverted ‘L’); pixels that did not contribute to the classification are drawn in

green.

The visualization in Figure 5.4 (H) provides empirical evidence that contribu-

tion propagation faithfully explains the logic behind the classifications of HMAX.

In particular, the image regions matching the imprinted prototypes are colored red

around the ‘L’ shape, and blue around the inverted ‘L’ shape. The algorithm thus

explains the classification of “undecided”: there was a nearly equal “pull” between

the pixels surrounding the ‘L’ (toward positive classification) and those surrounding

the inverted ‘L’ (toward negative classification). This pixel-level explanation of how

the image is interpreted by the network and classifier was provided automatically by

my contribution-propagation algorithm, and gives evidence for the trustworthiness of

this algorithm, even though approximations were made due to the non-additive RBF

function.

Real-World Images

Next, I use the Caltech101 data set (Fei-Fei et al., 2004) to train the network

and a linear, unbiased SVM in a binary classification task using categories of “chair”

(positive class, corresponding to red in the visualizations) and “dalmatian” (negative

4The color scheme used in this section’s visualizations is different than the one in Section 5.1,
but the idea behind the colors is the same.
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Training and testing network

(A) Imprinted (B) Example (C) Example (D) Example
prototypes of positive of negative test image

training image training image

Explaining the classification of (D) through the layers of the network

(E) C (S2 nodes) (F) C (C1 nodes) (G) C (S1 nodes) (H) C (x)

Color legend for (E) - (H)

Figure 5.4: Using contribution propagation to visualize HMAX’s classification of
images containing simple shapes. The contribution of the nodes in each layer verifies
the trustworthiness of my algorithm. Two S2 prototypes are used (shaded squares,
A). An unbiased linear SVM is trained on images containing either an ‘L’ shape
(B, positive class) or an inverted ‘L’ (C, negative class). Given a test image (D),
contribution propagation gives the contribution of every node at all layers (E-H). Note
that the image is drawn in the background of (E-H) in order to better explain the
contribution of each region. Colors correspond to each pixel’s contribution, as shown
in the legend at the bottom. These visualizations give evidence for the trustworthiness
of my contribution-propagation algorithm.
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Test images

(A) (B) (C) (D)

Explaining the classifications of test images

(E) (F) (G) (H)
An image manipulated to contain both objects

(I) (J)

Figure 5.5: Using contribution propagation to visualize HMAX’s classification of
chairs (positive) vs. dalmatians (negative), from the Caltech101 database. Colors
correspond to the legend in Figure 5.4 (bottom): positive contribution (toward chair)
is denoted with red, and negative contribution (toward dalmatian) with blue. Some
images (A, B) are correctly classified because of the contribution of pixels that belong
to the object being classified (E, blue on dalmatian; F, red on chair). Other images (C,
D) are still correctly classified, but partially due to the contribution of background
pixels (G, blue on background; H, red on background). An image manipulated to
contain both objects (I) is classified as dalmatian, and this classification is intuitively
explained by the contribution-propagation algorithm (J).
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class, corresponding to blue). The categories contain 60 images each. Using 10 splits

for cross validation, I randomly choose 30 training images and 30 test images from

each category. Following Serre et al. (2007), the network imprints 1000 S2 prototypes

randomly from the S2 inputs of the training set, and the SVM is trained on the

resulting network’s output for each training image. Test images are classified with

an average accuracy of 94%, with a 3% standard deviation (for comparison, a biased

SVM achieved 93% accuracy with 1.2% standard deviation, so the reader should not

be concerned about the lack of bias term).

In Figure 5.5, note that some images (A, B) are correctly classified primarily

due to the pixels of the object itself (E, F). However, the explanations also reveal

some surprising behavior of the network and classifier (G, H): it appears that some

images were correctly classified due to features extracted primarily from the image’s

background. In Figure 5.5 (G), this may be less surprising, as the background is quite

similar to the dalmatian. However, in Figure 5.5 (H), it is unclear why the background

(dark red) was taken as evidence for the presence of a chair (or, possibly, absence of

a dalmatian). Such an unexpected explanation offered by contribution propagation

can be useful to the user who is trying to create a system that will generalize well;

the user can see that, at least in some cases, the network is basing its classification

on features that are not relevant to the general task, due to either deficiencies in the

network or spurious correlations in the data set.

A natural question is how often a correct classification is “surprising” (that is to

say, a correctly classified image where the background appears to contribute more

than the object). Formulating a metric to define such a surprising classification is

beyond the scope of the present work. However, a subjective visual inspection of the

classified images reveals 5 of the 60 classifications of test images to be of this nature.
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As a final application of contribution propagation, I edited an image to include

both a dalmatian and a chair (Figure 5.5 (I)). This image was classified by the network

as negative (dalmatian), and the contribution propagation algorithm explains this

classification as follows. Figure 5.5 (J) shows that, although there were features

associated with the chair class on the right side of the image (yellow, light red), the

features extracted from the pixels belonging to the dalmatian were weighted more

heavily (deep blue).

Some readers may feel that the small number of training images used may cast

doubt on the validity of the trained classifier. However, note that researchers often

benchmark their computer-vision system by measuring its performance on the Cal-

tech101 dataset using 30 images per class as training data (Bosch et al., 2007). This

experiment was thus designed to mimic a benchmarking process familiar to many

computer-vision researchers. In this light, the surprising results presented in Fig-

ure 5.5 hint at an important question to the computer-vision community: Does high

performance on this dataset indicate a system’s capacity for object recognition, or

merely for learning spurious statistical (background) cues? The widespread use of this

dataset in the computer-vision literature makes this question all the more pressing.

AnimalDB

As a final application of contribution propagation, I trained HMAX (and the SVM

classifier) using the AnimalDB dataset from Serre et al. (2005). This dataset consists

of 1200 images taken in a variety of locations, half of which contain an animal. The

task, then, is to predict whether or not an image contains an animal. Both the scenery

and the type and appearance of the animal vary widely, as seen in Figure 5.6. This is

arguably the dataset that most helped catapult HMAX into some degree of popularity
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Example animal images:

Example no-animal images:

Figure 5.6: Example images from the AnimalDB dataset, from Serre et al. (2005)

among computational neuroscientists. In particular, the fact that HMAX achieves

accuracy comparable to humans and primates on this dataset (when presented with

an image for a very short time period) has been taken as evidence that HMAX mimics

the architecture of the primate visual cortex (Serre et al., 2005, 2007).

Our implementation of HMAX achieved approximately 78% test accuracy (com-

parable to the 80% achieved by the implementation of Serre et al. (2007)). Figure 5.7

shows the results of applying contribution propagation to some test images. In some

cases (Figure 5.7, E, F), the correct classification of the image was due to the contri-

bution of pixels belonging to the animal. However, in other cases (Figure 5.7, G, H),

pixels belonging to the background of the image had the largest contribution to the

classification.

These results are surprising. It appears that there are spurious statistics present
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Correctly classified test images:

(A) (B) (C) (D)

Explaining the classifications of (A) – (D) with contribution propagation:

(E) (F) (G) (H)

Incorrectly classified test images: Legend:

(I) (J) (K)

Applying contribution propagation to (I) – (K):

(L) (M) (N)

Figure 5.7: Examples of results from applying contribution propagation to HMAX
with the AnimalDB dataset. (A – D) Four correctly classified animal test images
and (E – H) the explanation provided by contribution propagation. In some cases,
the primary evidence of the animal classification came from pixels belonging to the
animal itself (red spots on animal in E,F). In others, it appears to be the pixels in the
background that cause the animal classification (red spots on background in G,H).
Contribution propagation also allows us to see what caused the misclassification of
images (I – N).
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in the background of the images which give away whether or not an animal is present

in the foreground. A closer inspection of the dataset reveals that many animal images

have blurry backgrounds, whereas the no-animal images tend to be in focus every-

where. This type of bias in the image is reasonable, given that all the photos were

taken by professional photographers. The results of contribution propagation show

us how easily an unintended bias can sneak into a dataset.

Moreover, the visualizations in Figure 5.7 call into question the claim, made by

Serre et al. (2007), that HMAX implements a good approximation of the logic and

circuitry found in the mammalian visual cortex. The evidence for this claim, that

HMAX performs similarly to mammals when performing the animal / no-animal task

over a very short time scale, is lessened when one considers the spurious statistics in

the dataset found by contribution propagation. It is certainly still possible that the

claim of Serre et al. (2007) is true, but the logic employed by our implementation of

HMAX and explained by contribution propagation does not appear to be the same

logic used by mammals when performing this task.
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Chapter 6

Summary

I have presented contribution propagation, a novel method for explaining the classi-

fications of additive networks, having reviewed why traditional approaches such as

a sensitivity analysis fail to give satisfactory explanations. My method extends the

contribution-based explanations of Poulin et al. (2006), and determines the contribu-

tion of each input based on the internal calculations performed by the network during

classification. I proved the trustworthiness of my explanation method for linear net-

works, and proved other important properties of the method for the more general

class of additive networks.

I applied contribution propagation to a simple network consisting of linear and

max -nodes in order to empirically verify the trustworthiness of the resulting expla-

nations. The synthetic data was generated such that there was only one possible

way that the different dimensions of the data could have affected the classifier. The

explanations provided by contribution propagation confirmed the method’s trustwor-

thiness. Although this linear/max network was conceptually simple, it contains many

similarities to modern computer vision systems that achieve state-of-the-art accuracy
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on a variety of difficult tasks (Kavukcuoglu et al., 2010; Zeiler and Fergus, 2013). A

promising direction for future work will be to apply contribution propagation to these

networks.

I reported the results of applying contribution propagation to HMAX, a hierar-

chical network containing RBF nodes which are not additive. In order to derive the

relevant equations for contribution propagation, I approximated the RBF in an ad-

ditive way. I tested the resulting explanations with controlled data (similar to the

linear/max network) to empirically verify that the explanations were still trustwor-

thy. I also applied my method to binary classification tasks using some well-known

sets of natural images, revealing surprising artifacts in the way that some images

are classified. In particular, we see that some images are correctly classified because

of the contribution of pixels belonging to the image’s background (Figure 5.5 (G),

(H); Figure 5.7 (G), (H)). This information is surprising when the task is completed

with high accuracy, and is very useful to the user of the machine-learning algorithm.

Such information provided by my method can help the user to tune the algorithm for

better generalizability, as well as to create data sets without spurious artifacts, so as

to encourage the network and classifier to solve the intended problem.

90



Part III

Sparse Coding and Image

Classification
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In Part II of my dissertation, I discussed the interpretability of binary classifiers.

Given a classifier that accurately classifies an image, I asked what the model was

really “seeing” (the object or the background). In Parts III and IV of the dissertation

I will consider models whose primary goal is to “see” all of the data by creating a

good reconstruction of their inputs; I will ask what aspects of these models also lead

to good classification accuracy. To be slightly more concrete, I will investigate the

classification accuracy of features produced by a family of generative models known

as sparse coding.

In the following chapters, I will begin by reviewing the sparse coding problem. I

will review how sparse coding is used to create features for binary classification, and

I will measure the performance of sparse coding in a variety of ways in order to tease

apart how the method is useful for classification.
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Chapter 7

Sparse Coding Background

Sparse coding is the study of how to represent a given object as a combination of

known elements; in particular, one would like to encode the given object as a com-

bination of few elements out of a large possible set. In the brain, for example, one

may ask how a concept (such as grandmother or watermelon-flavored bubble gum) is

encoded by neural firing patterns. Under the principle of sparse coding, each con-

cept is encoded by a small subset of neurons firing strongly (Földiak, 1990). To be

clear, for any particular concept, most neurons do not fire; but for each concept, a

unique, small subset will fire strongly. Olshausen and Field (1996) showed how a

particular mathematical interpretation of sparse coding can give rise to an encod-

ing scheme that mimics some properties of certain neurons in the mammalian visual

cortex. Figure 7.1 shows the collection of elements used for encoding (collectively

referred to as the dictionary) that Olshausen and Field’s algorithm learned for the

purposes of sparse-coding natural images1. That is to say, the dictionary shown in

Figure 7.1 consists of elements that were tuned for the purpose of representing any

1“Natural images” here refers to images of nature.
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Figure 7.1: Example dictionary of elements used to sparse code images. This dictio-
nary was tuned to enable a sparse encoding of natural images. Taken from Olshausen
and Field (1996).

natural image as a combination of only a few elements from this dictionary.

Figure 7.2 shows how an image can be encoded with a small combination of these

learned dictionary elements. In this example, each small image patch is encoded

independently. For one image patch (A, outlined in red), only a few elements from the

dictionary are needed to encode the patch (B). This encoding creates a representation

of the original image patch. In Figure 7.2 (C), we see that the encoding reconstructs

the original image (with some noise introduced in the process). For this reason, the

literature often describes the sparse coding of images as “reconstructing an image

using a small number of dictionary elements.”

For sparse coding to work well, an algorithm clearly must have a particular type of

dictionary that allows it to reconstruct the observation (e.g., the image of the dog, in

Figure 7.2) using only a few elements of the dictionary. For encoding natural images,

a “good dictionary” is usually a collection of edges at various orientations and scales,

as shown in Figure 7.1. Learning such a dictionary from a large dataset (of natural

images, in this example) is a large task unto itself, and for the remainder of this
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(A) (B) (C)

Figure 7.2: Example of sparse coding. Using the dictionary from Figure 7.1 (Ol-
shausen and Field, 1996), an image of a dog is sparse coded. (A) A small patch of
the image (red square) can be represented using only a few dictionary elements (B).
Applying this sparse coding principle to every image patch yields a “sparse recon-
struction” of the image (C).

95



dissertation I will assume that the dictionary is given. I refer the reader interested in

dictionary learning to Engan et al. (1999); Olshausen and Field (1996); Aharon et al.

(2006) and Mairal et al. (2009), as I will discuss dictionaries at only a high level.

I will focus, instead, on the different tasks for which sparse coding is often used in

machine learning and computer vision, once the dictionary is already given. In the

following sections, I will dive deeper into the mathematics behind sparse coding, and

I will introduce the measures of performance that are relevant to the sparse-coding

tasks presented later in this dissertation.

7.1 How Sparse Coding Works

Given an observation x ∈ Rn, one wishes to encode x as a small linear combination

of some collection of known vectors φi ∈ Rn, for 1 ≤ i ≤ m. That is to say, a

sparse-coding algorithm searches for the coefficients zi ∈ R such that

x ≈
m∑
i=1

ziφi

where most zi are equal to zero. The fact that most zi are zero is analogous to

the principle of “few neurons firing for any particular concept,” discussed above. In

Figure 7.2 (A) the small image patch in red is x; Figure 7.2 (B) shows the dictionary

elements φi (where φi is blacked out if zi is zero); and Figure 7.2 (C) shows the

reconstruction
∑m

i=1 ziφi.

To simplify the notation, define the dictionary Φ to be the matrix whose columns

are the different φi,

Φ
def
= [φ1 φ2 · · · φm] .
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Now I can rewrite the task of sparse coding as the search for the vector z = (z1, . . . , zm),

called the sparse code, such that

x ≈ Φz and ‖z‖0 ≤ s (7.1)

for some small number s (Tibshirani, 1996). Note that ‖·‖0 is the `0 penalty function2,

returning the number of nonzero coefficients in its vector input.

From this formulation, it is clear why a field like signal processing would take

interest in sparse coding. In particular, if s < n, then z is a compressed representation

of the original signal x (Donoho, 2006). Crucial to this compression is that Φ be fixed

and agreed-upon by all parties (those encoding x to z, and those decoding z back to x).

Several theoretical guarantees of the quality of the compression have been proven in

the case where Φ is “random” (meaning each entry Φi,j is sampled randomly from the

standard normal distribution) (Candes, 2008). In particular, it has been shown that

having m� n (meaning that there are far more dictionary elements than needed to

form a basis) allows for a good reconstruction of x with small s (Olshausen and Field,

1996, 1997), and I shall assume that m � n for the remainder of this dissertation.

Empirically, learning a task-based dictionary Φ (meaning, for example, a dictionary

that has been tuned to allow for encoding and decoding with few elements, as in

Figure 7.1) has been shown to improve the performance of sparse coding for a variety

of tasks over random dictionaries (Aharon et al., 2006; Engan et al., 1999; Mairal

et al., 2009).

I refer to the calculation of Φz as reconstruction, since with the correct choice of z

2Some texts refer to this function as a norm, or pseudo-norm, or a “norm” (with quotations);
however, it is not truly a norm, nor is it a pseudo-norm, nor a quasi-norm. It is merely a penalty
used to regularize the vector z, thus I call it a penalty function.
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this calculation “reconstructs” the observation x. In many cases, one cannot expect

to perfectly reconstruct x when s is very small; instead, one might allow for a small

amount of error in the reconstruction, meaning ‖x− Φz‖2 ≤ δ for some small δ > 0.

This changes (7.1) to

‖x− Φz‖2 ≤ δ and ‖z‖0 ≤ s. (7.2)

However, the algorithm searching for z might not know the desired values of δ

and s ahead of time. Instead, one may prefer to ask the algorithm to minimize

both of these values together, to achieve some balance between sparsity (low s) and

reconstruction (low δ). In this case, one can formulate the sparse coding problem as

arg min
z
‖x− Φz‖2 + λ‖z‖0. (7.3)

where λ > 0 controls the tradeoff between reconstruction and sparsity. Recall the

goal of sparse coding, to “reconstruct x using few dictionary elements.” It is clear

how (7.3) formalizes this idea: with an appropriate choice of λ, the λ‖z‖0 term drives

most dimensions of z to zero, while the ‖x− Φz‖2 term forces z to reconstruct x as

well as possible.

Because solving Equation (7.3) directly is known to be NP-hard (Natarajan, 1995),

some approaches relax the non-convex `0 penalty to the convex `1 norm (Tibshirani,

1996; Efron et al., 2004). In this case, Equation (7.3) becomes

arg min
z
‖x− Φz‖2 + λ‖z‖1. (7.4)

Recall that the `1 norm is defined by ‖z‖1 =
∑n

i=1 |zi|.

The minimization problem in Equation (7.4) is known as the lasso (Tibshirani,
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1996), and is numerically solvable using linear programming. Donoho and Elad (2003)

showed that, in many cases, solving Equation (7.4) in fact yields the same solution z∗

that solves Equation (7.3). There are a variety of other approaches to sparse coding

which replace the `0 penalty with any number of `p (quasi-)norms for 0 < p ≤ 1

(Chartrand and Yin, 2008; Boyd et al., 2011; Chartrand and Wohlberg, 2013).

The above formulations of sparse coding are merely different mathematical inter-

pretations of the original principle: a sparse coding algorithm searches for a vector

z which reconstructs x (as well as possible) using only a few dictionary elements.

There are countless algorithms that try to solve the sparse coding problem. I will

divide these algorithms into two categories: greedy and non-greedy algorithms. Each

of these families will play a part in the upcoming analysis, and both have seen very

good success at solving the sparse coding problem.

Examples of greedy sparse coding algorithms include Least Angle Regression

(LARS) (Efron et al., 2004) and Matching Pursuit (MP) and its variants (Tropp

and Gilbert, 2007; Donoho et al., 2012). These algorithms are characterized by ini-

tializing the sparse code z to be a vector of zeros; at each iteration, the algorithm

adds one or more non-zeros to the vector z. The heuristic for choosing which dimen-

sion to make nonzero, and the value assigned to the nonzero dimensions, define the

algorithm. The defining property of these algorithms is that they never let a nonzero

zi fall back to zero. This is a very restrictive property, forcing the algorithm to be

careful when choosing a dimension of z to become nonzero.

Examples of non-greedy sparse coding algorithms include Subspace Pursuit (SP)

(Dai and Milenkovic, 2009), Iterative Hard Thresholding (IHT) and its variants (Blu-

mensath and Davies, 2010, 2009; Blumensath, 2012), and Iterative Soft Thresholding

and its variants (Daubechies et al., 2004; Beck and Teboulle, 2009). These algorithms
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are characterized by keeping track of an active set of nonzero dimensions of z, which

can grow or shrink at any iteration. Thus, unlike with greedy algorithms, a nonzero

zi at iteration t may become zero at iteration t + 1 of a non-greedy algorithm. As a

vast generalization, this family of algorithms tends to come with stronger guarantees

(i.e., non-greedy sparse-coding algorithms tend to come with tighter provable bounds

between their results and the solution to Equations (7.3) and (7.4)), but I emphasize

that algorithms from both families are often used with good success. Note that the

Difference Map, which I will apply to sparse coding in Part IV of this dissertation, is

a non-greedy algorithm.

7.2 Sparse Coding for Reconstruction

In the previous sections, I introduced the principle of sparse coding: to reconstruct the

observation x using few columns of a matrix Φ. Sometimes, x is a vector representing

the pixel values of an image (i.e., the grayscale intensities of an image patch) as

in Figure 7.2. Other times, x might be the features extracted from an image. For

example, Yang et al. (2009) set x equal to the SIFT features of an image (discussed in

Section 2.4), and then search for a sparse encoding z that gives a good reconstruction

of the extracted SIFT features.

But what exactly is meant by “a good reconstruction?” To formalize this idea,

I will give two common mathematical definitions that are meant to measure recon-

struction quality. When a sparse coding algorithm terminates with the solution z∗,

define the reconstruction or estimate by

x̂
def
= Φz∗.
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One common measure of reconstruction quality is the normalized root mean squared

error (NRMSE), defined by

NRMSE(x, x̂) =
‖x− x̂‖2
‖x‖2

.

Clearly the NRMSE is minimized when x̂ = x. Thus a lower NRMSE is a better

reconstruction of x.

Another measure of reconstruction quality is the signal-to-noise ratio (SNR), de-

fined by

SNR(x, x̂) = 10 ∗ log10

(
varx

‖x− x̂‖22/n

)
where varx is the variance measured over the dimensions of the vector x, and n is

the dimensionality of x. Unlike the NRMSE measure, SNR gives a higher value for

higher-quality approximations. Moreover, SNR is unbounded, whereas NRMSE is

bounded below by 0.

Ultimately, both of these measures revolve around the difference between the ob-

servation and the approximation, x−x̂. This difference is typically called the residual,

and plays an important role in many of the sparse coding algorithms. Given that both

NRMSE and SNR appear to be two different ways to measure the residual, one may

ask why we need these measures at all. The answer is that the two measures ex-

ist because, historically, they are favored by different research communities. In the

various experiments reported below, I will sometimes use NRMSE, and sometimes

SNR. This is because I will report results that are meant to appeal to a wide range of

researchers. As a general rule, I will use SNR when measuring the noise or reconstruc-

tion error of image pixels, and when adding noise artificially to make an experiment
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more challenging. I use NRMSE when measuring everything else.

In addition to its reconstruction error, a sparse code z is often measured by its

sparsity. Recall the neural origins of the sparse coding principle: a concept is encoded

by the strong activation of few neurons. Thus the sparsity of a sparse code z is usually

measured with the `0 penalty function, where ‖z‖0 indicates the number of nonzero

dimensions in z.

7.3 Sparse Coding for Classification

In Section 2.5, I briefly mentioned that sparse coding can be used as a type of feature

extraction for a classification task. In particular, given a datum x, one might sparse-

code x to find a sparse representation z, and then use z for training and testing. In

the case where x is already a set of features extracted from the datum (such as SIFT

(Lowe, 1999)), then z would reconstruct those features; one might consider sparse

coding a “second feature extraction” in this setting.

In the previous section, I discussed how a sparse code z∗ is often measured by

how well it reconstructs the observation x as well as its sparsity. When the ultimate

goal is to train or test a classifier, though, there is an additional important measure

to consider: classification error. Classification error is defined by

classification error = 1− classification accuracy.

Thus higher classification accuracy is the same as lower classification error. Just as

I previously measured classification accuracy on a test set (see Section 1), I will also

measure the classification error achieved by sparse-coded test data in the upcoming
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sections.

Previous research has indicated that treating a sparse code z as features extracted

from a datum x often decreases classification error compared to training and testing

with the vector x directly (Yang et al., 2009; Zeiler et al., 2010, 2011). Researchers

explain this phenomenon by noting that z contains the same information as x (since z

can be used to reconstruct x); moreover, the constraint that z be sparse is known to be

an effective type of regularization3 to help the classifier generalize to new data (Raina

et al., 2007; Bansal et al., 2010; Coates and Ng, 2011). I will refer to this explanation,

that sparse coding reduces classification error because the features reconstruct the data

sparsely, as the sparse reconstruction hypothesis. This hypothesis appears to be

widely assumed in the literature (Ng, 2004; Raina et al., 2007; Coates and Ng, 2011).

When asking why sparse coding decreases classification error, an alternative to

the sparse reconstruction hypothesis is that sparse coding could act as a type of

feature selection (Lee et al., 2007). Briefly, feature selection is an analysis performed

on the features of the training data, but before (or concurrent with) training the

classifier. Once features are extracted, some of the features are essentially culled from

the dataset altogether, regarded as irrelevant or harmful for generalization. Many

different criteria are used for feature selection, including information gain (Guyon

and Elisseeff, 2003), `p regularization (Ng, 2004), and heuristic search such as genetic

algorithms (Siedlecki and Sklansky, 1989; Yang and Honavar, 1998). A key aspect of

feature selection is that the choice of “active” features is guided by the classification

error of the resulting features. In this sense, feature selection is quite different than

sparse coding, where the sparsity is thought of primarily as a parameter that affects

3Loosely speaking, regularization is a way of penalizing overly complex solutions to problems. In
this case, “complex” means “too many nonzero dimensions.”
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reconstruction. Moreover, feature selection will “turn off” the same feature for the

entire dataset, whereas sparse coding sets different zi (and therefore φi) to zero for

different data. Thus I do not find the link between feature selection and sparse coding

to be a strong one, and I will focus the remainder of Part III on evaluating the sparse

reconstruction hypothesis instead.
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Chapter 8

Evaluating the Sparse

Reconstruction Hypothesis

Recall the sparse reconstruction hypothesis, which states that sparse coding can

decrease classification error because the sparse codes z reconstruct the original data

(or features) x, and they are sparse. In this section, I investigate whether the sparse

reconstruction hypothesis adequately explains the decrease in classification error

seen with sparse coding. I hypothesize that the sparse reconstruction hypothesis is

not correct. In particular,

My hypothesis is that there exist some sparse codes that reconstruct

a dataset with less error and are sparser, but which still lead to poorer

classification accuracy than a competing set of sparse codes.

In order to test my hypothesis, I will use sparse coding algorithms to create sparse

codes z with various sparsity levels ‖z‖0. I will measure both the classification error

and reconstruction error as a function of the sparsity for a variety of datasets and
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sparse coding algorithms. It follows from the sparse reconstruction hypothesis

that if one set of sparse codes is sparser and reconstructs the data with less error, it

should achieve lower classification error as well. I hypothesize that this is not always

true.

8.1 Methodology

In order to test my hypothesis, I require a method for classifying data based on their

sparse codes. One of the most popular such methods for computer vision comes from

Yang et al. (2009), whose method achieves low classification error on a variety of

standard computer-vision datasets.

Following Yang et al. (2009), I first convert all images to grayscale. I then extract

a dense grid of SIFT features (Lowe, 1999) from 16 × 16 pixel patches, tiled over

each image with a stride of 8 (meaning two adjacent 16× 16-patches overlap half of

each other’s pixels). The SIFT features are then sparse coded using a 128 × 1024

dictionary Φ from Yang et al. (2009), which was learned from the Caltech101 dataset

(Fei-Fei et al., 2004). To be clear: because the SIFT features are being sparse coded,

the sparse codes will sparsely reconstruct the SIFT features (rather than the pixel

values of an image). This process (sparse coding SIFT features) has achieved low

classification error on a variety of modern datasets (Yang et al., 2009) and includes a

sparse-coding process that will allow me to test my hypothesis.

To perform sparse coding, I choose one representative algorithm from both the

greedy and non-greedy families described in Section 7.1. From the greedy family

algorithms I use LARS (Efron et al., 2004), which adds exactly one non-zero dimension

to z at each iteration; and from the non-greedy family of algorithms I use Subspace
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Pursuit (Dai and Milenkovic, 2009) which has strong theoretical guarantees and is

also one of the fastest sparse coding methods (the speed of various algorithms is

evaluated later in Chapter 10). I evaluate my hypothesis with these two, different

algorithms in order to verify that my conclusions are not due to an artifact in one

single algorithm.

The sparse codes are used as features to be classified by (or to train) an SVM. The

SVM implements the spatial pyramid match (SPM) kernel, as discussed in Section 2.2.

Additionally, the same sparse codes are used to reconstruct the original SIFT features

using the dictionary Φ. When reconstructing, the reconstruction error is measured

as normalized root mean squared error (NRMSE). Recall from Section 7.2 that when

trying to reconstruct the signal x with the sparse code z∗, the reconstruction x̂ = Φz∗

has an NRMSE calculated by ‖x− x̂‖2/‖x‖2. As a rough heuristic guideline, a good

NRMSE is 10−.1 ≈ 0.8, and a very good NRMSE is 10−.4 ≈ 0.4.

8.2 Synthetic Datasets

In addition to testing my hypothesis with multiple sparse-coding algorithms, I will

test it with multiple datasets. Pinto et al. (2011) created a synthetic dataset with

two classes, cars and planes. Each image contains either a car or a plane, placed over

a background of “natural imagery.” To vary the difficulty of the task, variation is in-

troduced in the rotation, location and scale of the object (the car or the plane). This

variation yields seven datasets, with pinto synthetic 0 exhibiting the least amount

of variation, and pinto synthetic 6 the most. Sample car images from all 7 varia-

tion levels are shown in Figure 8.1. These 7 variation levels allow the researcher to

test the robustness of their computer vision system by varying the difficulty of the
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Figure 8.1: Examples from the images of the pinto synthetic datasets (Pinto et al.,
2011). The higher variation numbers contain images where the distribution of the
object’s location, scale and rotation have larger variance.

classification task. The random backgrounds ensure that no spurious correlations

exist between the image background and the object to be identified: if an algorithm

performs well on these datasets, it can only be because it has identified the features

belonging to the object itself.

There are 130 images per class, per variation. I extract SIFT features from each

image, and then sparse-code the SIFT features. Using the sparse codes, I train

an SPM-kernel SVM with 100 images per class, and test on the remaining 30, for

ten splits of cross validation. I measure both the test classification error and the

reconstruction error of the test data for each variation level independently.

For this first experiment, I perform sparse coding with Subspace Pursuit (SP)

(Dai and Milenkovic, 2009) because it is known to converge to a good reconstruction
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extremely quickly for problems of this size1, and it allows the user the dictate the

sparsity of the returned vector, z. This latter fact, that the user controls the sparsity

of z, lets me measure how reconstruction error and classification error vary in relation

to the common parameter of sparsity. I vary the sparsity logarithmically between 1

and 32. The results are plotted in Figure 8.2.

There are several trends in Figure 8.2. First, the reconstruction error (green line)

decreases with less sparsity in z (meaning larger ‖z‖0, or more non-zeros in z). To

see this, note that the green line decreases monotonically in all plots. This makes

sense: when reconstructing a signal x, it is generally helpful to use more columns of

Φ. Moreover, this trend is true in all variation levels: the green curve looks roughly

identical in all plots in Figure 8.2. This also makes sense, since the variation in object

appearance (Figure 8.1) was designed to make the objects harder to recognize, not

to make the images more difficult to compress.

Turning our attention to the classification error (blue lines in Figure 8.2), it is

clear that sparse coding does indeed reduce classification error: the solid blue lines

(classification error with sparse codes z) are lower than the dashed blue lines (clas-

sification error with raw SIFT features x). It is also clear that object variation has

a profound effect on classification error, as it was designed to: the blue lines are,

overall, higher in the plots with higher variation numbers. Thus classification error

and reconstruction error respond very differently to object variation.

Moreover, the two measures also respond differently to the sparsity level ‖z‖0.

While reconstruction error decreases with larger ‖z‖0, classification error appears to

be lowest with a medium amount of sparsity. It is unclear whether classification error

1The code for Subspace Pursuit came directly from the website of the authors, Dai and Milenkovic
(2009). I give a thorough comparison between a representative sample of state-of-the-art sparse
coding methods in Chapters 11 and 12.
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Figure 8.2: Results from sparse-coding the pinto synthetic datasets with Subspace
Pursuit. Variation number indicates the variation level of each dataset. SIFT codes
are extracted from each image, and then sparse-coded. The reconstruction error of
the sparse codes are shown in green; the classification error of the sparse codes in
solid blue; and the classification error of the (raw, not sparse coded) SIFT features
in dashed blue. Classification error is strongly affected by variation in the dataset,
whereas reconstruction error is affected only by the sparsity ‖z‖0. The higher the
variation level (of the pinto synthetic dataset), the more variation in the objects
in the images, and therefore the more challenging the classification problem. The
variation number was described in Figure 8.1.
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is minimized with ‖z‖0 = 2, 4, 8, or 16, due to the variance between cross-validation

trials; however, the general trend is that the classification error at ‖z‖0 = 1 and

‖z‖0 = 32 are higher than the middle values2. In fact, we will see more evidence of

this trend momentarily, with other sparse coding algorithms and other datasets.

Next, I perform the same analysis using a greedy sparse-coding algorithm to verify

that the results generalize. From the set of greedy algorithms I chose LARS (Efron

et al., 2004). Like SP, LARS allows the user to dictate the sparsity level ‖z‖0. I

vary the sparsity logarithmically between 2 and 64, for all variation levels of the same

dataset. The results are plotted in Figure 8.3.

Comparing Figures 8.3 and 8.2, one can immediately notice some similar trends.

Sparse coding still decreases classification error compared to the raw SIFT features.

Classification error is strongly affected by the object variation level, but reconstruction

error is not. And, as was the case with SP, increasing ‖z‖0 decreases the reconstruction

error monotonically (note the green lines moving down and to the right in all plots

of Figure 8.3). We also see the same “Goldilocks zone” for classification error3 as a

function of ‖z‖0. In particular, the lowest classification error is usually achieved by

‖z‖0 = 8 or 16, and increases on either side of these values4.

The evidence so far indicates that sparse coding can decrease classification error.

This trend appears to be true for almost all sparsity levels, and for a variety of

difficulties for the classification task. Note that choosing the sparsity ‖z‖0 that yields

2The greatest exception appears to be variation level 6, which is not terribly informative since
the classifier appears to be guessing at this variation level (note that the classification error is about
0.5).

3By “Goldilocks zone,” I only mean that the classification error is minimized in the middle of
the plots. That is to say, the classification error plots are roughly U-shaped.

4Again, there is an exception with variation 6, but the fact that the classifier is essentially
guessing (classification error close to 50%) means that the classification error levels here are not
very informative.
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Figure 8.3: Sparse coding the pinto synthetic dataset with LARS. Reconstruction
error decreases monotonically with more nonzero coefficients in z. However, the
classification error increases at the largest values of ‖z‖0. For all but the highest
variation level, classification error appears to be U-shaped, though the large error
bars diminish the significance of this trend.
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the lowest reconstruction error leads to sub-optimal classification error. The power of

this evidence is diminished by the size of the error bars on all blue lines (which is due

to the small size of the test set), making it difficult to conclude anything for certain.

But the trend appears to be that we should not tune our sparse-coding parameters

solely to minimize reconstruction, if our ultimate goal is classification. That is to say,

the success of sparse coding must not solely be due to the code’s ability to reconstruct.

Recall the sparse reconstruction hypothesis, which states that sparse coding

decreases classification error because the codes reconstruct the data and they are

sparse. Already, though, we see the connection between sparse reconstruction and

classification error begin to erode. In particular, note how the reconstruction error

follows roughly the same curve in all plots in Figure 8.2 and 8.3, while the classification

error responds dramatically to the variation level of the dataset. It is clear that

for both the SP and LARS algorithms, sparse reconstruction performance is nearly

identical for all variation levels of the pinto synthetic data. Classification error, on

the other hand, is not.

However, this alone does not prove my hypothesis. I hypothesized that there

exist some sparse codes that reconstruct a dataset with less error and are sparser,

but which still lead to poorer classification accuracy than a competing set of sparse

codes. Due largely to the size of the error bars on the above plots, we cannot evaluate

my hypothesis here. To evaluate my hypothesis, we need datasets with more images,

which will decrease the size of the error bars.
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8.3 Natural Datasets

In this section, I will describe results from the same experiments using a variety of

natural images5. In particular, these experiments apply the sparse-code classifica-

tion methodology to the Caltech101 (Fei-Fei et al., 2004), graz02 (Marszatek and

Schmid, 2007), and scenes (Lazebnik et al., 2006) datasets. Unlike the synthetic data

from Section 8.2, there is no natural way to smoothly change the difficulty of these

datasets. However, by using multiple independent datasets, we can be more confident

in persistent patterns in the experimental results.

These three datasets are each chosen to be challenging in different ways. Cal-

tech101 (Fei-Fei et al., 2004) contains images of objects which have each been cropped

and rotated so that the object is centered and oriented in a consistent way through-

out the dataset. Example images from Caltech101 are shown in Figure 8.4. The

consistent object appearance makes recognition easier. However, there are 100 object

categories in the dataset (and one “background” category); such a large number of

categories makes the task more difficult.

The graz02 dataset (Marszatek and Schmid, 2007) contains only three categories

(bikes, cars, and people). However, the appearance of the objects varies widely within

each class, as can be seen in the examples given in Figure 8.5. This large variance in

object appearance, which makes for a much more challenging task, leads researchers

to often use this dataset for object detection, rather than image classification. The

object detection task is to locate the object in each image; this contrasts with image

classification, which asks only if a given object is present somewhere in the image.

I mention this only as a testament to the difficulty of the dataset — I will still use

5In this context, I use the term natural images to denote images that were not computer-
generated.
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Airplane Cannon Dolphin Euphonium Joshuatree

Figure 8.4: Example images from 5 of the 101 categories in the Caltech101 dataset.
The task is made simpler by the fact that the objects appear at a consistent scale
and orientation in the center of the image. However, it is made more challenging by
the large number of categories.

this dataset (as well as all others) for the image classification task, as I will the other

datasets.

Finally, the scenes dataset (Lazebnik et al., 2006) does not contain “objects” in

the way that the previous datasets do. Instead, each image contains one of fifteen

different scenes to be recognized based on the overall structure of the picture. The

fifteen scenes include bedroom, suburb, industrial, kitchen, living room, coast, forest,

highway, inside-city, mountain, open-country, street, tall-building, office, and store,

examples of which can be seen in Figure 8.6. This is a different type of challenge than

the previous datasets, in that the category cannot necessarily be predicted based on

the presence of any particular object.

Because Caltech101 contains 101 categories, the guessing error rate (the classifi-

cation error achieved by random guessing) is more than 99%. The state of the art

performance on this dataset was recently achieved by Zeiler and Fergus (2013), with
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Bike Car Person

Figure 8.5: Example images from the graz02 dataset. This dataset is typically used
for object detection (locating the object in the image), rather than image classification
(deciding whether the image contains the object). As a result of the high variance in
object appearance, this is a very challenging dataset for object recognition.
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Bedroom Forest Open Country Store

Figure 8.6: Example images from the scenes dataset, containing the 15 categories
bedroom, suburb, industrial, kitchen, living room, coast, forest, highway, inside-city,
mountain, open-country, street, tall-building, office, and store. Compared to the
previous datasets, this task does not rely on the presence or absence of a single object
(e.g., a car or an airplane); instead, the whole image is used to convey the scene.
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13.5% classification error. Because the scenes dataset contains 15 categories, the

guessing error rate is approximately 92.3%, whereas Lazebnik et al. (2006) report

18.6% error on this dataset. The graz02 dataset contains 3 categories, leading to a

66.6% guessing error rate, whereas Marszatek and Schmid (2007) achieve approxi-

mately 10% error.

Figure 8.7 gives the results of my sparse-coding experiments on these datasets. For

all three datasets, it can be seen that the reconstruction error decreases monotonically

as more nonzero coefficients are allowed in the sparse codes (‖z‖0), as one would

expect.Moreover, on all plots, sparse coding is seen to decrease classification error

compared with the raw SIFT features: note that the solid blue lines (the classification

error of sparse codes) are lower than the dashed blue lines (the classification error

of raw SIFT features) in almost every case. More interestingly, we see again that

classification error find its minimum with a moderate value of ‖z‖0. This “Goldilocks

zone” of minimal classification error occurs around ‖z‖0 = 2 or 4 for SP, and ‖z‖0 = 8

or 16 for LARS, depending on the dataset.

Recall once more the sparse reconstruction hypothesis: sparse coding de-

creases classification error because sparsity and reconstruction are both helpful for

classification. At first glance, the results presented in Figure 8.7 agree with this rea-

soning, in that we see the lowest classification error in the middle of the plots (the

valley in the blue solid lines). Therefore, we might conclude, on either side of this

valley we must be violating either the need for sparsity (to the right of the valley),

or the need for reconstruction (to the left of the valley).

A more interesting story emerges when I compare the lowest classification error

of each algorithm (SP and LARS) on each dataset. In Table 8.1, I show the sparsity

and reconstruction error associated with lowest classification error achieved by each
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Figure 8.7: Classification error and reconstruction error react differently to the spar-
sity parameter ‖z‖0. Reconstruction error always decreases with larger ‖z‖0; classifi-
cation error, on the other hand, is minimized with ‖z‖0 = 8 or 16 for LARS, and 2
or 4 for SP.
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algorithm. Note that the sparsity level ‖z‖0 that yields the lowest classification error is

different for each algorithm: SP achieves its lowest classification error with a sparsity

of 2 or 4, whereas LARS achieves its lowest classification error with a sparsity of 8

or 16. At the indicated level of sparsity (which minimizes the classification error), I

also show the algorithm’s corresponding reconstruction error. In all cases the sparse

codes coming from SP are sparser and have a lower reconstruction error. The sparse

reconstruction hypothesis would imply, then, that the sparse codes from SP should

also have lower classification error. They do not. On each dataset, LARS achieves

lower classification error despite the fact that SP generates codes which are sparser

and which reconstruct better. The strength of this statement is diminished by the fact

that, in several cases, each algorithm’s reconstruction error and classification error

are within each other’s standard deviation. Nonetheless, the trend is present in the

data, and casts doubt on the sparse reconstruction hypothesis.

My hypothesis is that there exist some sparse codes that reconstruct a dataset

with less error and are sparser, but which still lead to poorer classification accuracy

than a competing set of sparse codes. Having tested two very popular sparse cod-

ing algorithms on a variety different datasets, I have shown that over a variety of

datasets, the lowest classification error achieved by SP is with codes that are sparse

and reconstruct better than those of LARS; and yet LARS achieves even lower clas-

sification error. This confirms my hypothesis, and casts suspicion on the sparse

reconstruction hypothesis. Of course, there is always room to further test my

hypothesis by changing other variables (e.g., the size of the dictionary Φ, methods

for learning Φ, different kernels and classifiers). Performing a comprehensive analysis

over all possible variations would be very difficult and is beyond the scope of this

dissertation.
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Table 8.1: Improving sparse reconstruction does not improve classification error.
For each of the datasets examined, the table gives the sparsity and reconstruction
error associated with the lowest classification error achieved by each sparse coding
algorithm. In each case, LARS has the lowest classification error (in boldface), but SP
gives sparser (in boldface) codes with lower reconstruction error (in boldface). Each
experiment was repeated ten times; here I report the mean (with standard deviation
in parentheses).

Best performance on Caltech101
Algorithm: ‖z‖0 Reconstruction error: Classification error:

SP 2 0.4536 (0.0527) 27.24% (1.19%)
LARS 8 0.5015 (0.0808) 26.50% (0.49%)

Best performance on graz02
Algorithm: ‖z‖0 Reconstruction error: Classification error:

SP 4 0.3831 (0.0308) 16.08% (1.00%)
LARS 8 0.5483 (0.0541) 15.24% (1.80%)

Best performance on scenes
Algorithm: ‖z‖0 Reconstruction error: Classification error:

SP 4 0.3006 (0.0338) 24.37% (0.68%)
LARS 16 0.3664 (0.0503) 22.05% (0.50%)
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Note that I am not the first to question how or why to use sparse coding for

classification. Many algorithms have been proposed which each advocate for different

methods when sparse coding (Yang et al., 2009; Lee et al., 2007; Gao et al., 2010) .

More than finding yet another sparse coding algorithm and parameter choice heuristic,

Coates and Ng (2011) question whether sparse coding is the right way to encode data

at all: they consider alternative ways to encode a signal x with a matrix Φ such as

k-nearest-neighbors (where zi = 1 if the column of φi is one of the k closest columns

to x, and zi = 0 otherwise), and the simple projection Φ>x (with small values set

to zero). Coates and Ng find many of these alternate encoding methods to yield

classification results that are competitive with sparse coding. Moreover, many of

these alternate encodings are orders of magnitude faster than sparse coding.

If one observes the same decrease in classification error with faster methods, this

begs the question, why is there any interest in sparse coding at all? Part III of

my dissertation has shown that we do not fully understand why sparse coding often

decreases classification error when compared with raw features. However, just because

we do not fully understand this phenomenon does not take away from the utility of the

phenomenon itself: sparse coding does often decrease the classification error, and is

therefore a useful tool for machine-learning practitioners. Moreover, as I shall discuss

in Part IV, classification is only one of many uses for sparse coding. In the remainder

of this dissertation, I will introduce some other popular uses for sparse coding, as well

as a new sparse-coding algorithm that excels at these challenging tasks.
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Part IV

An Improved Sparse Coding

Algorithm
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In Part III, I showed that sparse coding can decrease classification error, but that

the common explanation for this phenomenon does not appear to be true. Classifi-

cation, however, is only one of many uses for sparse coding. Sparse coding (and the

closely-related problem of compressed sensing, to be discussed shortly) has given rise

to algorithms that are regularly used for a wide variety of tasks such as image com-

pression and denoising (Elad and Aharon, 2006), dictionary learning (Mairal et al.,

2009), regression (Tibshirani, 1996; Efron et al., 2004), and medical imaging (Lustig

et al., 2008).

I also showed in Part III that the different algorithms that perform sparse coding

can produce very different results. This turns out to be especially true for larger

values of ‖z‖0, in which case the NP-hardness of Equation 7.3 requires that algo-

rithms make strong assumptions in order to converge in a reasonable amount of time.

The different assumptions made by each algorithm can, in turn, yield very different

approximations of the original problem. This is a challenge for the above mentioned

fields (image denoising, medical imaging, etc.), where sometimes ‖z‖0 is large and no

known algorithm consistently offers a “good” solution z∗.

In Part IV of my dissertation, I will introduce a new sparse-coding algorithm that

excels with larger values of ‖z‖0. This algorithm is based on the Difference Map,

which was pioneered by Elser et al. (2007) for a variety of NP-hard optimization

problems. However, I am the first to successfully develop a sparse-coding algorithm

based on the Difference Map6. In order to describe the Difference Map, I will begin by

introducing the constraint intersection problem, which I will use as a new framework

6Qiu and Dogandžić (2011) used the Difference Map when solving a problem closely related to
sparse coding, though I became aware of this work only after completing my research. Moreover,
the code supplied by Qiu and Dogandžić did not perform competitively with any of the algorithms
discussed in the following experiments, as I will explain in Section 10.1.
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for sparse coding. I will then describe my new algorithm, and I will show how it

outperforms the state-of-the-art sparse-coding algorithms for a variety of tasks.
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Chapter 9

Background: The Constraint

Intersection Problem

The Difference Map was developed to solve the constraint intersection problem (Elser

et al., 2007). I will review this problem here, and discuss how sparse coding can be

cast in this new setting.

Given sets A and B and distance-minimizing projections PA and PB
1, respectively,

the constraint intersection problem is to find a point z∗ ∈ A ∩ B. In sparse coding,

for example, we might consider the two constraints of sparsity (A) and good recon-

struction (B). Clearly, a point z∗ that obeys both of these constraints is also a good

sparse code for the purpose of reconstruction. Let us gain some intuition around the

general constraint intersection problem before diving deeper into its application to

sparse coding.

Figure 9.1 shows two sets A and B. At the top of the figure is a point z and

1By distance-minimizing projection, I mean that PA(z0) = arg minz ‖z0 − z‖2 subject to z ∈ A,
and likewise for PB .
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Figure 9.1: Minimum-distance projections and the constraint intersection prob-
lem. Top of figure: two points, z and z′, and their minimum-distance projec-
tions, PA(z) and PB(z′). Bottom of figure: the Alternating Map (AM), defined by
zt+1 ← PA(PB(zt)), which is guaranteed to converge to a point z∗ ∈ A ∩B if both A
and B are convex.
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its minimum-distance projection onto A, denoted PA(z). Similarly, the point z′ is

shown along with its minimum-distance projection onto B, denoted PB(z′). When

A and B are well-behaved convex sets (as in the figure), these minimum-distance

projections can be simple to derive and compute. For less well-behaved sets, defining

the projections can be a difficult problem unto itself. As stated earlier, the goal of

the constraint intersection problem is to find a point z∗ ∈ A ∩ B. Elser et al. (2007)

showed that many interesting problems can be cast in this framework, including k-

SAT, protein folding, and optical reconstruction.

A good first attempt at solving this problem might be the Alternating Map (AM),

defined by

zt+1 ← PA(PB(zt)).

Thus as t increases, AM projects back and forth between the two sets. This algorithm

is illustrated at the bottom of Figure 9.1, where we see an initial guess z0 bouncing

back and forth between the two sets until it finds a point in their intersection2.

AM is guaranteed to solve the constraint-intersection problem (meaning the se-

quence defined by zt+1 ← PA(PB(zt)) converges to a point z∗ ∈ A ∩ B) if A and B

are both convex. (Recall that a set A is convex iff, for any a, a′ ∈ A, we also have

ta + (1 − t)a′ ∈ A for all 0 ≤ t ≤ 1.) However, if either A or B is not convex, AM

may get stuck in a local minimum, as illustrated in Figure 9.2. It turns out that

one of the core constraints in sparse coding is not convex, and thus I require a more

sophisticated approach than AM in order to solve the sparse-coding problem in this

framework.

2Though in practice, one might stop when ‖zt+1 − zt‖ becomes sufficiently small.
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Figure 9.2: When either constraint is not convex, the Alternating Map (AM) will not
necessarily solve the constraint-intersection problem. The arrows show a fixed point
(meaning AM has converged to a point z∗ = PA(PB(z∗)) ) which is not a solution
(meaning z∗ /∈ A ∩B).
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Chapter 10

The Difference Map for Sparse

Coding

The Difference Map (Elser et al., 2007) is a general method for solving the constraint-

intersection problem. It was originally applied to a wide variety of NP-hard opti-

mization problems such as protein-folding, 2D and 3D packing problems, and optical

reconstruction. Importantly, Elser et al. did not apply the Difference Map to sparse

coding. In this section, I will introduce the fundamentals of the Difference Map (DM),

and I will show how DM can be used for sparse coding1.

One iteration of DM is defined by z← D(z), where

D(z)
def
= z + β [PA ◦ fB(z)− PB ◦ fA(z)] (10.1)

1A large portion of the research presented in Chapters 10 through 12.2 appeared in Landecker
et al. (2014).
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Figure 10.1: DM solving the constraint-intersection problem. Starting with a 5 × 5
grid of points (black x’s), each point iterates with x ← DM(x) until it reaches the
intersection of A and B. DM uses the parameter β = 0.9 (left), and β = −0.9 (right).

and

fA(z)
def
= PA(z)− (PA(z)− z) /β

fB(z)
def
= PB(z) + (PB(z)− z) /β

and β ∈ R, β 6= 0. One can test for convergence by monitoring the value

|PA ◦ fB(z)− PB ◦ fA(z)|,

which vanishes when a solution is found2.

Let us recall the mathematical formulation of sparse coding. Given a matrix

Φ ∈ Rn×m (where n < m) and a datum x ∈ Rn, I wish to find a sparse vector

2The fact that this value vanishes is clear when one plugs z∗ = D(z∗) into Equation (10.1).
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z∗ ∈ Rm that reconstructs x and is sparse, meaning

x = Φz and ‖z‖0 ≤ s

for some positive integer s. I apply DM to this problem by defining the constraint

sets

A = {z ∈ Rm : ‖z‖0 ≤ s},

B = {z ∈ Rm : Φz = x},

In order to use DM for sparse coding, I need only to derive the minimum-distance

projections PA and PB onto the sets A and B, respectively. These definitions, along

with Equation (10.1), will fully define how one can solve the sparse coding problem

with DM.

The minimum-distance projection onto A = {z ∈ Rm : ‖z‖0 ≤ s} is known as

hard thresholding, and is defined by

PA(z) = [z]s, (10.2)

where [z]s is obtained by setting to zero the m− s dimensions of z having the small-

est absolute values (where m is the dimensionality of z). This is demonstrated in

Figure 10.2.

The minimum-distance projection onto B is given by the formula

PB(z) = z− Φ+(Φz− x), (10.3)
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Figure 10.2: A minimum-distance projection onto the set A, with s = 3. All but the
3 largest absolute values are set to zero.

where Φ+ = ΦT (ΦΦT )−1 is the Moore-Penrose pseudo-inverse of Φ. Equation (10.3)

was first derived, in the context of the present work, by Chartrand (2013). The

derivation is a standard application of constrained optimization and linear algebra,

and is an important element of sparse coding with the Difference Map, so I present

it here for completeness.

Equation (10.3) is derived as follows. Note that the minimum-distance projection

onto B is defined by the linearly-constrained quadratic program (LCQP):

PB(z0) = arg min
z∈Rn

1
2
‖z− z0‖22 such that Φz = x. (10.4)

The Lagrangian of this LCQP is

L(z, λ) = 1
2
‖z− z0‖22 + λ(Φz− x). (10.5)

where λ ∈ R is the Lagrange multiplier (Boyd and Vandenberghe, 2004). The z that

solves the LCQP (10.4) also minimizes L, and is found by setting ∇z(L) = 0, which

yields

z = z0 + Φ>λ. (10.6)
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Plugging (10.6) into x = Φz and solving for λ gives

λ = (ΦΦ>)−1(Φz0 − x).

Finally, pluging this into (10.6) gives

z = z0 − Φ>(ΦΦ>)−1(Φz0 − x),

as in (10.3).

Equation (10.3) provides a minimum distance onto the set B = {z : Φz = x}.

However, recall that it is often more realistic to allow for an imperfect reconstruction,

meaning

‖x− Φz‖2 ≤ δ

for some δ > 0. In this case, it makes sense to redefine the set B as

B = {z : ‖Φx− z‖2 ≤ δ}.

The minimum-distance projection onto B is defined by the quadratically-constrained

quadratic program (QCQP)

PB(z0) = arg min
z∈Rn
‖z− z0‖2 such that ‖Φz− x‖2 ≤ δ. (10.7)

However, there are two issues with solving (10.7). The first is that we need to know

the noise level δ. In practice, we will not know the number δ, though we might

estimate it using a technique like simulated annealing. The second problem is that
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solving a QCQP is very costly, with a runtime of approximately O(n3) where n is the

dimensionality of x. Because the QCQP occurs frequently, inside each iteration of

DM, solving such a QCQP would be prohibitively expensive.

Luckily, it turns out that defining PB with Equation (10.3) gives very good (and

fast) results for the noisy case (i.e., when δ > 0), even though it was derived from

the assumption that δ = 0. Figure 10.3 shows that the linearly constrained PB

using Equation (10.3) (LCQP, in the legend) allows DM to converge much more

quickly than the quadratically constrained PB which uses (10.7) instead (QCQP, in

the legend), even when given noisy observations. In this experiment, I generate a

random Φ ∈ R400×1000 and ‖z‖0 = 150 (see Chapter 12 for details on constructing Φ

and z). I calculate the noiseless x = Φz and the noisy x̃ = x + ε · N (0, 1) such that

SNR(x, x̃) = 20 dB, which ensures that δ > 0. The Difference Map is then given Φ

and x̃, and asked to recover z using either the quadratically constrained PB (QCQP)

or the linearly constrained PB (LCQP). The computationally expensive QCQP at

each iteration causes DM to converge much more slowly. Thus I only consider the

LCQP version of DM for the remainder of this work.

10.1 Comparison to Other Algorithms

In the following chapters, I compare the reconstruction error and convergence rate

of the Difference Map to a representative sample of commonly used algorithms for

sparse coding: Least Angle Regression (LARS) (Efron et al., 2004), Fast Iterative

Soft Thresholding Algorithm (FISTA) (Beck and Teboulle, 2009), Stagewise Or-

thogonal Matching Pursuit (StOMP) (Donoho et al., 2012), Accelerated Iterative

Hard Thresholding (AIHT) (Blumensath, 2012), Subspace Pursuit (SP) (Dai and
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Figure 10.3: Comparing the noisy and noise-free versions of PB. The noise-free, lin-
early constrained approximation (LCQP) of PB allows the Difference Map to recover
the signal z much more quickly than the noisy, quadratically constrained (QCQP)
version of PB, even when given the noisy observation x̃ = Φz + ε · N (0, 1). I mea-
sure the log(NRMSE) of the estimate ẑ, computed by log(‖z − ẑ‖2/‖z‖2). See text
immediately prior to Section 10.1 for additional details.

Milenkovic, 2009), Iteratively Reweighted Least Squares (IRLS) (Chartrand and Yin,

2008) and Alternating Direction Method of Multipliers (ADMM) (Boyd et al., 2011;

Chartrand and Wohlberg, 2013).

The projection PA, defined in Equation (10.2) and illustrated in Figure 10.2, is

an important part of many sparse-coding algorithms (Blumensath, 2012; Blumensath

and Davies, 2009, 2010; Dai and Milenkovic, 2009; Qiu and Dogandžić, 2010, 2011).

The projection PB defined in Equation (10.3) also appears in the “expectectation-

conditional maximize either” (ECME) algorithm (Qiu and Dogandžić, 2010, 2011).

Normalized Iterative Hard Thresholding (NIHT) (Blumensath and Davies, 2009) uses

a calculation similar to PB, replacing the pseudo-inverse with µtΦ
> for an appropri-

ately chosen scalar µt.

Given that many sparse-coding algorithms consider the same types of projections

136



as DM, any advantage achieved by DM must not come from the individual projections

PA and PB, but rather the way in which DM combines the two projections into a single

iterative procedure. This is particularly true when comparing DM to the simple

alternating map. Alternating between projections is guaranteed to find a point at

the intersection of the two constraints if both are convex; however, if either of the

constraints is not convex, it is easy for this scheme to get stuck in a local minimum

that does not belong to the intersection, as was illustrated in Figure 9.2.

While many of the theoretical questions about DM remain open, it does come with

a crucial guarantee: even on nonconvex problems, a fixed point (meaning D(z) = z)

implies that the algorithm has found a solution (meaning a point in A ∩ B). To see

this, note that D(z) = z implies

PA ◦ fB(z) = PB ◦ fA(z). (10.8)

Thus if it reaches a fixed point, the algorithm has found a point that exists in both A

and B. (Note that the left-hand side of Equation (10.8) is in A, and the right-hand

side in B, and the two are equal.) As a result, I believe that in some cases DM

will converge to a sparse solution with lower reconstruction error than competing

algorithms.

Note that Qiu and Dogandžić (2011) apply DM to the ECME algorithm (a variant

of expectation maximization) in order to improve upon that algorithm’s sparse-coding

performance. Although one of ECME’s two projections uses DM internally, ECME

continues to combine the two projections in a simple alternating fashion, and is thus

a flavor of the Alternating Map (AM). This is in stark contrast to my proposed

algorithm, which uses DM externally to the individual projections as a more intricate
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way of combining them. Qiu and Dogandžić’s resulting algorithm, called DM-ECME,

is capable of finding only non-negative signals (i.e., zi > 0), which is a strict subset of

the problems that I consider in this work. Moreover, even on non-negative signals, I

have found that DM-ECME did not perform competitively with any of the algorithms

mentioned above, and thus I do not include it in the experiments described below.

The implementation details of the Difference Map (as well as the method for

tuning the parameters of the competing algorithms) are given in Appendix C.
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Chapter 11

Evaluating the Difference Map on

Image Reconstruction

In this section, I will evaluate DM and a handful of state-of-the-art algorithms on

a standard sparse-coding problem: reconstructing images. Each algorithm will be

given the same dictionary Φ, the desired sparsity level ‖z‖0, and the same observation

(image) x, and will attempt to find a z that minimizes the reconstruction error subject

to the given sparsity level. This process will be repeated for a variety of sparsity

levels ‖z‖0. Some algorithms, like DM, consider the individual projections onto the

two constraint sets; others combine the two constraints into a single objective, as in

Equation (7.4).

Unlike Part III, where the sparse-coding algorithms reconstructed the SIFT fea-

tures extracted from an image, in the remainder of this dissertation the algorithms

reconstruct the pixel intensities (grayscale values) of the image. When reconstructing

a large image, I treat each w×w patch of grayscale pixel intensities as an independent

signal x to reconstruct. Thus each algorithm reconstructs the image by reconstructing
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each patch independently. Recall that DM has an expensive startup cost of calculat-

ing the pseudo inverse of the dictionary, Φ+. Because the dictionary Φ is constant for

each image patch, the algorithm only needs to compute the pseudo-inverse in (10.3)

once. By amortizing the cost of the pseudo-inversion over all patches, this effectively

allows DM to converge more quickly (compared to re-computing the pseudo-inverse

at each iteration). I amortize the cost of pre-computation for other algorithms as well

(most notably ADMM and IRLS)1.

In order to test the performance of the algorithms when reconstructing natural

images, the algorithms require a dictionary Φ learned for sparse image reconstruction.

Dictionary learning is not the focus of this dissertation, but I present the dictionary-

learning method in Appendix D for completeness. The learned dictionary contains

the typical combination of high- and low-frequency edges, at various orientations and

scales. Some examples of dictionary elements are shown in Figure 11.1.

With the dictionary Φ in hand, the algorithms sparse-code and then reconstruct

several natural images. I measure the quality of the sparse reconstruction as a function

of time. At time t, I measure the reconstruction quality of patch x as follows. First,

I perform hard-thresholding on the algorithm’s current guess zt, setting the m − s

smallest absolute values to zero, yielding the s-sparse vector [zt]s. I then calculate

the reconstruction

xt = Φ[zt]s

and measure the SNR of x (the true image patch) to xt. (Recall from Section 7.2 that

1By amortizing the pre-computation, I mean that these algorithms require expensive calculations
before they can reconstruct an image patch, but the expensive calculation need not be repeated for
the remainder of the image patches. By dividing the cost of the expensive calculation by the number
of image patches reconstructed, one estimates the expected computation time required per image
patch.
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Figure 11.1: Example elements from the dictionary Φ ∈ R400×1000 used for reconstruc-
tion. The dictionary contains elements of size 20× 20 pixels, learned from 10 million
image patches from the person and hill categories of ImageNet (Deng et al., 2009).

I use SNR to measure the reconstruction of image pixels, and that a high SNR implies

low reconstruction error.) Thus I am measuring how well, at time t, the algorithm

can create a sparse reconstruction of x. Note that algorithms returning a solution

that is sparser than required will not be affected by the hard-thresholding step.

Each algorithm reconstructs a 320×240 image of a dog, seen in Figure 11.2, using

the 400× 1000 dictionary from Figure 11.1. I measure runtime instead of iterations,

as the time required per iteration varies widely for the algorithms considered. Addi-

tionally, the pre-computation for DM is the longest of any algorithm, requiring the

pseudo-inverse of the dictionary. The amortized cost of this pre-computation is in-

cluded in the timekeeping. I measure results for both s = 100 and s = 200, as well
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Table 11.1: Signal to noise ratio (SNR, in decibels) of the reconstructed image from
Figure 11.2. I test various sparsity levels s and various runtimes t (seconds per entire
image). The difference map consistently achieves high SNR. Bold entries indicate the
highest SNR for each value of s and t.

s = 100 s = 200
t = 10 t = 20 t = 30 t = 10 t = 20 t = 30

Diff. Map 15.91 17.55 17.45 20.28 22.38 23.34
FISTA 4.80 12.04 17.21 4.82 12.13 21.71

ADMM 15.51 16.71 17.31 19.80 21.96 23.00
IRLS 9.62 13.52 14.92 13.47 18.38 20.62

Sub. Pursuit 16.47 16.78 16.84 16.94 16.88 16.87
LARS 10.62 12.66 14.16 10.63 12.68 14.24
AIHT 14.71 15.62 16.18 18.72 19.91 20.69

StOMP 15.55 15.50 15.50 17.65 17.92 17.93

as t = 10, 20 and 30 seconds2. The results in Table 11.1 show that DM consistently

achieves a very good SNR of the reconstruction. As would be expected, increasing s

and t tend to improve each algorithm’s reconstruction performance.

The highest quality reconstructions, achieved with s = 200 and t = 30, are shown

in Figure 11.2. While some algorithms fail to reconstruct details in the animal’s

fur and the grass, many algorithms reconstruct the image well enough to make it

difficult to find errors by mere visual inspection. I show the difference between the

reconstructions and the original image (Figure 11.2, bottom row), where a neutral

gray color in the difference image corresponds to a perfect reconstruction of that pixel;

white and black are scaled to a difference of 0.3 and -0.3, respectively (the original

image was scaled to the interval [0,1]).

The advantage of DM over other algorithms, when sparsely reconstructing images,

2I measure time in seconds per full-image reconstruction, which is actually performed indepen-
dently for each 20 × 20 patch. Thus t = 10, 20 and 30 correspond to approximately 0.05, 0.1, and
0.15 seconds per patch, respectively.
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Original LARS StOMP IRLS ADMM SP AIHT FISTA Diff. Map
14.24 dB 17.93 dB 20.62 dB 23.00 dB 16.87 dB 20.69 dB 21.71 dB 23.34 dB

Figure 11.2: Reconstructing a natural image. The Difference Map outperforms the
other algorithms (SNR shown in decibels, top row) when reconstructing a 320× 240
image of a dog (reconstructions shown in middle row). Difference images (bottom
row) show the difference between the reconstruction and the original image, which
ranges from -0.3 (black) to 0.3 (white) – original grayscale values are between 0 (black)
and 1 (white). Results for s = 200 and t = 30. Difference images are best seen by
zooming in.

can be seen with a large variety of images. In Figure 11.3, we see that DM consistently

achieves the best reconstruction.
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Diff. Map 23.19
FISTA 19.49
ADMM 22.16
IRLS 20.58
LARS 14.51

SP 17.85
StOMP 19.32
AIHT 20.37

Diff. Map 24.84
FISTA 18.96
ADMM 23.78
IRLS 23.31
LARS 18.02

SP 20.81
StOMP 23.23
AIHT 22.65

Diff. Map 22.79
FISTA 19.00
ADMM 21.92
IRLS 20.51
LARS 14.81

SP 17.89
StOMP 18.81
AIHT 20.08

Diff. Map 24.80
FISTA 19.31
ADMM 24.06
IRLS 23.28
LARS 18.00

SP 20.38
StOMP 21.13
AIHT 22.57

Figure 11.3: The Difference Map regularly outperforms other algorithms in finding
sparse reconstructions of a variety of images. Each algorithm is evaluated by mea-
suring the SNR in decibels between the reconstruction and the original image (left
column). Images are scaled to 320 × 240 pixels (240 × 320 for horizontal images).
Reconstructions have sparsity s = 200, and are completed in 30 seconds per image
(approximately 0.15 seconds per 20× 20 patch). The dictionary Φ is the same as in
Figure 11.1.
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Chapter 12

Evaluating the Difference Map on

Compressed Sensing

Compressed sensing is very closely related to sparse coding. In compressed sensing

(Donoho, 2006), we are again given x and Φ and asked to find a sparse z such that

x = Φz

or, in the noisy case, such that

‖x− Φz‖2 ≤ δ.

The same algorithms used for sparse coding can also be used for compressed sensing,

but the physical interpretation and measure of success are different. While in sparse

coding we consider z a sparse encoding of the signal x, in compressed sensing we

consider x to be a projection or measurement of the true signal z. In both cases we
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are given x and asked to find z, but the two problems disagree on which variable (x

or z) is “the signal.”

For example, in sparse coding, x may be an image (the signal), and z would

be a compressed or encoded version of this image. In that setting, x is a signal

generated by a physical phenomenon (photons hitting a light receptor), and z is just

a compressed encoding of that signal. In compressed sensing, entries in x may be

the measurements from an MRI, which have been diffused and scattered through a

body before being recorded. Finding z, in this case, is akin to inferring what was

actually being scanned by the MRI (i.e., recovering the position of the body from

noisy measurements). Thus z is the physical phenomenon or signal (what was inside

the MRI), and x is a randomized measurement of the signal.

The difference between sparse coding and compressed sensing is slippery to grasp

and, in the end, nearly inconsequential in this dissertation. The only relevant dif-

ference, for the purpose of this dissertation, is that the disagreement between which

variable represents the “true signal” (x in sparse coding, and z in compressed sensing)

leads to two different measures of success. When sparse coding I measured the recon-

struction error of x, whereas in compressed sensing I will measure the reconstruction

error of z. I will measure the reconstruction error of z with NRMSE; when adding

artificial noise to make the task more challenging, I will measure the added noise with

SNR.

The idea of “measuring the reconstruction error of z” is puzzling when considering

the previous experiments, in which there was no “true” z. Again, this is the core

difference between sparse coding and compressed sensing. In the latter, there is a

true z, though the algorithm is still only given x and Φ as input. To measure the

reconstruction of z, then, I will require a different experimental methodology than
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before.

One of the most common ways to measure a compressed sensing algorithm is by

randomly generating Φ, z, and x as follows. Given positive integers m,n, and s,

I generate the matrix Φ ∈ Rm×n with entries sampled randomly from N (0, 1). I

then ensure that columns have zero mean and unit variance. This matrix is called

a random dictionary. I generate the s-sparse vector z ∈ Rn whose s nonzero entries

are sampled from N (0, 1). I then calculate x = Φz, and the noisy “observation”

x̃ = x+ ε ·N (0, 1). Finally, I ask each algorithm to reconstruct z given only Φ and x̃.

Note that, in this setting, I am able to measure the reconstruction error of the

algorithm’s estimate ẑ of z, because I generated z. This was not the case in the

previous chapter, where x was a patch of an image, and there was no “true z”.

Again, this is the core difference between compressed sensing and sparse coding, but

the algorithms solving the problem are the same.

In the remainder of this chapter, I compare the performance of DM to the same

algorithms from Chapter 11. As an extra algorithm for comparison, I will include the

Alternating Map (AM), which was introduced in Chapter 9; I implement AM with the

same projections PA and PB defined as in Equations (10.2) and (10.3), respectively.

This formulation of AM closely resembles the ECME algorithm for known sparsity

levels (Qiu and Dogandžić, 2010). I test each algorithm with a wide variety of matrix

sizes, sparsity, and noise levels.

12.1 Compressed Sensing Experiments

In the first experiment, each algorithm attempts to reconstruct z as I vary the sparsity

level s. I choose ε so that the SNR is close to 20 dB. The results in Figure 12.1
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demonstrate that for small values of s (Figure 12.1 A), meaning sparser signals, most

algorithms are able to recover z almost equally well. As I increase the value of s

(Figure 12.1 B,C), the signals become less sparse and other algorithms converge to

undesirable minima. The Difference Map, however, continues to get very close to

recovering z.

In the next experiment, each algorithm attempts to reconstruct z as I vary the

noise by changing ε. I fix s at 150. The results in Figure 12.2 show that with

very little noise (A) and very high noise (D), the Difference Map performs as well

as several algorithms at recovering the true signal z, though it requires more time.

For moderate amounts of noise (B,C), the Difference Map is able to get closer to

recovering the signal than any other algorithm.

Note that DM and AM start “late” in all plots from Figures 12.1 and 12.2 because

their pre-computation time is the longest (calculating Φ+). Each run of the algorithm

is given a new random dictionary Φ, which requires computing a new Φ+. Hence there

can be no amortization of the cost of calculating Φ+, as there was in Chapter 11.

Despite using the same projections, there is a large disparity in performance between

DM and AM when s > 75. Because the two algorithms both use the same two

projections PA and PB, this performance gap shows the power of combining two

simple projections in a more elaborate way than simply alternating between them.

From the results in Figures 12.1 and 12.2, I hypothesize that DM has a significant

advantage with moderately noisy (SNR of approximately 20dB), less sparse signals

(higher s); with these types of problems, other state-of-the-art compressed sensing

algorithms get stuck in local minima or require a large amount of time to reach a

good solution. Figure 12.3 shows the results of tests of this hypothesis with a variety

of different matrix sizes and sparsity ratios, each time with an SNR of approximately
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Figure 12.1: Reconstructing signals with various levels of sparsity s. Given x and
Φ, an algorithm tries to recover z such that x = Φz and ‖z‖0 ≤ s. I measure
the normalized root mean squared error (NRMSE) at time t by estimating zt and
calculating ‖z− zt‖/‖z‖. With sparser signals (A), most algorithms get equally close
to recovering the true signal. With less sparse signals (B,C), the Difference Map gets
closer than other algorithms to recovering the signal. Each plot is averaged over ten
runs, with ε chosen to give an SNR of approximately 20 dB, and Φ ∈ R400×1000.
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(A) SNR = 30 dB (B) SNR = 25 dB
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Figure 12.2: Reconstructing signals with various levels of noise ε. Legend is the
same as Figure 12.1. With very little noise (A) and large amounts of noise (D), the
Difference Map recovers the signal as well as the best algorithms, though requiring
more time. With moderate amounts noise (B,C), the Difference Map gets closer than
other algorithms to recovering the signal. Each plot is averaged over ten runs, with
s = 150 and Φ ∈ R400×1000.
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20 dB. The results show that DM does indeed outperform other algorithms in this

setting, for all cases tested.

For all of the experiments reported above, the Difference Map’s `0 constraint

(from (10.2)) was the same as the true s used to generate the data. In many settings,

however, the true s is unknown. I measure the robustness of DM in this setting by

fixing the true value s (used to generate z) while varying the `0 constraint in (10.2).

I then measure the log-NRMSE of the reconstructed signal ẑ. The results in Figure

12.4 show that when the true s (used to generate z) is fixed at 150, DM continues

to recover z better than any other algorithm for an `0 constraint down to 90 and up

to 190. Thus DM appears quite robust to the specific `0 constraint value used when

implementing the algorithm. Note that this “unknown s” setting was explored in

more detail in Chapter 11 in the context of reconstructing natural images.

12.2 Summary of the Difference Map’s performance

I have presented the Difference Map, a method of finding a point in the intersection

of two constraint sets, and I have applied DM to the problems of sparse coding

and compressed sensing. The constraint-set formulation is a natural fit for sparse-

recovery problems, in which we have two competing constraints for z: to reconstruct

the observation x and to be sparse.

When the solution z is very sparse and the observation x̃ is not too noisy, DM takes

more time in finding the same solution as competing algorithms. However, when the

solution z is less sparse and when the observation x̃ is noisy, DM outperforms state-

of-the-art sparse recovery algorithms. The noisy, less sparse setting corresponds well

to reconstructing natural images, which can often require a large number of dictionary
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(C) Φ ∈ R3000×8000, s = 1050

Figure 12.3: The difference map outperforms other algorithms at recovering z from
a noisy observed signal with a wide variety of matrix sizes Rm×n, when sparsity is
high (s ≈ n/3). Legend is the same as Figure 12.1. The noisy observation x̃ =
Φz + ε · N (0, 1) has an SNR of approximately 20 dB. Each plot is averaged over ten
runs.
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Figure 12.4: The Difference Map outperforms other algorithms and recovering z, even
when s is unknown, for a wide range of values. Using a random Φ ∈ R400×1000, s = 150,
and ε chosen to give an SNR of 20 dB, I vary the Difference Map `0 constraint. The
next best algorithm achieves a log-NRMSE of -0.62; the Difference Map outperforms
this for any `0 constraint between 90 and 190.

elements in order to accurately reconstruct. The experiments I have reported above

show that DM performs favorably in reconstructing a variety of images, with a variety

of parameter settings.

Parameter tuning can present a laborious hurdle to the researcher. DM requires

tuning only a single parameter β. For all experiments performed with DM (natural

image reconstruction for various images; reconstruction with random matrix dictio-

naries of various sizes, with varying amounts of sparsity and noise), I found DM to

work almost equally as well for all −0.9 ≤ β ≤ −0.1. The robustness of DM under

such a wide variety of parameter values and problems makes DM a very competitive

choice for sparse coding and compressed sensing.

The robustness of DM comes from how it combines two simple projections into a

single iterative procedure. The Alternating Map (AM) combines the same projections
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in a simple alternating fashion, and performs poorly in almost all experiments. The

gap in performance between these two methods demonstrates the power of combining

multiple constraints in a more perspicacious way.

Finally, recall that performance in all experiments was measured as a function of

time, which would seem to put DM at a natural disadvantage to other algorithms:

DM requires the pseudo-inverse of the dictionary, computing which requires more

time than any other algorithm’s pre-computation. Despite this, DM consistently

outperforms other algorithms.
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Part V

Conclusions and Future Work
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This dissertation examines the link between classifying an image and seeing an

object. Part II of this dissertation asks, if a classifier does a good job classifying

images, does it necessarily see the objects that were intended to be recognized? In order

to answer this question, I developed a novel method of explaining a popular type of

classifier (additive networks), called contribution propagation (Landecker et al., 2013).

Contribution propagation is based on the original idea of contributions by Poulin

et al. (2006), which tell us how each dimension of a feature vector affected a classifica-

tion. However, when the features z are extracted from a datum x, we may still want

an explanation at the level of the datum x that provides the same type of information

as contributions do at the level of z. Contribution propagation was designed to do

exactly this, when z is the output of an additive network.

In Section 4.2, I gave three desirable properties for explaining the classifications

performed by additive networks. In Section 4.3, I proved that contribution propaga-

tion satisfies all three properties. (It is important to note that the third property was

proved only for linear networks.) Empirical testing with synthetic data, described

in Sections 5.1 and 5.3, gave strong evidence that my method performs as desired.

Finally, applying contribution propagation to a network trained with real-world data,

described in Section 5.3, explained which parts of the images contributed most to the

classifications. In response to the question, If a classifier does a good job classifying

images, does it necessarily see the objects that were intended to be recognized? these

results seem to tell us no for some cases reported in recent literature.

Part III of this dissertation asks, If a model can sparsely reconstruct the data,

will it also classify the data well? In order to answer this question, I investigate the

popular method of sparse coding as a means of feature extraction. Sparse coding is a

method of representing a signal (or datum) as a sparse linear combination of known
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elements. The resulting sparse codes (the coefficients of the sparse linear combination)

are often treated as the features for classification as well as for image reconstruction.

In many settings, using the sparse codes for training and testing results in bet-

ter classification performance. It appears to be widely assumed that this is due to

two factors: (1) the fact that sparse codes will reconstruct the data means that the

codes contain the same information as the original data, and (2) the sparse codes are

sparse, which is an effective form of regularization to increase the classifier’s ability to

generalize (Bansal et al., 2010; Coates and Ng, 2011). In short, these claims amount

to what I called the sparse reconstruction hypothesis: the best encoding of data

for classification will give the best possible reconstruction at some level of sparsity.

I investigated this hypothesis by varying the sparsity level of several sparse-coding

algorithms, and measuring classification error and reconstruction error. My results

indicate that sparse coding does improve classification accuracy in most cases. How-

ever, the results of Section 8.3 are contrary to the sparse reconstruction hypothesis.

For multiple datasets I showed two sets of sparse codes, one of which is sparser and

reconstructs better (produced by the SP algorithm (Dai and Milenkovic, 2009)), the

other of which achieves lower classification error (produced by the LARS algorithm

(Efron et al., 2004)). This is not consistent with the sparse reconstruction hypothesis.

In Part IV of this dissertation, I described a new sparse coding method based

on the Difference Map of Elser et al. (2007), which outperforms competing methods

when applied to fairly complicated signals (meaning moderately noisy signals that

require more dictionary elements to reconstruct). While Part III of this dissertation

indicates that we do not adequately understand why sparse coding can decrease clas-

sification error, sparse coding (and the closely related problem of compressed sensing)

is also very useful for other tasks including image compression, medical imaging, sig-
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nal recovery, and denoising. I expect the Difference Map to be a strong contender for

researchers choosing among algorithms in these fields.

While the results summarized above add numerous contributions to the fields of

machine learning and computer vision, they also open up new avenues for future

research. In Section 4.3, I proved that contribution propagation provides trustworthy

explanations of how each dimension of the input affected the classification performed

by a linear network. However, I proposed contribution propagation in the context of

the more general additive networks. A proof of trustworthiness in this more general

case is currently missing, and would greatly add to the small but growing literature on

explaining the classifications of machine learning algorithms. Additionally, some very

recent developments in deep learning have yielded networks which almost perfectly

fit my definition of “linear networks” (Krizhevsky et al., 2012; Zeiler and Fergus,

2013). Applying contribution propagation to these networks would be interesting,

particularly considering that they have been setting records for classification accuracy

on a variety of difficult datasets.

I found evidence, in Section 8, that sparse reconstruction is not necessarily the

right intermediate goal if the ultimate goal is classification. While the results were

consistent across several sparse-coding algorithms and datasets, they all used the

same feature extraction method (SIFT) and sparse-coding dictionary Φ (from Yang

et al. (2009)). The sparse-coding community would benefit from testing whether or

not these patterns persist with different features and with different dictionaries.

The Difference Map (DM) algorithm for sparse coding, presented in Section 10,

outperforms state-of-the-art sparse-coding algorithms when the sparsity level was

high. However, it is unclear why DM achieves such success. A thorough analysis of the

convergence of DM would contribute greatly to our understanding of the algorithm,
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as well as the problem that it solves.
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K. Qiu and A. Dogandžić. Nonnegative signal reconstruction from compressive sam-

ples via a difference map ECME algorithm. In IEEE Workshop on Statistical Signal

Processing, pages 561–564, 2011.

R. Raina, A. Battle, H. Lee, B. Packer, and A. Ng. Self-taught learning: Transfer

learning from unlabeled data. In Proceedings of the 24th International Conference

on Machine Learning, pages 759–766, 2007.

M. Ranzato, J. Susskind, V. Minh, and G. Hinton. On deep generative models with

applications to recognition. In IEEE Conference on Computer Vision and Pattern

Recognition, 2011.

M. Riesenhuber and T. Poggio. Hierarchical models of object recognition in cortex.

Nature Neuroscience, 2(11), 1999.
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Appendix A

Deriving the Contribution

Propagation Equation for Linear

SVMs

Let Zi = (Zi
1, Z

i
2, . . . , Z

i
m) ∈ Rm be the ith training vector, where the superscript i is

the index into the training dataset and the subscripts 1, 2, . . . ,m are the indices into

the dimensions of the vector. Let S be the set of indices (into the training dataset)

indicating the support vectors, as discussed in Section 2.1. Let Z be the test datum

will be classified. Then Equation (2.4) becomes

ŷθ(Z) = sgn

[∑
s∈S

αs〈Z,Zs〉+ b

]

= sgn

[∑
s∈S

αs

m∑
i=1

ZiZ
s
i + b

]

= sgn

[
m∑
i=1

Zi

(∑
s∈S

αsZ
s
i

)
+ b

]
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Recall that in the case of a network whose topmost node is an additive classifier, I

refer to this topmost node as Y , which computes the score of the classifier,

Y =
m∑
i=1

Zi

(∑
s∈S

αsZ
s
i

)
+ b

Plugging into Equation (4.12) yields

C (Zi → Y ) =
Zi
(∑

s∈S αsZ
s
i

)
Y

as desired. Note that I have assumed that the bias b = 0, as was the case for the

networks analyzed in this dissertation.
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Appendix B

Obviating Division-by-Zero with

Linear/Max Networks

In this appendix, I will show how the contribution propagation formulae for linear/-

max networks, presented in Section 5.1, combine in such a way that there is no

possibility for division by zero. Recall that theorem 3 demonstrates how the function

computed by a linear network can be written as a single linear function of the net-

work’s inputs; moreover the formula for the inputs’ contributions in such a network

(Equation (4.23)) have no denominator, and therefore no concern of division by zero.

Although a linear/max network is not a linear network due to the max -nodes, the

same trick applies.

To simplify notation, I will redefine ch (V ) to be the indices of the children nodes,

rather than the children nodes themselves. To be clear, I have previously defined

ch (V ) = {Ui ∈ V : Ui → V ∈ E}
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where E is the set of edges in the network. However, the following equations will be

greatly simplified by momentarily redefining ch (V ) as

ch (V )
def
= {i : Ui → V ∈ E}.

Recall that there are five layers in the network discussed Section 5.1 (including

the classifier node, which is a layer unto itself), which alternate between linear and

maximum functions. The function computed by network with output Y and input

x1, . . . , xn is fully defined by

Y =
∑

i∈ch(Y )

βi
∑

j∈ch(Ui)

δij
∑

k∈ch(Vj)

βjk
∑

l∈ch(Uk)

δkl
∑

h∈ch(Vl)

βlhxh (B.1)

where βi are the coefficients of the C2 nodes to the classifier, δij ∈ {0, 1} implements

the maximum function of the C2 nodes (as in Equation (5.4)), βjk are the S2 coef-

ficients, δkl implements the maximum function of the C1 nodes, and βlh are the S1

coefficients. Rearranging the equation, we have

Y =
∑

i∈ch(Y )

∑
j∈ch(Ui)

∑
k∈ch(Vj)

∑
l∈ch(Uk)

∑
h∈ch(Vl)

βiδ
i
jβ

j
kδ
k
l β

l
hxh (B.2)

=
∑
i∈C2

∑
j∈S2

∑
k∈C1

∑
l∈S1

n∑
h=1

βiδ
i
jβ

j
kδ
k
l β

l
hxh (B.3)

=
n∑
h=1

∑
i∈C2

∑
j∈S2

∑
k∈C1

∑
l∈S1

βiδ
i
jβ

j
kδ
k
l β

l
hxh (B.4)

=
n∑
h=1

γhxh. (B.5)

174



For Equation (B.3), I define

C2
def
= {i : Ui ∈ layer C2}

and similarly for S2,C1 and S1. I further extend the definition of δij to be 0 if

j 6= ch (Ui), and similarly for the β variables. (As discussed in the proof of Theorem 3,

this extension is merely conceptual, and does not change the computation performed

by the network.) Equation (B.4) comes from swapping the order of the summations,

and Equation (B.5) yields the definition

γh
def
=
∑
i∈C2

∑
j∈S2

∑
k∈C1

∑
l∈S1

βiδ
i
jβ

j
kδ
k
l β

l
h.

Applying Theorem 3 to Equation (B.5), the contribution of an input (or pixel) xl

is given by

C (xh) = γhxh

=
∑
i∈C2

∑
j∈S2

∑
k∈C1

∑
l∈S1

βiδ
i
jβ

j
kδ
k
l β

l
hxh (B.6)

I use Equation (B.6) to calculate the contributions of the pixels in Section 5.2.2. Im-

portantly, there are no denominators in this form, and therefore there is no possibility

for division by zero.
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Appendix C

Implementation Details of the

Sparse Coding Algorithms

Given an integer s, a signal x ∈ Rn, and the dictionary Φ ∈ Rn×m, all algorithms

search for a z such that

x ≈ Φz and ‖z‖0 ≤ s.

Some algorithms, such as the Difference Map (DM), consider each of two constraints

separately; others combine them into a single objective, as in Equation (7.3) or (7.4).

I implemented the Difference Map in Matlab (Landecker, 2013). All experiments

were performed on a computer with a 3 GHz quad-core Intel Xeon processor, running

Matlab R2011a. I obtained Matlab implementations of LARS and StOMP from

SparseLab v2.1 (Stodden et al., 2007). Implementations of AIHT (Blumensath, 2012)

and Subspace Pursuit (Dai and Milenkovic, 2009) were found on the websites of the

papers’ authors. I also obtained Matlab implementations of ADMM (Chartrand and

Wohlberg, 2013) and IRLS (Chartrand and Yin, 2008) directly from the authors of
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the cited papers.

The implementations of LARS, SP, AIHT, and StOMP are parameter-free1. It

was necessary to tune a single parameter (β) for DM, and two parameters each for

ADMM and IRLS. I tuned the parameters in two iterations of grid search. ADMM

and IRLS required different parameters for the two different experiments presented

in the next sections (sparse coding with natural images, and compressed sensing with

random measurements). Interestingly, DM performed well with the same parameter

value for both types of experiments.

I use training matrices of the same dimension, sparsity, and noise level as the

ones appearing in the subsequent experiments in order to tune parameters. I chose

parameters to minimize the NRMSE of the estimate x̂, averaged over all training

problems. When tuning parameters for natural image reconstruction, I used a training

set of 1000 image patches taken from the person and hill categories of ImageNet (Deng

et al., 2009), providing a good variety of natural scenery. Example images are shown

in Figure D.1.

When tuning β for DM, I first perform grid search with an interval of 0.1, between

−1.2 and 1.22. Next, in a radius of 0.5 around the best β, I performed another grid

search with an interval of 0.01. Surprisingly, all β in the interval [−0.9,−0.1] appeared

to be equally good for all problems reported in this dissertation. I chose β = −0.14

because it performed slightly better during my experiments, but the advantage over

other β ∈ [−0.9,−0.1] was not significant.

I used logarithmic grid search to tune the two parameters for ADMM and IRLS.

1This is somewhat of a simplification. SP, LARS and StOMP ask for the desired sparsity level
‖z‖0. However, I will treat ‖z‖0 as hyper-parameters, which all algorithms will have access to.

2Elser et al. (2007) claim that the natural range for the parameter β is [-1,1] (excluding 0), but
that occasionally values outside of this interval work well.
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First, I searched parameter values by powers of ten, meaning 10α, for α = −5,−4, . . . , 5.

I then searched in the neighborhood of best exponent c by 1
10

powers of ten, meaning

10c+α for α = −0.5,−0.4, . . . , 0.5.

For random measurements (the experiments in Section 12), this results in pa-

rameter values µ = 1.26 × 102, λ = 3.98 × 10−1 for ADMM, and α = 3.16 ×

10−3; β = 2.51 × 10−1. For natural image reconstruction (Section 11), we found

µ = 1.58 × 102, λ = 1.0 × 10−1 for ADMM and α = 2.5 × 10−4, β = 5 × 10−3 for

IRLS. Note that the β parameter for IRLS has nothing to do with the β parameter

for DM. I refer to both as β only to remain consistent with the respective bodies

of literature about each algorithm, but in the rest of the dissertation I refer to the

parameter for DM. IRLS is capable of addressing the `p quasi-norm for a variety of

values 0 < p ≤ 1, while ADMM uses modifications of the `p quasi-norm designed to

have a simple proximal mapping (Chartrand, 2012). In both cases I tried p = 1
2

and

p = 1, and found p = 1
2

to perform better.
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Appendix D

Dictionary Learning for Sparse

Image Reconstruction

Rick Chartrand and I decided on the following details of the dictionary. After

discussing these details, Rick Chartrand performed the actual dictionary learning.

ADMM was used as the sparse-coding algorithm1.

The dictionary is trained with 10 million 20 × 20 image patches, and we choose

to learn 1000 atoms, resulting in a dictionary of size 400 × 1000. The dictionary is

trained with patches from the person and hills category of ImageNet (Deng et al.,

2009), which provide a variety of natural scenery (see Figure D.1 for images). The

training alternates sparse coding using 20 iterations of ADMM using p-shrinkage with

p = 1/2 (see Chartrand (2012) for details), with a dictionary update using the method

of optimal directions (Engan et al., 1999).

Using 1,000 processors, the dictionary converged in about 2.5 hours. The training

1This does not give an unfair advantage to ADMM, because the reconstructed images presented
in this paper are separate from the dataset used to train the dictionary.
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Figure D.1: Examples images from the person and hill categories of ImageNet (Deng
et al., 2009), used to learn the dictionary Φ in this Section, and to estimate parameters
for various algorithms, as described in Appendix C.
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patches were reconstructed by the dictionary with an average of 29 nonzero compo-

nents (out of 1000), and the reconstruction of the training images had a relative error

of 5.7%.
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