
Exploring the Potential of Sparse Coding for Machine Learning

by

Sheng Y. Lundquist

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in

Computer Science

Dissertation Committee:
Melanie Mitchell, Chair

Feng Liu
Bart Massey

Garrett Kenyon
Bruno Jedynak

Portland State University
2020

© 2020 Sheng Y. Lundquist

Abstract

While deep learning has proven to be successful for various tasks

in the field of computer vision, there are several limitations of deep-

learning models when compared to human performance. Specifically,

human vision is largely robust to noise and distortions, whereas deep

learning performance tends to be brittle to modifications of test im-

ages, including being susceptible to adversarial examples. Addition-

ally, deep-learning methods typically require very large collections of

training examples for good performance on a task, whereas humans

can learn to perform the same task with a much smaller number of

training examples.

In this dissertation, I investigate whether the use of a biologically

informed, unsupervised sparse coding algorithm can help to allevi-

ate these shortcomings within classification networks. I find that (1)

the non-linear encoding scheme of convolutional sparse coding, as

opposed to the dictionary learned, contributes to classification per-

formance when used within a model. In addition, (2) sparse coding

helps classification models trained on clean images to be more robust

to adversarial examples and images corrupted with high frequency

i

noise. Finally, (3) sparse coding helps alleviate the number of human-

annotated training labels needed for classification on stereo-video

data. Overall, using unsupervised sparse coding within supervised

models can help alleviate various shortcomings of traditional deep

neural networks.

ii

Dedication

To my mother Jie Lundquist, my best friend Mackenzie Gray, and the

best boy Bowser. Without your love and support, this dissertation

would have forever been unfinished.

Artist: Laura Connelly

iii

Acknowledgements

First and foremost, I’d like to thank my friend and colleague Dylan

Paiton. Our collaborations and endless discussions has pushed me to

be a better scientist, and I value your feedback in all of my work.

I would also like to thank John Lipor, Anthony Rhodes, Max

Quinn, Jordan Witte, Erik Cosner, Will Landecker, Callie Bee, and

Mackenzie Gray for valuable feedback regarding work done for this

dissertation. Additionally, I’d like to thank my dissertation commit-

tee Melanie Mitchell, Feng Liu, Bart Massey, Garrett Kenyon, and

Bruno Jedynak for your feedback. The supervised image classifica-

tion chapter was work done in conjunction with Melanie Mitchell.

The adversarial examples section was work done in conjunction with

Dylan Paiton and Melanie Mitchell. The limited data section was

work done in conjunction with Melanie Mitchell and Garrett Kenyon,

and was funded by the DARPA Cooperative Agreement Award HR0011-

13-2-0015.

I would like to thank Garrett Kenyon in particular for introducing

me to the field of computational neuroscience and machine learning,

iv

as well as the continued support and advisement. Thanks also to all

my colleagues in the Kenyon lab.

I’d like to thank the people of the ultimate community for the

countless friendships I’ve made there, while also keeping me healthy

both physically and mentally. I can’t wait to see all of you again

soon.

Finally, I’d like to thank my PhD advisor Melanie Mitchell for

overseeing and providing endless feedback and advice through my

time at Portland State University. I couldn’t have done it without

you.

v

Table of Contents

Abstract . i

Dedication . iii

Acknowledgements . iv

Table of Contents . vi

List of Tables . ix

List of Figures . x

1 Introduction . 1

2 Background for Deep Neural Networks 5

2.1 Supervised vs. Unsupervised Learning 5

2.2 Deep Convolutional Neural Networks 8

2.2.1 Fully Connected Layer . 9

2.2.2 Convolutional Layer . 10

2.2.3 Pooling Layer . 11

2.3 Gradient Descent . 13

2.4 Cross-Entropy Supervised Loss Function 16

3 Background for Sparse Coding . 18

3.1 Encoding . 21

vi

3.2 Dictionary Learning . 23

3.3 Convolutional Sparse Coding . 24

3.4 Implementation . 27

4 Exploring Convolutional Sparse Coding for Supervised

Image Classification . 28

4.1 Related Work . 31

4.2 Experiments . 34

4.2.1 Dataset . 35

4.2.2 Dictionary Learning Methods 36

4.2.3 Encoding Methods . 40

4.2.4 Classifier . 42

4.2.5 Fully Supervised Model . 43

4.3 Results . 45

4.4 Summary . 49

5 Sparse Coding for Model Robustness 51

5.1 Background on Adversarial Examples 53

5.2 Related Work . 56

5.3 Robustness of Sparse Coding on Adversarial Examples 61

5.3.1 Effect of Sparsity on Adversarial Robustness . . . 66

vii

5.3.2 Calibration of Classification Models 68

5.4 Robustness of Sparse Coding on Corrupted Images . . . 72

5.5 Summary . 78

6 Sparse Coding with Limited Labels . 80

6.1 Related Work . 81

6.2 Sparse Coding of Stereo-Video for Vehicle Detection . . 84

6.2.1 Experiments . 85

6.2.2 Results . 89

7 Final Conclusions . 97

Appendix A Sparse Coding Results . 109

Appendix B Effect of Sparsity on Classification 115

Appendix C Adversarial Attacks on Sparse Coding 117

Appendix D Classification on Corrupted Images 121

viii

List of Tables

1 Encoding versus dictionary learning accuracy 45

2 ECE of classification models . 71

3 Average precision scores on stereo-video classification 91

ix

List of Figures

1 Autoencoder illustration . 6

2 Deep convolutional neural network illustration 8

3 Fully connected layer illustration . 10

4 Convolutional layer illustration . 12

5 Example dictionary on natural images 20

6 Convolutional sparse coding illustration 26

7 CIFAR-10 example images . 36

8 Encoding versus dictionary learning accuracy range 47

9 Adversarial image illustration . 55

10 Adversarial images attacking fully supervised and

convolutional sparse coding models . 63

11 Accuracy versus mean adversarial distance 65

12 Effect of sparisty on adversarial robustness 67

13 Range of ECE between fully supervised and

convolutional sparse coding . 70

14 Range of ECE for calibrated models 72

15 Accuracy versus mAD for calibrated models 73

x

16 CIFAR-10-C corrupted images examples 74

17 Mean corruption error on types of corruption 77

18 Number of training labels versus area under curve 93

19 Activation map comparison on stereo-video 96

xi

Chapter 1

Introduction

The field of machine learning has made immense progress in au-

tomating vision tasks such as image classification and object de-

tection (e.g., [23,56,63]) within the past decade, with some stud-

ies claiming performance near or surpassing humans (e.g., [23,68]).

Most if not all of these studies employ a deep convolutional neural

network (DCNN) trained through supervised learning (i.e., training

from hand-labeled data). Despite the success of DCNNs, there still

exist limitations to what these types of models can do.

A clear indicator of the limitations of deep learning is to compare

it to biological vision. In terms of image classification, humans are

generally able to successfully classify images given a few examples of

a class [34]. In contrast, supervised deep learning pipelines require

millions of examples with corresponding ground truth labels that are

typically labeled by humans (from datasets such as CIFAR-10 [32]

or ImageNet [8]). Although humans have years of infancy to “train”

our visual systems, we do so largely without explicit supervision [74].

1

Here, one potential solution for deep learning’s need for huge labeled

training sets is to use unsupervised training (i.e., training from data

without explicit labels) within a supervised DCNN to help alleviate

the amount of labeled training data required for a task.

Another limitation of deep learning is the lack of robustness in

such models. Previous studies have shown that human performance

on vision tasks dramatically surpass that of DCNNs when test images

are blurred or distorted [9,15,16,28], which suggests that deep learn-

ing is brittle and dependent on superficial image statistics rather

than human-like image understanding (e.g., the presence of an ani-

mal within a picture can be detected by looking at the blurriness of

the background rather than ”understanding” the animal [35]). Fur-

thermore, there have been recent studies showing that DCNNs tend

to be sensitive to adversarial examples [67], i.e., targeted perturba-

tions that is imperceptible to humans but that completely changes

the output of DCNNs. In all, these results show that deep-learning

based classifiers and object detectors can be brittle to modifications

to which humans are robust.

2

Sparse coding [50] is an unsupervised learning algorithm that

aims to create efficient, non-redundant (i.e., sparse) encodings of an

input (e.g., photographs and videos). The idea of sparse coding was

originally inspired by theories of neural computation from Barlow

and colleagues [3]. In particular, sparse coding has been shown to

exhibit similar properties to biological neurons in the early stages

of mammalian visual processing [50,77]. It follows that investigat-

ing biologically inspired algorithms could provide novel insights into

alleviating the aforementioned limitations of deep learning.

In this dissertation, I explore the use of sparse coding within deep

learning, and to test the effect on learning with limited data and

for performance generalization. Specifically, I address the following

questions:

1. What is the relative contribution of the network weights trained

by unsupervised dictionary learning versus the activations from

the nonlinear encoding computation of sparse coding when used

within a supervised network for image classification (Chapter 4)?

3

2. Does using unsupervised sparse coding within a supervised net-

work help the model be more robust to adversarial and corrupted

images (Chapter 5)?

3. Does unsupervised sparse coding help reduce the number of la-

beled training examples needed by typical deep learning pipelines

(Chapter 6)?

4

Chapter 2

Background for Deep Neural Networks

2.1 Supervised vs. Unsupervised Learning

An artificial neural network is a type of machine learning model that

aims to learn a nonlinear mapping from an input signal to a desired

output. Here, the input can be from various domains, such as images,

videos, time series, or text. The output can vary as well, such as a

single label for supervised whole image classification, coordinates of

a bounding box around an object of interest within an image for

supervised object detection, or a reconstruction of the input image

itself for unsupervised autoencoders.

In supervised learning, the objective of the network is to learn

a mapping from an input (e.g., an image) to a target (e.g., an im-

age label). In this domain of learning, a model requires correspond-

ing inputs and targets for training, with human annotators typically

providing the ground-truth targets. To train a supervised neural net-

work for an image labeling task, the network takes an image as in-

put and returns a “prediction”: an object class label or a probability

5

distribution over possible object class labels. An error is calculated

based on some metric of similarity (e.g., cross-entropy distance, see

Section 2.4) between the true class provided by ground-truth anno-

tations and the prediction from the neural network. This error drives

learning, which adjusts the weights of the neural network such that

when the same image is presented again, the new prediction will

be closer to the true class than before. The goal is to generalize to

unseen examples after training on a sufficient number of training

examples.

Figure 1: Illustration of an autoencoder. The autoencoder aims to
encode input data to activations over hidden units. The goal is to
learn the encoder and decoder weights such that the input is recon-
structed with minimal degradation.

6

In contrast with supervised learning, unsupervised learning aims

to learn structure from the data without the use of ground truth la-

bels. For example, clustering algorithms such as K-means [41], which

aim to find clusters from a set of data points, are considered to be a

(non-neural) unsupervised learning algorithm. In the domain of neu-

ral networks, one form of unsupervised learning is an autoencoder,

whose objective is to map input data to activations over hidden units

such that the original data is recoverable with minimal degradation.

Figure 1 illustrates this concept. During training, the network aims

to find the best weights to minimize the difference between the orig-

inal data and the reconstruction. Constraints are usually added to

the objective to avoid the degenerate solution of an identity map-

ping. For example, a bottleneck autoencoder (shown in Figure 1)

constrains the dimensions of the hidden units to be less than the

dimensions of the image, which can be useful for image compres-

sion [2]. Such a representation can also decompose images in terms

of recurring structures (e.g., edges), which can be more useful for

image classification than using raw pixels as input to a supervised

classifier [55].

7

2.2 Deep Convolutional Neural Networks

Figure 2: Illustration of a Deep Convolutional Neural Network
(DCNN). DCNNs are comprised of different layers. Three common
types of layers are convolutional, pooling, and fully connected layers.
These layers are stacked in a hierarchy such that the output activa-
tions from one layer are fed into the next layer as input. Figure from
[5].

When applied to image recognition tasks, Deep Convolutional

Neural Networks (DCNNs) are trained to represent a nonlinear map-

ping from an input image to a class label (e.g., image category). Here,

a neural network is composed of layers, where a single layer encapsu-

lates an operation on the input to the layer. These layers are stacked

in a hierarchy to form a deep network (the depth of the network

corresponds to the number of layers that are stacked together) such

that the output activations of a layer are fed as the input to the next

layer. Figure 2 illustrates this concept. Three common types of lay-

8

ers are fully connected (Section 2.2.1), convolutional (Section 2.2.2),

and pooling (Section 2.2.3) layers.

2.2.1 Fully Connected Layer

A fully connected layer (illustrated in Figure 3) applies an opera-

tion to an input vector, which can either be an input signal or the

output of another layer within a DCNN. One common use of a fully

connected layer is within a network that produces a single label for

an input image. In this case, the model uses a fully connected layer

at the end of the network to reduce the dimension of the output

to the number of classes so that the output of the network can be

interpreted as a probability distribution over all possible classes.

Formally, given an m dimensional input vector x ∈ Rm, a train-

able weight matrix W ∈ Rm×f , and a trainable bias vector b ∈ Rf ,

a fully connected layer with f units computes a = σ(xW + b) with

a ∈ Rf as the output activations of the fully connected layer. Here,

σ(·) denotes a nonlinear activation function, which allows nonlinear

mappings from the input to the output. Typically, the activation

takes the form of σ(a) = max(0, a), i.e., a Rectified Linear Unit

9

Figure 3: Illustration of a fully connected layer. The output acti-
vations are calculated by computing the matrix-vector product be-
tween a weight matrix and an input vector (which can either be of
the input or the output of other layers in the DCNN). The output is
then fed through a nonlinear activation function, such as the ReLU
activation function.

(ReLU) activation function [17], but can also take the form of a

sigmoid or hyperbolic tangent function.

2.2.2 Convolutional Layer

Similar to a fully connected layer, a convolutional layer computes a

linear transform of a given input, followed by some nonlinear activa-

tion function. Specifically, given an input image x and a collection

of trainable filters W (i.e., a filter is a set of weights), a convolu-

tion is defined as the dot product of an input patch and a filter,

calculated for all filters over every input patch given a stride (i.e.,

10

the distance between two neighboring locations of input patches).

Figure 4 illustrates this concept for one location. The output of the

convolutional layer is downsampled by a factor of the stride. A con-

volutional layer typically takes the output activations of the previous

layer in the hierarchy (the input to a convolution is not restricted to

be an image).

In contrast with fully connected layers, a convolutional layer as-

sumes translational invariance. Specifically, a single filter is used re-

peatedly across the image, and hence is invariant to the absolute

position within the input. This in particular has the advantage of

using fewer weights overall in the layer, which reduces the memory

requirements of the model, as well as making the layer easier to train.

2.2.3 Pooling Layer

In a DCNN, a pooling layer is typically used to reduce the dimensions

of the previous layer. Similar to a convolution, pooling is done on

input patches (typically, on the output of convolutional layers). In

contrast with a convolutional layer, a pooling layer’s operation is to

produce the maximum (for max pooling layers) or the average (for

average pooling layers) of the input to the layer, over the spatial

11

Figure 4: Illustration of a convolutional layer. The output activations
for one location (in green) are calculated by taking the dot product
between each of a set of filters and an image patch, followed by a
nonlinear activation function, such as the ReLU activation function.
This process is repeated for other image patches at different locations
with the same set of filters (not shown here). Here, each filter is a
set of weights, shown as a gray-scale image to indicate weight values.
Activations values here are for illustration purposes only.

12

dimensions of the input. Additionally, pooling layers typically have

no weights to optimize during training.

2.3 Gradient Descent

The objective of training a DCNN is to update the model’s weights

to minimize a loss function. These loss functions typically express

the overall objective of the network. For example, minimizing the

cross-entropy distance (see Section 2.4) between the provided ground

truth class expressed as a one-hot vector (i.e., a vector where only

one element has value 1 and the rest 0) and the output of a DCNN

over an entire dataset optimizes the weights of a model for image

labeling.

Formally, given a loss function J(θ,X,Y) that takes a set of

trainable parameters (e.g., weights of a DCNN) θ, input data X,

and the target output (i.e., ground truth) Y , the objective is to find

θ̂ = arg min
θ

J(θ,X,Y) . (1)

A common way to solve this optimization problem is via gradient

descent (or backpropogation). Specifically, the procedure iteratively

13

updates the parameters θ relative to the partial derivative of the loss

function with respect to the model weights, i.e.,

∆θ = −η∇θJ = −ηδJ(θ,X,Y)

δθ
(2)

where η is a user-set parameter that controls the learning rate of the

model. Intuitively, the algorithm iteratively takes a descending step

in the direction of the steepest gradient repeatedly until convergence.

As written, Equation 1 optimizes over the entire training set

X,Y . In practice, it is common to use mini-batch stochastic gra-

dient descent:

θ̂ = arg min
θ

Ex,y∈X,Y [J(θ,x,y)] . (3)

Here, the algorithm randomly samples a collection of input data

and target outputs x,y from the dataset X,Y (the number of data

points sampled is defined by a user-set parameter, or the mini-batch

size), and optimizes the expected value of the loss function with the

sampled input.

14

Gradient descent has been shown to be inefficient at solving

Equation 1 and Equation 3 [60]. One solution is to use momentum.

In its simplest form, momentum updates Equation 2 to

∆θ = −η∇θJ + β∆θ (4)

with β as a user-set parameter that controls the momentum term.

Intuitively, the model adds a fraction of the previous update to the

current update, which speeds up learning.

A common implementation of momentum in gradient descent is

the Adam optimizer [30]. Here, Adam uses an adaptive learning rate

for individual parameters within θ based off of estimates of the first

and second moments of the gradient of the loss function J . Formally,

the update rule is defined below.

mt = (1− β1)∇θJ + β1mt−1 (5)

vt = (1− β2)(∇θJ)2 + β2vt−1 (6)

η̂ = η

√
1− βt2

1− βt1
(7)

∆θt = −η̂ mt√
vt + ε

(8)

15

Here, η is a user defined learning rate, β1 = 0.9 and β2 = 0.999 are

the momentum terms for the first and second moments respectively,

ε = 1 × 10−8 as a small constant for numeric stability1, t is the

iteration time-step, and βt1 and βt2 denoting β1 and β2 to the power

of t. The momentum variables m and v are initialized to 0 at the

start of optimization.

Here, Equation 5 and 6 iteratively updates an estimate of the first

and second moments of the gradient respectively. Equation 7 adjusts

the learning rate to account for the biases in the moment estimations.

See the work by Kingman et a. [30] for additional information on the

Adam optimizer.

2.4 Cross-Entropy Supervised Loss Function

A common supervised loss function for multi-class classification is

the cross-entropy loss function. In particular, the cross-entropy func-

tion defines a distance metric between an estimated probability dis-

tribution and a true probability distribution.

1 These values of β1, β2, and ε are used for the Adam optimizer throughout this
dissertation.

16

In terms of multi-class classification, the true probability distri-

bution is the ground truth one-hot vector y, which denotes probabil-

ity of 1 for the true class and 0 otherwise. The estimated probability

ŷ is the output of the estimator, which encompasses rescaling the

output of a DCNN a to be a probability distribution via the softmax

function σ(·):

ŷi = σ(a)i =
eai∑
j e
aj

. (9)

The cross-entropy loss function is defined as

J(θ,x,y) = −
∑
i

yi log(f(θ,x)i) = −
∑
i

yi log(ŷi) , (10)

which measures the distance between the output of the model ŷ =

f(·) interpreted as the estimated probability distribution over pos-

sible classes and the true distribution y.

17

Chapter 3

Background for Sparse Coding

Sparse coding [50] is an unsupervised learning algorithm based on

Barlow and colleagues’ theory of neural computation [3]. Specifically,

sparse coding aims to encode an input as a set of sparse hidden unit

activations such that the original signal is recoverable with minimal

degradation. Such an encoding applied to the domain of images has

achieved state-of-the-art results in image denoising (e.g., [10,43,44])

and classification (e.g., [42,45,55]).

Sparse coding shares the same goal as an autoencoder, in that

both networks are unsupervised and calculate an encoding (i.e., acti-

vations over a set of hidden units) to represent a given input. Autoen-

coders however typically calculate activations for an input in a single

forward pass (i.e., a feed-forward autoencoder), whereas sparse cod-

ing solves an optimization problem to find the sparse set of hidden

unit activations that encode the input. In contrast with bottleneck

autoencoders, sparse coding uses a sparsity constraint on the hid-

den units (i.e., most of the hidden unit activations should be zero).

18

Both autoencoders and sparse coding learn a set of weights (called a

dictionary for sparse coding) over a training set that optimizes the

model for reconstruction.

Sparse coding is split into two parts: (1) learning a dictionary

(i.e., the set of weights) from a training set, such that the dictionary

is optimized for sparse representation, and (2) encoding a given

input into its sparse representation (i.e., calculating the hidden unit

activations) in terms of a dictionary. While encoding may be done

with any dictionary, the aim is to learn a dictionary that enables

better sparse representations. Here, encoding aims to represent an

input using the sum of a sparse set of dictionary elements, where

each dictionary element is a subset of weights called an atom.

Figure 5 shows a dictionary trained on natural scenes. Each

square is a dictionary atom (or a set of weights), with white be-

ing the highest value and black being the lowest value. Note that

weights in most patches enhances specific oriented lines, similar to

the receptive fields of biological neurons found in the early stages of

the visual cortex pipeline [50,77].

19

Figure 5: Example of a dictionary trained on natural images. Dic-
tionary atoms are sensitive to oriented edges at certain frequencies.
Figure from [50].

20

3.1 Encoding

In sparse coding, the mathematical formulation of encoding an input

is that of a constrained least squares problem. The well-known least

squares problem aims to decompose an m dimensional signal x ∈ Rm

(e.g., a vectorized image) such that x ≈Da. Here, D ∈ Rm×p corre-

sponds to a dictionary composed of p atoms, weighted by hidden unit

activations a ∈ Rp. Sparse coding aims to solve an under-determined

least squares problem (i.e., the dictionary D is over-complete, or

p > m) under the constraint that the activations should be sparse

(i.e., a should have few non-zero elements).

Formally, sparse coding aims to solve the following optimization

problem:

S(x,D) = â = arg min
a

1

2

Reconstruction︷ ︸︸ ︷
‖x−Da‖22 +λ

Sparsity︷︸︸︷
‖a‖1 . (11)

In other words, the problem of encoding consists of finding a sparse

set of dictionary atoms (the columns of D) multiplied by activations

a that best represent the data (i.e., x ≈
∑p

i=0 diai for di being the

ith column of D), as defined by the Euclidean distance (i.e., ‖ · ‖2,

21

or the `2 norm). Here, a is constrained to be sparse via ‖ · ‖1 or the

`1 norm2, with λ as a user-set parameter that controls the trade-

off between reconstruction error and sparsity. The activations â are

taken to be the encoding of the signal x.

In this dissertation, I use the Locally Competitive Algorithm

(LCA) [59], an iterative, hardware friendly, and biologically inspired

optimization algorithm to solve for â in Equation 11. The LCA algo-

rithm defines an activation potential variable u that takes the form

of a leaky integrator, with the same dimensions as a. Specifically,

the update rule is defined as

∆u = τ

Input drive︷︸︸︷
xD −

Leak︷︸︸︷
u −

Competition︷ ︸︸ ︷
(DTD − I)a

 (12)

a = T (u, λ) = max(0,u− λ) (13)

where T (·) is the soft threshold operator, with λ set as the spar-

sity parameter in Equation 11. The activation potential vector u

is driven by the similarity of the signal with each dictionary atom,

2 The `1 norm is used as a surrogate to the `0 norm (i.e., the number of nonzero
elements), as Equation 11 is nonconvex with respect to a if the `1 norm is replaced
with an `0 norm.

22

and is inhibited by other activations a proportional to the similar-

ity of the dictionary atoms. In other words, each atom competes for

representation of the input with other atoms. τ denotes a user-set

parameter that controls the learning rate, and I denotes the identity

matrix to remove self competition. Rozell et al. [59] show that these

dynamics solve Equation 11 to find â.

3.2 Dictionary Learning

Learning the dictionaryD within sparse coding is analogous to learn-

ing filters in a convolutional layer and is done via gradient descent.

However, the resulting dictionary is trained in an unsupervised man-

ner; the training objective (i.e., reconstruction of the input) only

requires a set of unlabeled examples, as opposed to a classification

task which requires explicit labels.

Given a dataset of n training inputsX ∈ Rn×m, dictionary learn-

ing aims to optimize a dictionary that allows for the best sparse rep-

resentation of the dataset. Specifically, dictionary learning is defined

as

D̂ = arg min
D

Ex∈X [S(x,D)], (14)

23

where x is sampled from X via mini-batches. When a dictionary

is trained on images, the resulting dictionary atoms typically cor-

respond to oriented edges at certain frequencies. Figure 5 shows an

example of a dictionary trained on natural images.

There exists a degenerate solution to Equation 14 as it’s written,

in that the sparsity term in Equation 11 drives the magnitude of

activations to be small, which in turn drives the magnitude of the

dictionary atoms to be large. To avoid this, each dictionary atom is

constrained to have unit `2 norm.

3.3 Convolutional Sparse Coding

Sparse coding defined in Equation 11 is analogous to a fully con-

nected layer in a DCNN (Section 2.2.1), in that each dictionary atom

spans the size of the input. In particular, previous works use image

patches as input for fully connected sparse coding, e.g., the learned

dictionary in Figure 5 [50]. One extension of sparse coding is using

the convolution operation for reconstruction. Here, each dictionary

element is used for all image patches within an image given a stride,

analogous to a convolutional layer in a DCNN (Section 2.2.2).

24

Convolutional sparse coding is formally defined by changing Equa-

tion 11 to

Sc(x,D) = â = arg min
a

1

2

Reconstruction︷ ︸︸ ︷
‖x− a~D‖22 +λ

Sparsity︷︸︸︷
‖a‖1 . (15)

Here, x andD are multidimensional tensors corresponding to images

and dictionaries respectively, and the ~ operation is the transposed

convolution operation [75]. A transposed convolution is similar to a

convolution, with the difference that the output is upsampled based

on the stride as opposed to downsampled. Similar to a convolutional

layer, convolutional sparse coding assumes translational invariance

and replicates a dictionary across the entire image. See Figure 6 for

an illustration of convolutional sparse coding.

In terms of encoding, each dictionary atom competes with other

atoms for encoding (as seen in Equation 12) in a fully connected

sparse coding model (i.e., Equation 11). In convolutional sparse cod-

ing, each atom additionally competes against other atoms (including

itself) spatially translated based on the stride. This in particular re-

sults in a unique sparse coding model that is able to find an encoding

25

Figure 6: Illustration of convolutional sparse coding. Sparse coding
aims to reconstruct the input x through a linear combination of
dictionary atoms d drawn from a dictionary D. Activations a are
constrained to be sparse (i.e., to contain few nonzero activations).
The reconstruction is calculated via a transposed convolution opera-
tion [75]. The input shown here is a patch (in green) from the whole
image. Activations values here are for illustration purposes only.

26

for an entire image as a whole. See the work by Schultz et al. [62]

for additional information on convolutional sparse coding and LCA.

3.4 Implementation

I use Tensorflow [1] for all models and experiments in this disserta-

tion. In particular, I developed a novel implementation of the LCA

algorithm (Equation 12) for this dissertation, such that the algo-

rithm is GPU accelerated and fully differentiable for adversarial at-

tacks done in Chapter 5. The code used for Chapter 4 and Chapter 5

is publicly available at [51]. The code used for Chapter 6 is publicly

available at [38].

27

Chapter 4

Exploring Convolutional Sparse Coding for Supervised Im-

age Classification

Sparse coding is an unsupervised learning algorithm that aims to re-

construct data in terms of a linear combination of a sparse set of dic-

tionary atoms. Despite the algorithm being optimized for image re-

construction, previous works have shown success in using sparse cod-

ing for discriminative tasks [4,42,45,72]. Most of these works combine

both supervised and unsupervised learning (i.e., semi-supervised learn-

ing) for the ultimate task of classification. In this chapter, I focus on

exploring the cause of the success of sparse coding in discriminative

tasks.

Most learning algorithms can be split into two stages: a feature

learning (or dictionary learning for sparse coding) stage that trains

the parameters (e.g., weights) of the model, and an encoding stage

that encodes a given input into a set of activations using the afore-

mentioned features. In supervised DCNN layers, feature learning

consists of training weights to optimize them for the supervised task,

28

and encoding consists of computing the activations by convolving the

input with the weights. Sparse coding follows this through dictionary

learning and encoding. Here, dictionary learning optimizes weights

for reconstruction and sparsity, and encoding consists of finding the

sparse set of activations that represents the input. In this part of the

dissertation, I explore the following question: to what extent does

the success of sparse coding in discriminative tasks come from the

learned dictionary (i.e., features) versus the encoding procedure

(i.e., the sparse activations)?

Coates et al. [6] previously explored the question of why sparse

coding is successful in classification. In particular, the authors claimed

that the performance of sparse coding in supervised discriminative

tasks comes from the encoding procedure. Specifically, they com-

pare different dictionaries used by sparse coding and its effect on

classification performance. One dictionary they use is optimized for

a 1-sparse model (i.e., an encoding that only uses one active element

per input), which is computationally cheaper than finding a dictio-

nary optimized for sparse coding. They show that the difference of

classification performance on the CIFAR-10 dataset [32] between the

29

suboptimal 1-sparse dictionary versus the dictionary optimized for

sparse coding is minimal, as long as the full encoding procedure of

sparse coding is used.

The authors used a fully connected sparse coding model on patches

in isolation, followed by stitching together the resulting sparse codes.

Convolutional sparse coding defined in Section 3.3 differs from the

patch-based sparse coding in that convolutional sparse coding solves

for the encoding of the entire image. In patch-based sparse coding,

all activations only compete with each other for representation on

each patch in isolation. In convolutional sparse coding, activations

compete spatially as well, as any activations with overlapping recep-

tive fields contribute to the same pixels. This chapter aims to expand

on the results shown by Coates et al., particularly with the use of

convolutional sparse coding on the whole image instead of using fully

connected sparse coding on patches as is done by Coates et al.

I compare the classification performance of sparse coding using

different combinations of dictionary (i.e., feature) learning models

with encoding to test the effect of dictionary versus encoding meth-

ods. I show that the encoding process contributes more to clas-

30

sification than the dictionary (i.e., feature) learning process. In

particular, I find that the spatial competition utilized by the encod-

ing procedure is crucial for performance in image classification with

sparse coding. Finally, I show that although patch-based sparse cod-

ing achieves similar results to a feed-forward baseline, convolutional

sparse coding achieves the best results, matching the performance of

a fully supervised model optimized for image classification.

4.1 Related Work

The basis of this work stems from the work done by Coates et al. [6].

In particular, the authors show that the key to performance of sparse

coding for classification comes from the nonlinear encoding scheme

as opposed to the dictionary learned by sparse coding. Additionally,

the authors claim that a simple nonlinear feed-forward soft threshold

function achieves competitive results to sparse coding, even when the

soft threshold encoding model uses random patches as a dictionary.

In this chapter, I test if these results hold with the use of convolu-

tional sparse coding.

31

One issue that arises is the computational complexity of the mod-

els trained in Coates et al. Specifically, one requirement of the models

I test is the necessity of being able to adversarially attack these mod-

els in Chapter 5, especially through the sparse encoding optimiza-

tion as described in Section 3.1. To this end, I reduced the number

of dictionary atoms from 1600 to 512. To offset the loss of output ac-

tivations per image, I maintain more spatial information by pooling

over less spatial area. Overall, Coates et al. uses 12800 activations

per image, versus 8192 activations used in the experiments I describe

in Section 4.2.

Another issue related to adversarially attacking these models is

that the model must be differentiable from end to end for the attacks

defined in Section 5.1. Specifically, Coates et al. use an L2-SVM as

their classifier of the output activations from their encoder, whereas

I use a supervised fully connected layer trained via gradient descent

for classification.

Finally, Coates et al. use whitening (i.e., removing linear depen-

dencies within the image) as a preprocessing step. I find that whiten-

ing is unnecessary, as the model is able to learn a similar dictionary

32

to dictionary learning algorithms that train on whitened images. In

addition, removing the preprocessing step simplifies the model over-

all.

Another work by Coates et al. [7] compares various unsupervised

first layers with a supervised classifier on an image classification task.

In particular, the authors test the effect of receptive fields, number

of dictionary atoms, and the stride of the unsupervised encoding

on classification. Additionally, work done by Zhang et al. [76] tests

the effect of patch sizes in a convolutional sparse coding model on

classification results while holding the degree of over-completeness

fixed. In this work, I aim to test the relative effects of dictionary

learning versus encoding using sparse coding for classification.

Rigamonti et al. [57] test the effect of sparsity in sparse coding for

dictionary learning and encoding on classification. The authors find

that having a convolutional sparse encoding does not improve per-

formance on image classification over a simple feed-forward encoder,

but is key for learning useful features for classification. Specifically,

the authors suggest that the performance from using a dictionary

trained from convolutional sparse coding with a feed-forward en-

33

coder (i.e., an encoder that uses a single convolution to calculate

its activities) matches that of using the encoding of convolutional

sparse coding. In this chapter, I find contradicting results, in that

a feed-forward encoder using unsupervised features performs much

worse on image classification than an encoder that uses convolutional

sparse coding.

4.2 Experiments

I aim to distinguish the effect of dictionary learning versus encoding

on image classification tasks. I build a two layer model for classifying

thumbnail images into one of 10 categories. I vary the first layer by

choosing one of 3 encoding models (Section 4.2.3), while also choos-

ing the dictionary the encoder uses from 4 different unsupervised

dictionary learning models (Section 4.2.2). I also compare the unsu-

pervised methods to a supervised feed-forward encoder with features

optimized for image classification. All dictionary learning and encod-

ing models for the first layer use 512 elements with a patch size of

8× 8, with a stride of 2 in both spatial directions.

34

The second layer of the model is a fully connected layer trained

for supervised image classification (Section 4.2.4). All models train

with a mini-batch size of 8.

4.2.1 Dataset

I use the CIFAR-10 [32] dataset for training and evaluating. In par-

ticular, the CIFAR-10 dataset is a collection of 32 × 32 pixel color

thumbnail images, with each image annotated by a human to be-

long to one of ten classes. Figure 7 shows example images from the

dataset. This dataset in particular is useful for exploring models

such as sparse coding due to the small image sizes, which allows for

computational savings.

CIFAR-10 contains a total of 60000 images, which is split into a

training set of 50000 images and a test set of 10000 images. From the

training set, I hold out an additional 10000 images as a validation

set for parameter tuning, which leaves 40000 images and labels to

train the models on.

As a preprocessing step, each image is normalized to have zero

mean and unit standard deviation. During training, I augment the

training dataset of by randomly cropping CIFAR-10 images from

35

Figure 7: Examples of images from the CIFAR-10 dataset. Each im-
age is human-annotated to be one of ten classes. Figure from [31].

32×32 to 28×28 pixels, followed by randomly horizontal flipping of

the image. These types of augmentations during training allows us to

artificially expand the dataset to contain more image samples with-

out changing the semantic content of the image. During evaluation,

each test image is center cropped to 28× 28 pixels.

4.2.2 Dictionary Learning Methods

I use two different types of sparse coding algorithms to learn dic-

tionary features: a patch-based sparse coding method as done by

Coates et al. [6] and a convolutional sparse coding method. Here,

36

I aim to explore the addition of spatial competition provided by

convolutional sparse coding on the effects of dictionary learning for

classification. As baselines, I additionally test random features and

features extracted from random image patches in the dataset (de-

noted as an imprinted dictionary). These learning algorithms are

described below.

Patch Sparse Coding: The first sparse coding model I use is a

patch-based sparse coding model (Patch SC). Here, 8× 8 pixel im-

age patches are extracted from the dataset from valid image loca-

tions. These patches are vectorized (i.e., reshaped from the image

dimensions into a one-dimensional vector), then encoded using the

fully connected sparse coding model defined in Equation 11. Using

these encodings, a dictionary is trained using Equation 14.

The sparse coding model has a hyper-parameter λ that controls

the trade-off between sparsity and reconstruction error. I train the

model with several values of λ to see the effect of sparsity for dictio-

nary learning and classification. Specifically, I use λ = {0.5, 1.0, 1.5,

2.0, 2.5}.

37

To solve for Equation 11, I use LCA (Equation 12) with an en-

coding learning rate τ = 0.033 and iterate for 50 steps.

The Patch SC dictionary learning method required pre-training

with a lower value of λ (i.e., a less sparse encoding) before training

the dictionary at the desired value. I found that this was required to

train models with higher values of λ, as starting from random dic-

tionaries resulted in elements that were never activated. Specifically,

I train all patch-based sparse coding models using stochastic gradi-

ent descent (Equation 3) for 1 × 105 steps first with λ = 0.5 with

a dictionary learning rate of η = 5 × 10−3, followed by training the

dictionary for an additional 9 × 105 steps with the desired λ value

with a dictionary learning rate of η = 2× 10−3.

I train the Patch SC model with a batch size of 8. Here, the

algorithm trains on all patches extracted from these 8 images for a

single time-step.

Convolutional Sparse Coding: The second sparse coding model

I use is convolutional sparse coding (Conv SC), as defined in Sec-

tion 3.3. In particular, convolutional sparse coding solves for the

whole image, which results in competition between elements shifted

38

based on some stride. When learning a dictionary with convolutional

sparse coding, the dictionary is more over-complete than that of

a patch-based sparse coding method with similar patch sizes and

strides [62].

Similar to patch-based sparse coding, I use several values of λ

to compare effects of sparsity and reconstruction error on dictionary

learning and classification. Specifically, I use λ = {0.1, 0.2, 0.3, 0.4,

0.5}.

To encode images using convolutional SC for dictionary learning,

I used LCA (Equation 12) for convolutional sparse coding, using

τ = 0.005 for 75 steps. For dictionary learning, I train the dictionary

using stochastic gradient descent for 1×106 steps using a dictionary

learning rate of η = 1× 10−3.

Random Features: As a control, I generate a set of random fea-

tures as a dictionary. In particular, these random features help de-

termine the impact that dictionary learning has on encoding and

classification.

The random features are generated from a normal distribution

with zero mean and a standard deviation of 0.5, and truncated such

39

that any values more than two standard deviations from the mean

are resampled. These features are then normalized such that each

feature has an `2 norm of one.

Imprinted Features: As an intermediate step between random

and learned features, I use an set of imprinted features as a control.

Here, the idea is to generate a set of features that contains more

structure than random features. Imprinted features, along with ran-

dom features, help determine the impact of learning a dictionary

from sparse coding.

To generate the dictionary, features are set to be patches ran-

domly sampled from the dataset. Each patch selected from the dataset

are preprocessed to have zero mean and unit standard deviation, fol-

lowed by normalization such that each patch has an `2 norm of one.

4.2.3 Encoding Methods

In the previous section, I describe methods for dictionary learning.

In this section, I describe the following methods for encoding (i.e.,

representing the input as a set of activations: a patch-based sparse

coding model as done by Coates et al. [6] and a convolutional sparse

40

coding model to see the effect of spatial competition on encoding.

I additionally test a simple feed-forward soft threshold model as a

control for the contribution of sparse encoding for classification.

Patch Sparse Coding: The patch-based sparse coding method

(Patch SC) uses the encoding defined in Equation 11. Here, patches

are extracted from a zero padded input image such that the output

size is a factor of the input size defined by the stride. After encod-

ing each patch in isolation, the sparse codes are then stitched back

together as the output.

I additionally test the effect of the trade-off parameter λ on en-

coding and classification. Here, I mirror the values used for dictio-

nary learning, i.e., λ = {0.5, 1.0, 1.5, 2.0, 2.5}. I also use the encoding

parameters described in Section 4.2.2 for Patch Sparse Coding.

Convolutional Sparse Coding: The convolutional sparse coding

method (Conv SC) solves for the entire image as a whole. Here, the

encoding is unique in that a single activation is nonlinearly depen-

dent on all other activations within its receptive field.

41

Similar to dictionary learning, I use several values of λ for test-

ing its effect on classification. I mirror the values used for dictionary

learning, i.e., λ = {0.1, 0.2, 0.3, 0.4, 0.5}. I also use the encoding pa-

rameters described in Section 4.2.2 for Convolutional Sparse Coding.

Soft Threshold: For the soft threshold encoding, the layer simply

encodes the image by computing the convolution of the input with

the dictionary. In particular, this is a control for testing the effec-

tiveness of the computationally expensive encoding methods used by

sparse coding.

The resulting activations are then fed through a soft threshold

T (u, α) = max(0, u − α), where u is a single activation and α is

a parameter controlling the threshold. Given a large enough α, the

resulting set of activations is sparse.

I use several values of α for testing its effects on classification:

α = {0.5, 1.0, 2.0, 3.0, 4.0}.

4.2.4 Classifier

After encoding the input image using one of the encoding methods

defined in Section 4.2.3, which uses one of the dictionaries defined in

42

Section 4.2.2, the output is then fed into a classifier trained via su-

pervised learning for image classification. First, the output encoding

is max pooled with a patch size of 5 × 5 with a stride of 4 in both

spatial directions. This pooled encoding is then fed into a supervised

fully connected layer with ten output activations corresponding to

the ten output classes of CIFAR-10. The output is fed through a

softmax function and uses the supervised cross-entropy loss function

(see Section 2.4) to train the classifier.

I use the Adam optimizer (Equation 8) to train the weights of

the supervised classifier, with a learning rate η = 1×10−3 for 3×105

steps. Additionally, I anneal (i.e., lower over time) the learning rate

by a factor of 0.9 every 1× 105 steps.

4.2.5 Fully Supervised Model

The models I’ve described in the sections above consist of a sparse-

coding layer that feeds into a fully connected (classification) layer;

the weights and activations in the sparse-coding layer are computed

in an unsupervised way, whereas the weights in the fully connected

layer are trained in a supervised way (i.e., using labeled training

data).

43

In this section, I describe a fully supervised model of the same

size as the other models. The first layer of the fully supervised model

is a convolutional layer with a leaky ReLU activation function [40]

defined below:

σ(ai) =

ai ai > 0

βai otherwise

. (16)

Here, the leaky ReLU is similar to the ReLU, but adds a positive

gradient β = 0.2 when the activation a is below 0 (i.e., the derivative

of σ(·) is β when a ≤ 0). This allows units to not be stuck when

a ≤ 0 during gradient descent. I find better performance for the

fully supervised layer using the leaky ReLU as opposed to the normal

ReLU nonlinear activation function.

The weights in all layers of the fully supervised model are trained

via backpropagation of the supervised loss function. That is, the

weights for the first layer of this model, in contrast with the models

incorporating sparse coding, are optimized for image classification.

44

4.3 Results

Recall that the purpose of these experiments is to explore the rela-

tive contributions of dictionary (i.e., feature) learning and encoding

to classification performance. Further results on the sparse coding

models can be found in Appendix A, and further classification re-

sults can be found in Appendix B.

Table 1 shows the best accuracy achieved while varying either

λ or α for each dictionary learning and encoding combination. In

general, I find that Conv SC encodings with Conv SC dictionaries

achieves the best result with an accuracy of 73.55%.

Encoding

Fully Supervised Soft Threshold Patch SC Conv SC

D
ic

ti
o
n
a
ry

L
ea

rn
in

g Fully Supervised 0.7298 - - -

Random - 0.6614 0.5852 0.6383

Imprinted - 0.5674 0.6284 0.6911

Patch SC - 0.6391 0.6639 0.7184

Conv SC - 0.6441 0.6717 0.7355

Table 1: Table of the highest accuracies with varying parameters for
each combination of dictionary learning and encoding model. This
table is a subset of Table 6 in the appendix.

45

One question that arises is the significance of the differences in

accuracies between all of the models tested. For example, is the dif-

ference between the values in the right most column of Table 1 simply

due to the stochastic nature of training a classifier (random initial

weights, random ordering of training examples, and stochastic data

augmentation)? To this end, I take a subset of the experiments tested

and train the classifier 10 times with different initial conditions and

data augmentations. The results are shown in Figure 8. Ideally, each

dictionary would also be retrained with random initial conditions,

but I held the dictionary fixed through each independent run due to

the computational expense.

I found that the effect of random initial conditions with soft

threshold and Patch SC vary approximately 3%. Conv SC and

fully supervised networks vary approximately 1%.

I first examine the effect of using different dictionaries. Overall,

most models perform similarity across different trained dictionar-

ies. For example, Table 1 shows that the Conv SC encoding model

achieves within 2% accuracy from using a suboptimal Patch SC

dictionary versus using a Conv SC dictionary. This difference in

46

Figure 8: Range of accuracies with different initial conditions for the
classifier from a subset of dictionary learning (rows) and encoder
(columns) combinations. Each model was ran 10 times. The resulting
plot shows accuracies across the 10 runs. Here, the box-and-whiskers
plot’s circles show outliers (i.e., points above or below 1.5 of the
interquartile range), and the notches shows (from top to bottom) the
maximum (excluding outliers), 75% quartile, median, 25% quartile,
and minimum (excluding outliers) of the data.

47

accuracies can be explained by random initial conditions (from Fig-

ure 8). I find similar results for the Patch SC encoding model. Sur-

prisingly, I find that the Patch SC encoding model achieves the

best performance using a Conv SC dictionary. However, this could

also explained through random initial conditions, as the difference

in accuracies fall within the range shown in Figure 8. Finally, using

an imprinted dictionary for both sparse coding models gets within

5% accuracy of the sparse coding dictionaries. This is surprising,

since the imprinted dictionary did not require any training, compared

to the computationally expensive dictionary training procedures of

sparse coding.

Unlike the effects of using different dictionaries, there are sub-

stantial differences in performance when using a convolutional sparse

coding method to encode images versus the other tested encod-

ing methods. In particular, similar to the findings from Coates et

al. [6], I find that using a random dictionary with a simple soft

threshold achieves competitive results against Patch SC encoding

models. However, neither model reaches the performance of convolu-

48

tional sparse coding, which suggests that the more complex encoding

method is crucial for good classification performance.

Overall, I find that the encoding model is more important than

the dictionary used for each model, with convolutional encodings

being key to achieve good classification performance. In addition, I

find that a simple feed forward encoding model, while competitive

against the patch-based sparse coding models, is outperformed by

the convolutional sparse coding models.

4.4 Summary

In this chapter, I explored the relative contribution of dictionary

learning versus encoding of sparse coding for supervised image clas-

sification. I find that, similar to Coates et al., the nonlinear encoding

method of sparse coding contributes more to the classification per-

formance than the dictionary learned from sparse coding. However,

I find that a feed-forward soft threshold encoder does not outper-

form a convolutional sparse coding model as an encoder, but does

perform similarity to the patch-based sparse coding model. Overall,

49

this suggests that there may be computational savings in using a

sub-optimal dictionary for classification.

Future work entails testing different types of dictionaries, such

as handcrafted dictionaries or trained from different, more efficient

dictionary learning models. In particular, I found that performance

using a dictionary of imprinted features achieved relatively high ac-

curacy independent of encoding models. Here, the hope is to find a

middle ground in finding a good set of features between the compu-

tationally cheap imprinted features and computationally expensive

sparse coding dictionaries. For example, Coates et al. [6] suggests

using K-means for learning features.

Overall, I find that the model with an unsupervised first layer

does not significantly outperform a fully supervised model of the

same size. However, I explore various situations in which an unsu-

pervised sparse coding model could benefit classification. Specifically,

I test cases when inputs are corrupted by either adversarial or ran-

dom noise in Chapter 5, and when the number of training labels are

limited in Chapter 6.

50

Chapter 5

Sparse Coding for Model Robustness

DCNNs have been shown to generalize well to a test set, i.e., im-

ages that have not been used for training the model, and are there-

fore unseen by the model. However, recent literature has questioned

the true generalization ability of DCNNs, as such models perform

poorly on test images that contain visually irrelevant differences in

statistics or corruptions from the training images, some of which are

imperceptible to humans. The classical example for showcasing the

brittleness of DCNNs is that of adversarial examples. In particular,

Szegedy et al. [67] showed that, in the domain of image classifica-

tion, it is easy to fool a DCNN into classifying an image incorrectly

with high confidence by adding an imperceptibly small change to

the image (Figure 9 shows an example of an adversarial example).

Furthermore, the authors showed that such adversarial examples are

generalizable across multiple architectures.

Other studies show the brittleness of DCNNs with examples of

modifications that are not explicitly constructed to fool such models.

51

For example, DCNNs have been shown to perform poorly on blurred

or distorted images when trained on clean images [9,16]. Worse yet,

it has been found that statistics of images (e.g., the frequency com-

ponents of a given image) tend to be a strong cue for image classi-

fication [69]. DCNNs tend to overfit to such statistics, resulting in

brittle performance when a test image does not contain these statis-

tical cues. Specifically, one particular study by Jo et al. [28] shows

that the performance of DCNNs degrades drastically when applied

to test images that are simply filtered to contain different frequency

statistics than training images. In all these cases, humans correctly

classify the modified images. Overall, these studies bring into ques-

tion the ability of DCNNs to learn high level semantics instead of

simply learning statistical regularities.

Unsupervised learning provides a method for learning high level

abstractions that are not class specific, which may help such mod-

els to generalize better to unseen examples. In particular, recent

studies showed that sparse coding is resistant to adversarial exam-

ples that affect a wide set of supervised DCNNs in a face detection

task [64]. Furthermore, sparse coding has been shown to de-noise

52

image inputs [10,27], which can help denoise small perturbations in

test examples while not losing key information from the image. Fi-

nally, previous work done by my colleagues and I suggest that the

population nonlinearity (i.e., an activation value is dependent on

other activations within the layer) of sparse coding helps classifica-

tion models be more robust to adversarial examples [52].

In this section, I aim to explore how effective sparse coding is in

alleviating the poor performance of traditional DCNNs on modified

test examples. Specifically, Section 5.3 explores the use of sparse

coding against adversarial examples, and Section 5.4 tests the use of

sparse coding to generalize against common corruptions of images.

5.1 Background on Adversarial Examples

Given a trained neural network ŷ = f(x,θ) which classifies input

x using model parameters θ, adversarial examples are formed by

finding

arg min
x∗

‖x− x∗‖2 s.t. f(x∗,θ) 6= ŷ . (17)

Here, the image x∗ an adversarial example for the network f(·): the

goal is for x∗ to be as similar as possible to x (e.g., using `2 distance

53

as a metric of similarity), but for f(·) to misclassify x∗ with high

confidence (assuming the network correctly classified the input, i.e.,

ŷ = y).

In particular, one method for finding adversarial examples is

the fast gradient sign method [18]. Here, the original loss function

J(θ,x,y) of a classifier aims to minimize the difference of the calcu-

lated output ŷ = f(x,θ) and the ground truth y. The fast gradient

sign method computes an adversarial image using a single step in the

direction of the gradient (i.e., the opposite direction of Equation 1

used during training) using the true class y:

x∗ = x+ ε sign(∇xJ(θ,x,y)) (18)

where ε is a hyper-parameter that is typically small in magnitude.

This method has been shown to consistently find adversarial ex-

amples for networks. Figure 9 shows an example of an adversarial

example derived using the fast gradient sign method on a popular

image classification task.

54

Figure 9: Example of an adversarial image on a trained image clas-
sification DCNN. An image classified as a “panda” is then classified
as a “gibbon” with 99% confidence when structured noise is added
to the image. Figure from [18].

As written, Equation 18 aims to find an adversarial image x∗

to simply misclassify: this is defined as an untargeted attack. In

contrast, one can define a target class ȳ 6= y, in which the goal is

to create an adversarial image to be classified to the target class.

Formally, Equation 18 can be rewritten as follows:

x∗ = x− ε sign(∇xJ(θ,x, ȳ)) . (19)

Note that the sign is changed from Equation 18, as the objective of

Equation 19 is to step towards the adversarial target class ȳ.

55

An extension of the fast gradient sign method is to apply it mul-

tiple times with a step size γ. For example, for the targeted method,

the update rule for finding the adversarial image is as follows:

∆x∗ = −γ sign(∇xJ(θ,x, ȳ)) . (20)

I use this attack throughout this section.

5.2 Related Work

Brittleness of DCNNs: There are various papers that showcase

the lack of robustness in DCNNs on classification tasks. In partic-

ular, previous papers [9,16,28] show that neural networks perform

poorly when statistics of test images differ from those in the train-

ing set. Rosenfeld et al. [58] show that placing a cropped object into

an image results in non-local changes on an object detection model.

In addition, Szegedy et al. [67] have shown the existence of adver-

sarial examples. Overall, these studies show that the performance of

DCNNs can be brittle to small changes to test images.

56

Towards Robustness to Adversarial Examples: One technique

to improve overall robustness is to augment the training set with ad-

versarial examples. In particular, Goodfellow et al. [18] has suggested

training on adversarial example to improve robustness to such exam-

ples. Other studies [20,48,71] use an adversary within the model to

implicitly augment the dataset, or to regularize against small pertur-

bations. Here, I propose unsupervised sparse coding as an alternative

model to help improve robustness of DCNNs, and note that data

augmentation techniques are readily applicable to the techniques

proposed here.

Gu et al. [20] explores several other types of preprocessing tech-

niques to help alleviate adversarial examples. In particular, the au-

thors show that adding Gaussian noise and Gaussian blurring tend to

help alleviate poor performance on adversarial examples, but show

that such preprocessing techniques tend to hurt overall performance.

The authors also show that using a denoising autoencoder to map

from noisy to clean example as a preprocessing step tends to help

performance on adversarial examples. However, the authors find that

new adversarial examples can be found from the stacked network

57

(i.e., autoencoder plus classifier), and that the stacked network over-

all is more sensitive than the original network to adversarial exam-

ples. I extend this work by exploring using sparse coding to test

the network’s robustness to adversarial examples generated for the

whole classification model.

Efficient Representations and Adversarial Examples: Previ-

ous works suggest that efficient representations within models pro-

vide robustness to adversarial examples. In particular, it has been

shown that compressing the model to have fewer overall free param-

eters [73] or reducing the dimensions of the input data as a pre-

processing step [61] helps classification models to be more robust

to adversarial examples. Other works have shown that constraining

a model to have sparse weights or activations [19,47,22] allows for

more robust models to adversarial examples. In this dissertation, I

explore the use of an over-complete (i.e., dimensionality expansion)

sparse representation for adversarial robustness.

Sparse Coding and Adversarial Examples: Springer et al. [64]

showed that a sparse coding model trained for face detection is robust

58

to adversarial examples that are generated to fool fully supervised

DCNNs via the fast gradient sign method [18]. Additionally, Kim et

al. [29] showed that sparse coding provides robustness against ad-

versarial examples by minimally distorting the input image while

achieving minimal degradation of accuracy on clean data. Finally,

recent work by Sun et al. [66] showed that using a convolutional

sparse coding algorithm as the first layer of a DCNN provides a

robust defense to adversarial examples. While these adversarial ex-

amples have been shown to generalize to multiple architectures [67],

all the above works have explored adversarial examples in a black-

box setting (i.e., attacks that are model agnostic), and do not test

adversarial examples generated explicitly to attack sparse coding.

In contrast, I propose to find adversarial examples that attack the

model as a whole, including the sparse coding layer.

Previous work done my colleagues and I showed that the popu-

lation non-linearity (i.e., activations are non-linearity dependent on

other activations) exhibited by sparse coding result in activations

that are less sensitive to adversarial examples [52]. In particular, we

present a theoretical explanation to the selectivity of sparse coding

59

activations versus point-wise non-linearity (i.e., nonlinear activation

functions that are independent of other activations in a layer, e.g.,

RELU or sigmoid non-linearity activation functions). We show that

sparse coding activations exhibit more selectivity towards preferred

image features (e.g., edges), and less selectivity towards perceptually

irrelevant features, such as adversarial perturbations. Consequently,

adversarial attacks against a sparse coding model within a classi-

fication model result in the image looking more like the targeted

class. Overall, we show that a supervised model incorporating un-

supervised sparse coding is more robust to adversarial attacks than

a model incorporating only point-wise non-linearities, such as the

typical supervised convolutional layer.

One limitation of the results on adversarial robustness of our

previous work [52] is the dataset; we found convincing results on

adversarial robustness on the MNIST dataset [36], but less so for the

more complicated gray-scale CIFAR dataset. Additionally, the sparse

coding model tested was a fully connected sparse coding model on

the entirety of the image, as opposed to a convolutional model that

exhibits better scalability to large image sizes.

60

In this dissertation, I aim to further explore the adversarial ro-

bustness of sparse coding. Specifically, I aim to test the robustness

of convolutional sparse coding on the color CIFAR dataset, and to

explore the effect of sparsity on adversarial robustness.

5.3 Robustness of Sparse Coding on Adversarial

Examples

I aim to test the susceptibility of models that incorporate unsuper-

vised sparse coding to adversarial examples. Specifically, I aim to

compare the performance between a classification model that uses

unsupervised convolutional sparse coding as the first layer versus a

fully supervised model.

One goal of these experiments is to use a “white-box” attack on

the classification model, in that the attack is done on the model

with known parameters (as opposed to a “black-box attack”, which

assumes the model parameters are unknown to the attacker). Conse-

quently, the sparse coding and classifier model must be differentiable

from end to end, so that the gradient with respect to the images can

be calculated in Equation 20. To achieve this, I unroll the iterative

61

encoding method in Equation 12 and propagate the adversarial loss

to the input through the sparse encoder.

I adversarially attack the convolutional sparse coding model de-

fined in Sections 4.2.2 and 4.2.3 with λ = 0.2 (for both encoding and

dictionary learning), as well as the fully supervised model defined in

Section 4.2.5. Both the sparse coding model and the fully supervised

model have 10 runs with random initial weights, random ordering

of training examples, and random data augmentations, as well as

random target labels during the adversarial attack.

To compare the robustness of various models to adversarial ex-

amples, I attack the models using Equation 20. Here, I perturb the

adversarial image x∗ until the model reaches 90% confidence on a

given target class ȳ. Figure 10 shows several examples of adversarial

images for the two models.

The metric I use to measure robustness to adversarial examples

is the absolute distance (AD) between the original and adversarial

image, i.e.,
∑
|x− x∗|, averaged across test images for which the

attack was successful (mean AD, or mAD). The pixel values of the

image is ranged from 0 to 255 when calculating this metric. Here,

62

Figure 10: Example adversarial images for the fully supervised model
and the convolutional sparse coding model. The output class of the
model given the image is shown above the image. The difference de-
notes the adversarial perturbation, scaled to the range of the image.

63

the mAD can be interpreted as the average change in pixel intensity

needed to fool the model to 90% confidence. A high mAD means

that the adversary has to make a larger perturbation to an image in

order to fool the model to 90% confidence, which means the model

is more robust to attacks – it forces an adversary to “work harder”

to fool it.

Note that the attack is unbounded (i.e., there is no bound on

the magnitude of the perturbation). I find that this results in a

successful attack (i.e., the model misclassified a perturbed image to

be the target class) for 99% of the tested images. Table 8 in the

appendix shows the success rates for all models tested.

Tsipras et al. [70] has shown that there exists a trade-off be-

tween model robustness and accuracy. In other words, a model that

achieves better accuracy (on a clean test set) typically is less robust

to adversarial examples. To account for this trade-off with different

models, I compare each model’s accuracy on the clean test set ver-

sus the mAD. Figure 11 shows the results for the 10 runs per model

for the two models tested. I find that the sparse coding model takes

approximately 0.7 mAD more to achieve 90% confidence on a tar-

64

Figure 11: Accuracy on the clean test set versus mean adversarial
distance (mAD) between the original and adversarial image, aver-
aged across each image of the test set. Adversarial images are cre-
ated by perturbing the image until the model reaches 90% confidence
on a randomly selected target class. Here, the fully supervised and
sparse coding models is run 10 times with random initial weights,
random data augmentation, random presentation of training images,
and random adversarial target classes.

65

get class than the fully supervised model. Overall, this suggests that

sparse coding is slightly more robust to adversarial examples than

the fully supervised model, in that it takes a bigger perturbation of

the initial image to fool the network to 90% confidence.

5.3.1 Effect of Sparsity on Adversarial Robustness

One question that arises is how the sparsity level (controlled by the

λ hyper-parameter) of the sparse coding models affects adversarial

robustness. While I only focus on convolutional sparse coding in this

section, I adversarially attack all the models defined in Sections 4.2.2

and 4.2.3 with the same set of target labels for each test image across

all models. The mAD for these results are shown in Table 7 in the

appendix.

I take the convolutional sparse coding models using the five differ-

ent λ values tested. Each λ value is used for both dictionary learning

and encoding. Figure 12 compares the mAD versus the clean accu-

racy for these five models.

Here, the figure shows there exists a correlation between the spar-

sity value and the mAD. Specifically, I find that the sparser the code,

the larger the perturbation needed to achieve 90% confidence to a

66

Figure 12: Accuracy on the clean test set versus mAD on sparse
coding models with different λ values, averaged across each image of
the test set. The fraction of nonzero elements (nnz) is shown next
to each data point. The target adversarial class is set to be identical
between different models.

67

target class at the expense of accuracy. However, the loss in accuracy

is minimal, in that the difference in accuracy between the five models

is within the range of accuracies due to random training conditions

shown in Figure 8. Overall, this finding supports other works that

have shown that sparse representations help protect against adver-

sarial examples.

5.3.2 Calibration of Classification Models

One explanation of the difference in adversarial robustness between

the sparse coding and fully supervised models can be due to the

confidence calibration of the model. Here, confidence calibration is

defined as tuning the output of the softmax function (Equation 9)

to represent the likelihood of an estimate to be the correct class [21].

While the calibration of a model’s output to represent a likelihood is

outside the scope of this work, the metric of the calibration is impor-

tant when comparing different models on adversarial robustness. In

particular, the stopping criteria for adversarial perturbation is set to

be when the output reaches 90% confidence on a target class. Hence,

different calibrations of confidence can result in different stopping

points between models.

68

I use the expected calibration error (ECE) as a measure of cali-

bration [49] in order to equate the different models to have similar

confidence outputs. Here, the ECE is computed by binning a set of

confidence outputs of size n into M equally spaced intervals. Let Bm

be all samples that fall into a given interval m. The ECE is defined

as

ECE = 100
M∑
m=1

|Bm|
n

∣∣∣acc(Bm)− conf(Bm)
∣∣∣ (21)

where acc(Bm) and conf(Bm) measures the accuracy and average

confidence of the given samples Bm respectively. Note that the ECE

is multiplied by 100 to interpret the result as a percentage. Intu-

itively, a low ECE implies that the output confidence values accu-

rately represents the likelihood of being the correct class. I use 50

intervals for all experiments.

Figure 13 shows the ECE values for the 10 independent runs for

the fully supervised model and the convolutional sparse coding model

corresponding to Figure 11. Table 2 shows the ECE values for the

sparse coding models while varying the sparsity level corresponding

to Figure 12. Table 9 in the appendix shows the ECE for all tested

models. Here, I find a substantial difference in ECE between the fully

69

supervised networks and the convolutional sparse coding, but less so

when comparing the same model while varying λ.

Figure 13: The Expected Calibration Error (ECE) values of the 10
independent runs for fully supervised versus convolutional sparse
coding. The ECE reflects the errors of the confidence values of a
given model.

In order to calibrate the models’ probability, I use temperature

scaling [21]. Here, let T be a scalar parameter that scales the activa-

tion values before computing the softmax. Formally, Equation 9 is

updated to

ŷi = σ(a/T)i (22)

where I calculate the output of the model ŷ by dividing the activa-

tions a by a scalar T before feeding into the softmax function σ. If

70

Model ECE

λ = 0.1 13.7190

λ = 0.2 12.3581

λ = 0.3 11.3411

λ = 0.4 13.0975

λ = 0.5 12.1165

Table 2: Expected Calibration Error of classification models using
convolutional sparse coding with different λ values for encoding and
dictionary learning.

T > 1, the output confidences are “softened”, i.e., make the model

less confident overall. Conversely, if T < 1, the output overall is

more confident in its predictions. Note that the temperature scaling

does not change the output class prediction, and therefore does not

change the accuracy of the model.

I calibrate the 10 runs for both the fully supervised model and

the sparse coding model. Here, I use T = 0.2 for the fully supervised

network and T = 0.16 for the sparse coding model to lower the ECE

for both models. Figure 14 shows the resulting ECE values for both

models.

Figure 15 shows the accuracy versus mAD on the calibrated mod-

els. Overall, both calibrated models exhibit slightly less robustness

71

Figure 14: Box-and-whisker plot of the Expected Calibration Error
(ECE) values of the 10 independent runs for fully supervised versus
convolutional sparse coding after calibration. T is the scalar temper-
ature value used.

to adversarial examples than the uncalibrated models. The convo-

lutional sparse coding model is still more robust to adversarial ex-

amples than the fully supervised model. However, the calibration

has lessened the difference in adversarial distance between the two

models to approximately 0.25 mAD.

5.4 Robustness of Sparse Coding on Corrupted Images

Section 5.3 explored sparse coding and adversarial examples. In this

section, I explore the ability of sparse coding within a classifica-

tion model versus a fully supervised model to generalize to (non-

72

Figure 15: Accuracy versus mean adversarial distance (mAD) on
temperature calibrated model.

adversarial) common corruptions on images when trained on clean

images.

The dataset I use for corrupted images is the CIFAR-10-C dataset [25].

Here, the dataset contains 19 different types of corruptions, classified

into 4 categories defined below:

– Noise: Gaussian noise, impulse noise, shot noise, spatter, speckle

– Blur: Defocus blur, Gaussian blur, glass blur, motion blur, zoom

blur

– Weather: Brightness, fog, frost, snow

– Digital: Contrast, elastic transform, JPEG compression, pixe-

late, saturate

73

Figure 16: Examples of corrupted images from the CIFAR-10-C
dataset.

74

Each corruption has 5 different levels of severity. Figure 16 shows ex-

amples of all corruptions at the highest corruption severity. Figure 21

in the appendix shows examples of all 5 severity levels.

I use the convolutional sparse coding model defined in Section 4.2.2

and 4.2.3 with λ = 0.2 (for both encoding and dictionary learning),

along with the fully supervised model defined in Section 4.2.5. Here,

both models are trained 10 independent times on the clean training

set with random initial weights, random ordering of training exam-

ples, and random data augmentations. After training, I test each

model with the test set for each of the 19 corruption at the 5 sever-

ity levels. The full results are shown in Figure 22 in the appendix.

In order to aggregate the performance across corruptions of vary-

ing difficulty, I use the Corruption Error (CE) as defined by Hendrycks

et al. [25]. Here, the CE aims to normalize each accuracy based on

the performance of a baseline model per corruption. Formally, the

CE is defined as

CEf
c =

(
5∑
s=1

Ef
s,c

)/(
5∑
s=1

Ef∗

s,c

)
. (23)

75

Here, each classification error E for model f , corruption type c, and

severity level s is normalized by the performance per corruption and

severity on a baseline model f ∗. I use the fully supervised model

with the median accuracy out of the 10 runs as the baseline model.

The normalized CE scores can then be averaged to find the mean

CE (mCE) across collections of different corruptions. Here, lower

values of mCE correspond to more robustness for the corruption

type. Figure 17 shows the mCE averaged across all corruptions, as

well as the four different corruption types.

Here, I find that sparse coding is able to generalize to noise cor-

ruptions better than a fully supervised model. This is expected, as

sparse coding has been shown to remove high frequency noise [10,27].

However, sparse coding tends to achieve worse performance than the

fully supervised model on weather and digital corruptions, which

tended to keep low frequency features. While the fully supervised

model tended to be slightly more robust to low frequency blur cor-

ruptions, the range for fully supervised mCE is wider than that of the

sparse coding model. One possible explanation of the difference in

76

Figure 17: Mean corruption error (mCE) for a fully supervised model
versus convolutional sparse coding on different types of corruption.
Lower values of mCE corresponds to more robustness to the corrup-
tion type. Each model is trained 10 times with random conditions.
The mCE is normalized per corruption and severity on a baseline
model, such that the baseline model has an mCE of 1.

77

range is that the unsupervised sparse coding layer was not retrained

for each of the 10 runs.

5.5 Summary

In summary, I find that using sparse coding within a classification

framework results in robustness against adversarial examples. This is

likely due to the population nonlinearity exhibited by sparse coding

models, which makes activations more selective to image features

instead of adversarial noise [52]. Another explanation could be the

denoising nature of sparse coding. However, the adversarial attacks

were done in a white-box setting, which takes into account the sparse

coding model itself.

For non-adversarial corruptions, sparse coding is able to general-

ize better than fully supervised networks to unseen high frequency

noise corruptions. However, the fully supervised network tended to

be more robust to corruptions that kept low frequency image fea-

tures. One possible explanation is that the fully supervised model

can be using low frequency features (e.g., color) for classification

more than the sparse coding model.

78

Future work entails exploring the effect of the denoising nature

of sparse coding for model robustness. In particular, testing other

types of less computationally expensive denoising algorithms would

determine the relative contribution of denoising versus the nonlinear

encoding of sparse coding.

79

Chapter 6

Sparse Coding with Limited Labels

One limitation of DCNNs is that they rely on large collections of

human-labeled training data, e.g., ImageNet [8]. As such, DCNNs are

restricted to domains for which large datasets of labeled examples

are available.

In this chapter, I will explore the use of unsupervised sparse cod-

ing within a supervised DCNN to help alleviate the need for an

abundance of training labels. Here, I explore the use of unsupervised

sparse coding on stereo-video data on the task of a binary object

classification task. I show that replacing a traditional convolutional

layer trained via supervised learning with an unsupervised sparse

coding layer allows for better and more consistent performance on

the task when there are limited amounts of training labels. I addi-

tionally show that by applying unsupervised sparse coding to stereo-

video data, the coding exhibits depth selectivity (i.e., activations are

selective to elements based on the distance from the camera) as an

emergent property of the model. In contrast, a comparable convo-

80

lutional layer trained with supervised learning for the classification

task does not exhibit depth selectivity. This may explain the differ-

ence in performance between the two models.

6.1 Related Work

Data Augmentation: One classical method of machine learning

to help overcome limited training examples is to artificially enlarge a

dataset via data augmentation. For example, Krizhevsky et al. [33]

augmented the ImageNet dataset by randomly cropping and mir-

roring dataset images. Additionally, the authors systematically ad-

justed the intensity values of images. These techniques, while useful

in practice, still suffer from limited data, as the resulting augmented

examples are highly correlated. In this dissertation, I focus on ex-

ploring modifications to neural network architectures and training

losses for alleviating limited data problems, and note that augmen-

tation techniques are readily applicable to the models presented in

this dissertation.

Transfer Learning: One solution to learning with limited data

(and the solution I explore in this chapter) is that of transfer learn-

81

ing. For example, in the supervised setting, Marmanis et al. [46] takes

a model trained on ImageNet and fine-tunes the model to classify

overhead satellite imagery. In terms of using unsupervised learn-

ing, Raina et al. [55] poses this problem as self-taught learning and

trains features using sparse coding for transfer to supervised tasks.

Additionally, Erhan et al. [11] suggests theoretical reasons as to why

unsupervised pre-training for supervised learning works. While these

studies of unsupervised transfer learning explore the use of unsuper-

vised learning techniques within a supervised network, they do not

explore performance on natural scenes (instead, focusing on datasets

such as MNIST [36] for handwritten digit recognition). Here, I extend

these studies to domains of data captured “in the wild”. Additionally,

I explicitly compare performance between the use of unsupervised

sparse-coding layer within a DCNN versus a fully supervised model.

Few-Shot Learning: Fei-Fei et al. [12] aimed to achieve one-shot or

few-shot learning (i.e., learning a new class using one or few labeled

training examples) using a Bayesian model that incorporates previ-

ously learned object categories into learning a target novel object.

82

In contrast, this dissertation proposes to utilize unsupervised sparse

coding to help alleviate the need for many labeled data points.

Unsupervised Learning for Classification: Lotter et al. [37]

utilizes unsupervised learning to alleviate the need for labeled train-

ing data. Specifically, the authors use a recurrent neural network

(RNN) [26] to predict future frames of a video. They additionally

show that their network achieves better performance than standard

DCNNs when each is trained on only a limited amount of training

data. In contrast to future frame prediction, this dissertation pro-

poses to achieve image representation through sparse coding.

Sparse Coding of Stereo Images: My colleagues and I have

demonstrated that representations of stereo images obtained through

sparse coding allow for an encoding that achieves better performance

than a convolutional layer in the task of pixel-wise depth estima-

tion [39]. We showed that the sparse encoding is inherently depth

selective, whereas the convolutional encoding is not. In this disser-

tation, I extend this study to encode stereo-video clips and compare

encodings on a vehicle-detection task.

83

6.2 Sparse Coding of Stereo-Video for Vehicle Detection

One domain in which sparse coding should be useful is in multi-

view sensing, i.e., sensing an environment given multiple views of

the scene. A sparse encoding, which must efficiently represent a given

scene, should learn correlated visual features (that is generated from

some physical object) between different viewpoints of the same scene,

with some offset based on the viewpoints. These correlated offsets

represent disparity in stereo images and optic flow in consecutive

frames from a video. It follows that an encoding that accounts for

such offsets should have some notion of depth [13,54].

I compare two types of convolutional network models that dif-

fer only in the first layer: (1) a sparse-coding network, in which the

weights and activations in the first layer are computed via unsuper-

vised convolutional sparse coding, and (2) a fully-supervised network,

in which the first-layer weights are learned via supervised training

and activations are computed using these layer weights. In both net-

work models, the weights and activations in all subsequent layers are

computed via supervised convolutional layers.

84

The data I use here is stereo-video data from KITTI [14]. The

KITTI dataset consists of videos captured from two horizontally

offset cameras (i.e., stereo cameras) mounted on a car. Multiple views

of a scene are obtained from the stereo cameras, as well as multiple

views in time due to the moving car. The final task is to detect

vehicles in the scene.

I show that sparse-coding networks are able to achieve better

performance than fully supervised networks on a vehicle detection

task on stereo-video data with a minimal amount of training labels.

Additionally, I show that the performance of sparse-coding networks

is more consistent—i.e., more robust to randomized order of training

data and random initializations—than comparable fully supervised

networks. Finally, I show that activations in the first (sparse-coding)

layer in the sparse-coding networks are depth selective, which may

provide an explanation for the differences in performance I observe

in this study.

6.2.1 Experiments

I compare fully supervised networks with networks incorporating

an unsupervised sparse-coding layer by testing performance on a

85

vehicle detection task using stereo-video. I test the effect of training

set size by varying the number of labeled training examples available

to the network. The KITTI dataset contains of approximately 7000

examples, which I split into 6000 for training and 1000 for testing.

Each example consists of three stereo frames ordered in time, with

bounding box annotations for various objects in the left camera’s last

frame as ground truth. I normalize the stereo-video inputs to have

zero mean and unit standard deviation and I downsampled them

to be 256 × 64 pixels. I concatenated stereo inputs such that the

input contains six features, i.e., RGB inputs from both left and right

cameras. I kept time in a separate dimension for three-dimensional

convolutions for convolutional layers or transposed convolution for

sparse-coding layers (see Section 3.3) across the time, height, and

width axes of the input.

I generated the ground truth for this task by sliding a 32 × 16-

pixel non-overlapping window across the left camera’s last frame. I

considered a window to be a positive instance if the window overlaps

with any part of a car, van, or truck bounding box provided by

the original ground truth. The final output of each network is the

86

probability of a window containing a vehicle, for all windows in the

frame. I use the cross-entropy (see Section 2.4) between the ground

truth and estimated probabilities as the supervised cost function to

train all supervised layers within the network.

I tested various encoding schemes along with various weight ini-

tializations for the first layer of n-layer networks, as follows:

– ConvSup: Convolutional encoding. Weights are initialized ran-

domly and learned via supervised training for vehicle detection.

– SparseUnsup: Unsupervised sparse encoding to learn activa-

tions and weights.

– ConvRand: Convolutional encoding. Weights are initialized ran-

domly and are not updated. This gives a random-weight baseline

for the networks.

– ConvUnsup: Convolutional encoding. Weights are initialized

from weights learned via unsupervised sparse coding and are not

updated. Here, the activations are calculated from a single con-

volution, as opposed to SparseUnsup which finds a sparse en-

coding. This control tests the effect of weights versus encoding

scheme on performance.

87

– ConvFinetune: Convolutional encoding. Weights are initialized

from weights learned via unsupervised sparse coding. The weights

were additionally trained via supervised training for vehicle de-

tection. This control is similar to ConvUnsup but tests the effect

of additional training on the first-layer weights.

Once the first layer is set to one of the five possible options,

the remaining n − 1 layers contain convolutional layers learned via

backpropagation of the supervised loss. Each model was trained six

times on the training data with different random initial conditions

and random presentation order of the training data to get a range

in performance for each network. Here, each model was limited to

running six times due to computational complexity constraints.

Detection Metrics: The metric commonly used in classification

tasks is accuracy: the percent of correct estimates versus the to-

tal number of samples. This metric works well when the number of

samples per class is balanced, such as the CIFAR-10 dataset used in

previous chapters. When there is an imbalance of samples per class,

such as the number of tiles that contains cars within the dataset,

precision and recall are better metrics to use to assess a model’s

88

performance. Intuitively, precision measures the correct number of

predictions out of all positive cases predicted, and recall measures

the correct number of predictions out of all actual positive cases. For-

mally, precision is defined as TP
TP+FP

and recall as TP
TP+FN

, where TP

are true positives, FP are false positives, and FN are false negatives.

To aggregate both precision and recall into a single metric, I

use the area under the precision versus recall plot (AUC under the

PvR), or the Average Precision (AP). Here, the metric calculates the

precision of a detection system at different recall values. Specifically,

a precision versus recall curve can be made by varying a threshold on

detection confidence to measure the trade-off between precision and

recall. Finally, finding the area under this curve gives the AP score.

The AP score ranges from 0 to 1, and a higher AP score corresponds

to a better detection system overall.

6.2.2 Results

Table 3 shows the Average Precision (AP) of all models trained on

all available training data and evaluated on the test data, each tested

with two, three, and four layers. Each network was trained on the

vehicle-detection task six times, with random weight initialization in

89

higher layers and random ordering of training examples, in order to

obtain the range of AP scores. The range columns in Table 1 gives

the difference between the maximum and minimum scores over the

six runs. A lower range in AP scores represent a model that is less

susceptible to random training conditions.

Here, I find that SparseUnsup performs worse than ConvSup

and ConvFinetune with two layers, which agrees with the findings

of Coates et al. [7]. However, SparseUnsup outperforms ConvSup

in networks with three or more layers. This difference in performance

due to the number of layers is likely because of the lack in capacity

of the two layer model to solve the detection task; more layers are

needed.

One key finding is that SparseUnsup is much more consistent

(i.e., much less susceptible to random initial conditions and ordering

of training examples) compared to all other models, as shown by

the low range of AP scores. This consistency is favorable, for exam-

ple, when a model is too computationally expensive to run multi-

ple times. Interestingly, SparseUnsup has a smaller range in per-

formance than ConvUnsup, where both models use unsupervised

90

Model 2 layers Range 3 layers Range 4 layers Range

ConvSup 0.672 0.045 0.672 0.021 0.681 0.086

SparseUnsup 0.619 0.004 0.681 0.009 0.693 0.014

ConvRand 0.467 0.009 0.574 0.052 0.592 0.033

ConvUnsup 0.561 0.044 0.609 0.028 0.609 0.033

ConvFinetune 0.660 0.020 0.641 0.081 0.691 0.117

Table 3: The Average Precision (AP) scores for all models tested with
varying depths. Each model was run six times with different random
training conditions. Each value represents the median AP score over
the six runs, and the range represents the difference between the
highest score and the lowest score. Bold face determines the highest
median AP and lowest range of models tested.

91

weights learned via sparse coding and only differ in encoding scheme.

This suggests that inferring activations in sparse coding is likely the

reason for the additional consistency in performance.

Figure 18 gives the performance of SparseUnsup and ConvSup

while varying the number of labeled training examples that each net-

work was trained on. Here, the unsupervised weights were learned

from all available training data, without using training labels. I find

that SparseUnsup achieves better performance than ConvSup

across all numbers of labeled training examples tested for three

and four layer networks. Additionally, SparseUnsup achieves bet-

ter performance with two layer networks when the number of training

examples is limited to only 100 training labels. Finally, SparseUnsup

is much more consistent (as shown by the low range in AP scores) in

performance than that of ConvSup, for all models tested. Overall,

these results show that a sparse coding network achieves better and

more consistent results than fully supervised networks when training

data is limited.

I compare activation maps for the first layer of SparseUnsup,

ConvUnsup, and ConvSup in Figure 19a, 19b, and 19c respec-

92

a

b

c

Figure 18: Number of training examples available versus Area
Under Curve (AUC) of Precision versus Recall (PvR) scores for
SparseUnsup (red) and ConvSup (blue) for two (a), three (b),
and four (c) layer networks. Each point is the median score over six
independent runs, with the area between the maximum and mini-
mum score filled in. The leftmost point in each plot uses 100 train-
ing examples. Note that SparseUnsup (red) range is minimal, and
therefore not visible in the plot.

93

tively. I find that the sparse-coding activations are selective to cer-

tain depths. For example, in Figure 19a, the top row shows a fast

moving edge detector with a large binocular shift that corresponds to

image features close to the camera, whereas the bottom row shows

a static edge detector with no binocular shift that corresponds to

image features far from the camera. In contrast, no convolutional

layers show depth selectivity.

One explanation of the depth selectivity seen in SparseUnsup

is the level of sparsity exhibited in the model. In particular, I aim

to see if sparsity alone, achieved with simply thresholding activation

values, can account for depth selectivity instead of the sparse cod-

ing process. Shown in Figure 19d, I applied a threshold to convolu-

tional activations in ConvSup (Figure 19c) to match the number of

nonzero activations in sparse coding across the test set. Sparse con-

trols for ConvUnsup produced all zero activations for the shown

example. Here, I show that simply applying a threshold to activa-

tions from ConvSup is insufficient to explain depth selective activa-

tions. Overall, the depth selectivity of SparseUnsup (and the lack

94

of depth selectivity in the other models) may explain the difference

in performance in vehicle detection.

In this chapter, I have shown that a neural network that incorpo-

rates unsupervised learning is able to outperform a fully supervised

network when there exists limited labeled training data. Addition-

ally, I show that performance of fully supervised networks can vary

substantially based on initial conditions when compared to networks

with a sparse-coding layer. Finally, I compare activations and show

that depth selective activations emerge from applying sparse cod-

ing to stereo-video data. In all, these results show that unsupervised

sparse coding can be useful in domains where there exists a limited

amount of available labeled training data.

Further work entails determining if the result is constrained to

highly correlated stereo-video data. In particular, further work must

be done to see if these results generalize to multi-class classification

on static images such as those from CIFAR-10. In addition, work

must be done to see if these results generalize to multi-class ob-

ject detection, where the objective is to draw tight bounding boxes

around objects of interest.

95

Figure 19: Nonzero activations of example weights overlaid on the
input image. Magnitude of pixel values in green correspond to magni-
tude of activations. a: Activations of SparseUnsup for near tuned
(top) and far tuned (bottom) weights for the sparse-coding layer.
d: Activations from ConvSup with a threshold applied such that
the number of activations matched that of sparse coding across the
dataset. Sparse encodings show depth selectivity, whereas convolu-
tional encodings do not.

96

Chapter 7

Final Conclusions

In this dissertation, I explored the potential of using sparse coding

within supervised DCNNs to help alleviate some shortcomings of

such models. In particular, I explore the lack of robustness shown in

DCNNs to adversarial and corrupted images not seen during train-

ing. Additionally, I explore the necessity of an abundance of human-

annotated training examples used by DCNNs.

In Chapter 4, I test the relative contribution of dictionary learn-

ing versus encoding of unsupervised sparse coding when used within

a supervised classification model. I find that the encoding method

of unsupervised sparse coding, as opposed to the unsupervised dic-

tionaries learned, contributes more to better classification results. In

particular, the convolutional sparse coding method is key for getting

good results on classification. Overall, however, the performance of a

model that uses sparse coding is similar to that of a fully supervised

model.

97

In Chapter 5, I test if using unsupervised sparse coding helps

build a more robust classification model. Specifically, I test sparse

coding’s ability to protect against adversarial examples (Section 5.3)

and find that using sparse coding within supervised networks helps

alleviate the model’s susceptibility to adversarial examples, even

when attacking the sparse coding model in a white-box setting. I

also test the robustness of sparse coding within classification models

on common corruptions (Section 5.4), and find that sparse coding is

robust to high frequency noise corruptions, but less so to corruptions

that remove high frequency image features, such as blurring.

In Chapter 6, I test if unsupervised sparse coding helps alleviate

the number of labeled training examples typically needed by DCNNs

on stereo-video data. I find that using unsupervised sparse coding

within a classification model helps achieve better performance than

a fully supervised model when limiting the number of training labels.

Overall, this dissertation shows that the use of unsupervised

sparse coding within DCNNs for classification tasks can help aug-

ment existing fully supervised solutions to classification. In addition,

the advantages of sparse coding shown in the domain of model ro-

98

bustness and limited data can help confirm the ideas of efficient

representations in biology.

While these results shows potential for using sparse coding within

classification networks, there are some potential issues with the ex-

periments done in this dissertation. In particular, most state-of-the-

art DCNNs contain a large number of layers, whereas the models

tested in this dissertation contain relatively few layers. Additionally,

other DCNN methods use methods such as residual learning [24] to

achieve state-of-the-art results. Overall, these cases show that classi-

fication performance for the models tested in this dissertation is far

from saturated. To this end, future work entails testing larger and

deeper networks for classification, such as incorporating recent work

on deep sparse coding models (e.g., [65]).

Another aspect for future work entails comparing the perfor-

mance of sparse coding for model robustness and with limited labels

to other methods. For example, one common solution to alleviate

these shortcomings is to use data augmentation. Data augmentation

in particular can be used to train DCNNs to account for common

types of corruptions, including adversarial examples [18,20,48,71]. In

99

addition, data augmentation can artificially make a dataset larger

to alleviate the number of training labels required [33]. While these

techniques are easy to implement and use during evaluation, the goal

of this dissertation is to explore substantial architectural changes to

DCNNs as an alternative. Here, I note that these data augmenta-

tion techniques are readily applicable to the architectural changes

proposed in this dissertation, and future work must be done in com-

bining these techniques to explore overall performance of these mod-

els in cases of corrupted images and limited labels.

Finally, future work entails comparing sparse coding to other

types of unsupervised feature and encoding techniques. For exam-

ple, variational autoencoders [53] are a commonly used unsuper-

vised learning technique, where the latent representation can even

be trained to represent image labels for classification.

100

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,

G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,

Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,

J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,

Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,

Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,

X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015),

https://www.tensorflow.org/, software available from tensorflow.org

2. Baldi, P., Hornik, K.: Neural networks and principal component analysis: Learning

from examples without local minima. Neural Networks 2(1), 53–58 (1989)

3. Barlow, H.B.: Unsupervised learning. Neural Computation 1(3), 295–311 (1989)

4. Boureau, Y.L., Bach, F., LeCun, Y., Ponce, J.: Learning mid-level features for

recognition. In: 2010 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition. pp. 2559–2566. Citeseer (2010)

5. Britz, D.: Understanding convolutional neural networks for NLP.

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-

for-nlp/ (2015), Online; accessed Feburary-25-2020

6. Coates, A., Ng, A.Y.: The importance of encoding versus training with sparse cod-

ing and vector quantization. In: Proceedings of the 28th International Conference

on Machine Learning (ICML-11). pp. 921–928 (2011)

7. Coates, A., Ng, A.Y., Lee, H.: An analysis of single-layer networks in unsuper-

vised feature learning. In: International Conference on Artificial Intelligence and

Statistics (AISTATS). pp. 215–223 (2011)

8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A large-

scale hierarchical image database. In: IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). pp. 248–255. IEEE (2009)

101

https://www.tensorflow.org/

9. Dodge, S., Karam, L.: A study and comparison of human and deep learning recog-

nition performance under visual distortions. In: Computer Communication and

Networks (ICCCN), 2017 26th International Conference on. pp. 1–7. IEEE (2017)

10. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations

over learned dictionaries. IEEE Transactions on Image Processing 15(12), 3736–

3745 (2006)

11. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why

does unsupervised pre-training help deep learning? Journal of Machine Learning

Research 11(Feb), 625–660 (2010)

12. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE

transactions on pattern analysis and machine intelligence 28(4), 594–611 (2006)

13. Ferris, S.H.: Motion parallax and absolute distance. Journal of Experimental Psy-

chology 95(2), 258 (1972)

14. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The

KITTI vision benchmark suite. In: IEEE Conference on Computer Vision and

Pattern Recognition (CVPR) (2012)

15. Geirhos, R., Janssen, D.H., Schütt, H.H., Rauber, J., Bethge, M., Wichmann,

F.A.: Comparing deep neural networks against humans: Object recognition when

the signal gets weaker. arXiv preprint arXiv:1706.06969 (2017)

16. Geirhos, R., Temme, C.R.M., Rauber, J., Schuett, H.H., Bethge, M., Wich-

mann, F.A.: Generalisation in humans and deep neural networks. arXiv preprint

arXiv:1808.08750 (2018)

17. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Ais-

tats. p. 275 (2011)

18. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial

examples. arXiv preprint arXiv:1412.6572 (2014)

19. Gopalakrishnan, S., Marzi, Z., Madhow, U., Pedarsani, R.: Combating adversarial

attacks using sparse representations. arXiv preprint arXiv:1803.03880 (2018)

102

20. Gu, S., Rigazio, L.: Towards deep neural network architectures robust to adver-

sarial examples. arXiv preprint arXiv:1412.5068 (2014)

21. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural

networks. arXiv preprint arXiv:1706.04599 (2017)

22. Guo, Y., Zhang, C., Zhang, C., Chen, Y.: Sparse DNNs with improved adversarial

robustness. In: Advances in Neural Information Processing Systems. pp. 242–251

(2018)

23. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-

level performance on ImageNet classification. In: Proceedings of the IEEE Inter-

national Conference on Computer Vision. pp. 1026–1034 (2015)

24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:

Proceedings of the IEEE conference on computer vision and pattern recognition.

pp. 770–778 (2016)

25. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to com-

mon corruptions and perturbations. arXiv preprint arXiv:1903.12261 (2019)

26. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation

9(8), 1735–1780 (1997)

27. Hyvärinen, A., Hoyer, P.O., Oja, E.: Sparse code shrinkage: Denoising by nonlinear

maximum likelihood estimation. In: Advances in Neural Information Processing

Systems. pp. 473–479 (1999)

28. Jo, J., Bengio, Y.: Measuring the tendency of CNNs to learn surface statistical

regularities. arXiv preprint arXiv:1711.11561 (2017)

29. Kim, E., Yarnall, J., Shah, P., Kenyon, G.T.: A neuromorphic sparse coding de-

fense to adversarial images. In: Proceedings of the International Conference on

Neuromorphic Systems. pp. 1–8 (2019)

30. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980 (2014)

103

31. Krizhevsky, A.: The CIFAR-10 dataset. https://www.cs.toronto.edu/ kriz/cifar.html

(2009), Online; accessed Feburary-25-2020

32. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.

Tech. rep., University of Toronto (2009)

33. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-

volutional neural networks. In: Advances in Neural Information Processing Sys-

tems. pp. 1097–1105 (2012)

34. Lake, B.M., Ullman, T.D., Tenenbaum, J.B., Gershman, S.J.: Building machines

that learn and think like people. Behavioral and Brain Sciences 40 (2017)

35. Landecker, W.: Interpretable machine learning and sparse coding for computer

vision. Ph.D. thesis, Portland State University (2014)

36. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to

document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

37. Lotter, W., Kreiman, G., Cox, D.: Deep predictive coding networks for video pre-

diction and unsupervised learning. In: International Conference on Learning Rep-

resentations (ICLR) (2017)

38. Lundquist, S.Y.: TFSparseCode. https://github.com/slundqui/TFSparseCode

(2020)

39. Lundquist, S.Y., Paiton, D.M., Schultz, P.F., Kenyon, G.T.: Sparse encoding of

binocular images for depth inference. In: IEEE Southwest Symposium on Image

Analysis and Interpretation (SSIAI). pp. 121–124. IEEE (2016)

40. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural net-

work acoustic models. In: International Conference on Machine Learning Workshop

on Deep Learning for Audio, Speech and Language Processing (2013)

41. MacQueen, J., et al.: Some methods for classification and analysis of multivariate

observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical

Statistics and Probability. University of California (1967)

104

https://github.com/slundqui/TFSparseCode

42. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Discriminative learned

dictionaries for local image analysis. In: Computer Vision and Pattern Recognition

(CVPR), 2008. IEEE Conference on. pp. 1–8. IEEE (2008)

43. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models

for image restoration. In: Computer Vision, 2009 IEEE 12th International Confer-

ence on. pp. 2272–2279. IEEE (2009)

44. Mairal, J., Elad, M., Sapiro, G.: Sparse representation for color image restoration.

IEEE Transactions on Image Processing 17(1), 53–69 (2008)

45. Mairal, J., Ponce, J., Sapiro, G., Zisserman, A., Bach, F.R.: Supervised dictionary

learning. In: Advances in Neural Information Processing Systems. pp. 1033–1040

(2009)

46. Marmanis, D., Datcu, M., Esch, T., Stilla, U.: Deep learning earth observation

classification using ImageNet pretrained networks. IEEE Geoscience and Remote

Sensing Letters 13(1), 105–109 (2016)

47. Marzi, Z., Gopalakrishnan, S., Madhow, U., Pedarsani, R.: Sparsity-based defense

against adversarial attacks on linear classifiers. In: 2018 IEEE International Sym-

posium on Information Theory (ISIT). pp. 31–35. IEEE (2018)

48. Miyato, T., Maeda, S.i., Koyama, M., Nakae, K., Ishii, S.: Distributional smoothing

with virtual adversarial training. arXiv preprint arXiv:1507.00677 (2015)

49. Naeini, M.P., Cooper, G.F., Hauskrecht, M.: Obtaining well calibrated probabilities

using Bayesian binning. In: Proceedings of the Association for the Advancement

of Artifical Intelligence (AAAI) Conference on Artificial Intelligence. vol. 2015, p.

2901. NIH Public Access (2015)

50. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: A

strategy employed by V1? Vision Research 37(23), 3311–3325 (1997)

51. Paiton, D.M.: DeepSparseCoding. https://github.com/dpaiton/

DeepSparseCoding (2020)

105

https://github.com/dpaiton/DeepSparseCoding
https://github.com/dpaiton/DeepSparseCoding

52. Paiton, D.M., Frye, C.G., Lundquist, S.Y., Bowen, J.D., Zarcone, R., Olshausen,

B.A.: Selectivity and robustness of sparse coding networks. Journal of Vision

(2020), In press.

53. Pu, Y., Gan, Z., Henao, R., Yuan, X., Li, C., Stevens, A., Carin, L.: Variational

autoencoder for deep learning of images, labels and captions. In: Advances in

Neural Information Processing Systems. pp. 2352–2360 (2016)

54. Qian, N.: Binocular disparity and the perception of depth. Neuron 18(3), 359–368

(1997)

55. Raina, R., Battle, A., Lee, H., Packer, B., Ng, A.Y.: Self-taught learning: transfer

learning from unlabeled data. In: Proceedings of the 24th International Conference

on Machine Learning. pp. 759–766. ACM (2007)

56. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object

detection with region proposal networks. In: Advances in Neural Information Pro-

cessing Systems (NIPS). pp. 91–99 (2015)

57. Rigamonti, R., Brown, M.A., Lepetit, V.: Are sparse representations really relevant

for image classification? In: Computer Vision and Pattern Recognition (CVPR),

2011. IEEE Conference on. pp. 1545–1552. IEEE (2011)

58. Rosenfeld, A., Zemel, R., Tsotsos, J.K.: The elephant in the room. arXiv preprint

arXiv:1808.03305 (2018)

59. Rozell, C., Johnson, D., Baraniuk, R., Olshausen, B.: Locally competitive algo-

rithms for sparse approximation. In: IEEE International Conference on Image

Processing (ICIP). vol. 4, pp. IV–169. IEEE (2007)

60. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint

arXiv:1609.04747 (2016)

61. Sahay, R., Mahfuz, R., El Gamal, A.: Combatting adversarial attacks through

denoising and dimensionality reduction: A cascaded autoencoder approach. In:

2019 53rd Annual Conference on Information Sciences and Systems (CISS). pp.

1–6. IEEE (2019)

106

62. Schultz, P.F., Paiton, D.M., Lu, W., Kenyon, G.T.: Replicating kernels with a

short stride allows sparse reconstructions with fewer independent kernels. arXiv

preprint arXiv:1406.4205 (2014)

63. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale im-

age recognition. In: International Conference on Learning Representations (ICLR)

(2015)

64. Springer, J.M., Strauss, C.S., Thresher, A.M., Kim, E., Kenyon, G.T.: Classifiers

based on deep sparse coding architectures are robust to deep learning transferable

examples. arXiv preprint arXiv:1811.07211 (2018)

65. Sulam, J., Papyan, V., Romano, Y., Elad, M.: Multilayer convolutional sparse

modeling: Pursuit and dictionary learning. IEEE Transactions on Signal Processing

66(15), 4090–4104 (2018)

66. Sun, B., Tsai, N.h., Liu, F., Yu, R., Su, H.: Adversarial defense by stratified con-

volutional sparse coding. arXiv preprint arXiv:1812.00037 (2018)

67. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fer-

gus, R.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199

(2013)

68. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: Closing the gap to

human-level performance in face verification. In: Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR). pp. 1701–1708

(2014)

69. Torralba, A., Oliva, A.: Statistics of natural image categories. Network: Compu-

tation in Neural Systems 14(3), 391–412 (2003)

70. Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., Madry, A.: Robustness may

be at odds with accuracy. arXiv preprint arXiv:1805.12152 (2018)

71. Wang, X., Shrivastava, A., Gupta, A.: A-Fast-RCNN: Hard positive generation

via adversary for object detection. In: IEEE Conference on Computer Vision and

Pattern Recognition (2017)

107

72. Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using

sparse coding for image classification. In: IEEE Conference on Computer Vision

and Pattern Recognition. pp. 1794–1801. IEEE (2009)

73. Ye, S., Xu, K., Liu, S., Cheng, H., Lambrechts, J.H., Zhang, H., Zhou, A., Ma,

K., Wang, Y., Lin, X.: Adversarial robustness vs. model compression, or both? In:

Proceedings of the IEEE/CVF International Conference on Computer Vision. pp.

111–120 (2019)

74. Zaadnoordijk, L., Besold, T.R., Cusack, R.: The next big thing(s) in unsu-

pervised machine learning: Five lessons from infant learning. arXiv preprint

arXiv:2009.08497 (2020)

75. Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional networks.

In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp.

2528–2535. IEEE (2010)

76. Zhang, X., Kenyon, G.: A deconvolutional strategy for implementing large patch

sizes supports improved image classification. In: Proceedings of the 9th EAI Inter-

national Conference on Bio-inspired Information and Communications Technolo-

gies (formerly BIONETICS). pp. 529–534 (2016)

77. Zhu, M., Rozell, C.J.: Visual nonclassical receptive field effects emerge from sparse

coding in a dynamical system. PLoS Computational Biology 9(8), e1003191 (2013)

108

Appendix A

Sparse Coding Results

In this section, I report various results of the sparse coding algo-

rithm on both dictionary learning (Section 4.2.2) and encoding (Sec-

tion 4.2.3).

Table 4 shows the reconstruction error for each tested model.

Specifically, the error is calculated as ‖x−Da2
2‖, or the `2 norm of

the difference between the input and reconstruction, averaged across

the entire test set. Table 5) shows the percent of active elements for

all models tested.

I find that using the same λ value for both encoding and dic-

tionary learning doesn’t necessarily result in lower reconstruction

error. For example, shown in Table 4, the best reconstructions us-

ing Patch SC with λ = 1.5 for encoding uses a dictionary trained

with λ = 0.5. Conv SC encoding models tend to have the lowest

reconstruction errors using the dictionary with the same value of λ

as the encoding model. However, using a dictionary trained with a

109

E
n
co

d
in

g
M

o
d
el

P
a
tc

h
S
C

C
o
n
v

S
C

λ
=

0
.5
λ

=
1
.0

λ
=

1
.5

λ
=

2
.0

λ
=

2
.5

λ
=

0
.1

λ
=

0
.2

λ
=

0
.3

λ
=

0
.4

λ
=

0
.5

DictionaryLearningModel

Im
p
ri

n
te

d
8
.6

0
9
8

1
2
.1

5
0
7

1
5
.4

0
1
6

1
8
.4

9
8
5

2
1
.5

8
3
6

3
9
.1

5
3
6

4
1
.0

9
0
1

5
4
.8

4
9
0

6
8
.5

8
3
7

8
1
.8

3
3
7

R
a
n
d
o
m

3
8
.9

8
2
5

5
9
.0

1
1
6

7
2
.3

5
5
0

7
9
.4

2
3
8

8
2
.6

7
9
0

2
1
.5

0
2
0

7
7
.7

0
9
0

1
7
4
.2

9
4
4

3
1
1
.5

9
8
4

4
7
5
.7

5
8
6

PatchSC

λ
=

0
.5

3
.6
3
9
6

6
.8
2
1
0
1
0
.2
3
0
4

1
3
.7

7
8
2

1
7
.4

6
5
3

1
1
.2

5
8
6

2
0
.5

2
9
8

3
1
.0

6
0
3

4
2
.5

0
3
5

5
4
.6

4
2
5

λ
=

1
.0

4
.4

9
6
9

7
.3

4
0
2

1
0
.4

0
2
8

1
3
.6
1
5
4

1
6
.9

8
1
0

1
6
.3

9
7
2

2
5
.9

5
0
4

3
6
.1

2
6
5

4
6
.9

0
6
0

5
8
.2

1
0
0

λ
=

1
.5

5
.4

6
0
2

8
.0

7
7
3

1
0
.8

6
6
0

1
3
.8

0
4
7

1
6
.9
1
0
8

2
1
.5

6
2
0

3
1
.8

7
6
5

4
2
.1

8
0
7

5
2
.6

7
0
3

6
3
.4

2
6
5

λ
=

2
.0

6
.4

6
5
3

8
.9

2
6
5

1
1
.4

9
7
2

1
4
.2

1
6
6

1
7
.1

1
9
1

2
7
.7

9
5
5

3
8
.1

1
4
4

4
8
.6

0
1
7

5
8
.8

9
1
9

6
9
.2

2
5
1

λ
=

2
.5

7
.3

2
2
4

9
.7

1
7
6

1
2
.1

5
8
1

1
4
.7

2
4
3

1
7
.4

6
7
0

3
3
.9

9
8
8

4
3
.5

0
8
2

5
4
.4

2
1
2

6
4
.8

4
4
5

7
5
.1

1
5
3

ConvSC

λ
=

0
.1

1
2
.7

3
4
4

1
6
.8

0
0
4

2
0
.3

4
9
7

2
3
.7

3
8
7

2
7
.1

2
5
0

4
.4
0
5
9

1
1
.7

0
2
5

2
1
.1

7
1
2

3
1
.9

5
3
9

4
3
.5

8
0
9

λ
=

0
.2

1
0
.8

6
1
4

1
4
.9

9
7
7

1
8
.6

0
7
5

2
2
.0

1
8
5

2
5
.3

9
8
1

5
.1

8
1
6

1
1
.3
9
1
4

1
9
.6

3
9
6

2
9
.5

3
5
3

4
0
.6

7
8
1

λ
=

0
.3

1
0
.1

3
7
5

1
4
.0

4
5
7

1
7
.5

8
9
9

2
1
.0

3
3
8

2
4
.4

9
7
5

6
.5

0
1
3

1
2
.3

0
4
8

1
9
.6
0
5
9
2
8
.3
6
3
2

3
8
.4

1
9
4

λ
=

0
.4

9
.4

5
0
5

1
3
.3

9
2
4

1
6
.9

7
0
3

2
0
.4

3
8
9

2
3
.9

3
3
1

8
.0

4
7
0

1
3
.8

0
8
0

2
0
.5

5
9
5

2
8
.4

2
8
0

3
7
.4
2
1
0

λ
=

0
.5

9
.3

9
9
1

1
3
.1

8
2
1

1
6
.6

3
6
7

2
0
.0

3
2
7

2
3
.4

9
9
8

9
.6

9
1
8

1
5
.6

4
9
7

2
2
.1

9
4
9

2
9
.5

3
6
0

3
7
.7

6
7
9

T
ab

le
4:

T
ab

le
of

re
co

n
st

ru
ct

io
n

er
ro

rs
fo

r
ea

ch
co

m
b
in

at
io

n
of

d
ic

ti
on

ar
y

le
ar

n
in

g
an

d
en

co
d
in

g.
T

h
e

lo
w

es
t

re
co

n
st

ru
ct

io
n

er
ro

r
fo

r
ea

ch
en

co
d
in

g
m

o
d
el

(i
.e

.,
ea

ch
co

lu
m

n
)

is
b

ol
d
.

110

E
n
co

d
in

g
M

o
d
el

S
o
ft

T
h
re

sh
o
ld

P
a
tc

h
S
C

C
o
n
v

S
C

α
=

0
.5
α

=
1
.0
α

=
2
.0
α

=
3
.0
α

=
4
.0
λ

=
0
.5
λ

=
1
.0
λ

=
1
.5
λ

=
2
.0
λ

=
2
.5
λ

=
0
.1
λ

=
0
.2
λ

=
0
.3
λ

=
0
.4
λ

=
0
.5

DictionaryLearningModel

Im
p
ri

n
te

d
0
.4

7
4
7

0
.4

2
9
1

0
.3

4
3
9

0
.2

6
9
9

0
.2

0
8
1

0
.1

1
2
7

0
.0

7
1
2

0
.0

5
3
4

0
.0

4
3
1

0
.0

3
6
0

0
.0

8
8
0

0
.0

5
4
7

0
.0

4
1
1

0
.0

3
3
5

0
.0

2
8
4

R
a
n
d
o
m

0
.2

7
4
4

0
.1

2
7
9

0
.0

2
2
1

0
.0

0
3
6

0
.0

0
0
6

0
.1

8
1
9

0
.0

6
9
9

0
.0

2
4
8

0
.0

0
8
4

0
.0

0
2
9

0
.1

7
2
9

0
.1

0
3
5

0
.0

6
7
1

0
.0

4
3
4

0
.0

2
7
4

PatchSC

λ
=

0
.5

0
.4

4
3
9

0
.3

7
7
2

0
.2

6
9
2

0
.1

9
0
1

0
.1

3
2
3

0
.1

0
6
6

0
.0

6
5
1

0
.0

4
7
6

0
.0

3
7
6

0
.0

3
0
9

0
.0

8
4
8

0
.0

5
1
6

0
.0

3
7
9

0
.0

3
0
1

0
.0

2
5
0

λ
=

1
.0

0
.4

5
3
7

0
.3

9
3
9

0
.2

9
1
5

0
.2

1
2
0

0
.1

5
1
8

0
.1

0
5
5

0
.0

6
4
3

0
.0

4
7
1

0
.0

3
7
2

0
.0

3
0
7

0
.0

8
4
7

0
.0

5
1
8

0
.0

3
8
2

0
.0

3
0
5

0
.0

2
5
5

λ
=

1
.5

0
.4

5
8
5

0
.4

0
2
6

0
.3

0
5
0

0
.2

2
7
1

0
.1

6
6
6

0
.1

0
4
1

0
.0

6
4
0

0
.0

4
6
9

0
.0

3
7
1

0
.0

3
0
7

0
.0

8
4
6

0
.0

5
1
8

0
.0

3
8
2

0
.0

3
0
6

0
.0

2
5
6

λ
=

2
.0

0
.4

6
4
4

0
.4

1
3
7

0
.3

2
1
6

0
.2

4
4
2

0
.1

8
1
6

0
.1

0
1
9

0
.0

6
3
4

0
.0

4
6
9

0
.0

3
7
3

0
.0

3
1
0

0
.0

8
4
0

0
.0

5
1
6

0
.0

3
8
3

0
.0

3
0
7

0
.0

2
5
8

λ
=

2
.5

0
.4

6
7
3

0
.4

1
8
6

0
.3

2
9
7

0
.2

5
3
8

0
.1

9
1
3

0
.1

0
0
5

0
.0

6
3
1

0
.0

4
6
9

0
.0

3
7
5

0
.0

3
1
1

0
.0

8
3
9

0
.0

5
1
7

0
.0

3
8
4

0
.0

3
0
9

0
.0

2
6
0

ConvSC

λ
=

0
.1

0
.4

4
3
9

0
.3

7
6
0

0
.2

6
4
4

0
.1

8
3
2

0
.1

2
5
8

0
.0

9
9
9

0
.0

6
0
6

0
.0

4
4
6

0
.0

3
5
5

0
.0

2
9
4

0
.0

8
2
1

0
.0

4
9
9

0
.0

3
6
8

0
.0

2
9
4

0
.0

2
4
6

λ
=

0
.2

0
.4

4
8
7

0
.3

8
5
6

0
.2

7
6
9

0
.1

9
3
8

0
.1

3
3
6

0
.1

0
2
5

0
.0

6
0
2

0
.0

4
3
0

0
.0

3
3
4

0
.0

2
7
2

0
.0

8
3
3

0
.0

4
9
8

0
.0

3
6
1

0
.0

2
8
5

0
.0

2
3
6

λ
=

0
.3

0
.4

5
3
4

0
.3

9
3
9

0
.2

8
8
0

0
.2

0
4
0

0
.1

4
1
4

0
.1

0
4
0

0
.0

6
1
6

0
.0

4
3
9

0
.0

3
3
9

0
.0

2
7
3

0
.0

8
3
9

0
.0

5
0
2

0
.0

3
6
4

0
.0

2
8
7

0
.0

2
3
7

λ
=

0
.4

0
.4

5
6
8

0
.3

9
9
9

0
.2

9
7
2

0
.2

1
3
0

0
.1

4
8
6

0
.1

0
6
2

0
.0

6
3
4

0
.0

4
5
2

0
.0

3
4
8

0
.0

2
7
8

0
.0

8
4
3

0
.0

5
0
7

0
.0

3
6
9

0
.0

2
9
1

0
.0

2
4
0

λ
=

0
.5

0
.4

5
7
2

0
.4

0
1
5

0
.3

0
1
8

0
.2

1
9
7

0
.1

5
5
5

0
.1

0
7
5

0
.0

6
5
1

0
.0

4
6
9

0
.0

3
6
3

0
.0

2
9
1

0
.0

8
4
3

0
.0

5
1
0

0
.0

3
7
2

0
.0

2
9
4

0
.0

2
4
3

T
ab

le
5:

T
ab

le
of

th
e

p
er

ce
n
t

of
n
on

-z
er

o
ac

ti
va

ti
on

s
fo

r
ea

ch
co

m
b
in

at
io

n
of

d
ic

ti
on

ar
y

le
ar

n
in

g
an

d
en

co
d
-

in
g.

111

patch-based model in a convolutional sparse coding model encoder

results in much worse reconstruction errors, and vice versa.

The percent of active elements (shown in Table 5) is highly de-

pendent on the λ value used for encoding, but isn’t dependent on

the dictionary used, with the exception of imprinted and random

dictionaries.

Figure 20 shows a subset of elements trained from the dictio-

nary learning models defined in Section 4.2.2. Here, I find that the

Conv SC dictionary are small edge detectors in a localized area. In

contrast, the Patch SC dictionary contains edge detectors that span

the size of the patch. Intuitively, this makes sense: encoding image

patches in isolation requires nonzero weights that span the size of

the patch in order to reconstruct the patch, whereas a convolutional

encoding is able to rely on other positionally translated elements for

reconstruction. In particular, this is why convolutional sparse coding

allows for a more over-complete dictionary than patch-based sparse

coding when the number of elements is held fixed. It follows that

the elements in the patch-based sparse coding method can likely be

more localized given more elements.

112

= 0.5

Patch SC

= 0.1

Conv SC

= 1.0 = 0.2

= 1.5 = 0.3

= 2.0 = 0.4

= 2.5 = 0.5

Imprinted

Random

Supervised

Figure 20: A subset of elements from dictionaries trained us-
ing Patch SC, Conv SC, imprinted (extracted from input im-
ages), and random dictionaries for image reconstruction. Supervised
weights trained for image classification are also shown.

113

I also find that the sparsity trade-off results in different dictio-

naries. In particular, for Patch SC dictionaries with a low value of

λ (i.e., the encodings are less sparse with less reconstruction error),

the trained dictionary contains highly localized elements. In contrast,

when λ is high (i.e., the activations are constrained to be more sparse

at the expense of more reconstruction error), the elements span the

size of the patch. These results likely tie directly to the number of

non-zero activations. In a non-sparse model, an active element can

afford smaller contribution to the reconstruction since there are more

active elements overall. In a sparser model, one active element must

reconstruct more of the image, resulting in less localized elements.

While this effect is more pronounced for Patch SC, Conv SC also

exhibits this property to a lesser degree.

The weights learned from supervised training exhibit an interest-

ing characteristic, in that a single element contains a mixture of edge

detectors and low frequency image features. In contrast, the sparse

coding models tend to separate out high frequency edge detectors

and low frequency color detectors into different elements.

114

Appendix B

Effect of Sparsity on Classification

This section details additional classification results for Chatper 4.

Table 6 shows classification results on models with varying dictionary

learning and encoding methods.

Throughout the models that incorporate a sparse coding first

layer as an encoder, I find that the classifier benefits from a lower

value of λ, i.e., when the model is less sparse (as shown in Fig-

ure 6). This effect has also been shown by Rigamonti et al. [57].

Here, one can argue that lower sparsity values can help due to lower

reconstruction error, i.e., a more accurate representation of the in-

put image. However, I find that a Conv SC encoding model with

λ = 0.1 gets the best classification result with a dictionary trained

with Conv SC with λ = 0.3, which does not achieve the lowest

reconstruction errors for that encoding model.

115

E
n
co

d
in

g
M

o
d
el

S
o
ft

T
h
re

sh
o
ld

P
a
tc

h
S
C

C
o
n
v

S
C

α
=

0
.5
α

=
1
.0
α

=
2
.0
α

=
3
.0
α

=
4
.0
λ

=
0
.5
λ

=
1
.0
λ

=
1
.5
λ

=
2
.0
λ

=
2
.5
λ

=
0
.1
λ

=
0
.2
λ

=
0
.3
λ

=
0
.4
λ

=
0
.5

DictionaryLearningModel

Im
p
ri

n
te

d
0
.5

3
8
6

0
.5

6
6
6

0
.5

6
1
8

0
.5
6
7
4

0
.5

3
8
2

0
.6
2
8
4

0
.6

0
2
4

0
.6

1
6
8

0
.6

1
8
6

0
.6

1
4
2

0
.6

8
6
4

0
.6
9
1
1

0
.6

8
1
9

0
.6

7
4
7

0
.6

6
9
7

R
a
n
d
o
m

0
.6

5
6
6

0
.6
6
1
4

0
.5

9
7
9

0
.4

9
2
9

0
.3

3
1
2

0
.5
8
5
2

0
.5

8
2
9

0
.5

7
1
8

0
.5

3
5
5

0
.4

6
6
4

0
.6

3
4
8

0
.6
3
8
3

0
.6

3
4
5

0
.6

3
0
9

0
.6

1
3
9

PatchSC

λ
=

0
.5

0
.6

1
7
7

0
.6

3
6
8

0
.6
3
9
1

0
.6

3
2
3

0
.6

2
7
5

0
.6

5
7
3

0
.6

5
3
7

0
.6

3
5
4

0
.6

2
2
9

0
.6

2
0
0

0
.7
1
8
4

0
.7

1
7
1

0
.7

1
0
6

0
.7

0
9
0

0
.7

0
3
2

λ
=

1
.0

0
.6

1
0
2

0
.5

9
8
7

0
.5

8
9
0

0
.6

2
1
0

0
.6

2
5
9

0
.6
6
3
9

0
.6

3
8
9

0
.6

3
5
6

0
.6

3
0
6

0
.6

1
6
9

0
.7

1
5
0

0
.7

1
1
9

0
.7

0
4
3

0
.7

0
2
9

0
.6

8
9
7

λ
=

1
.5

0
.5

9
8
2

0
.5

8
5
7

0
.6

1
2
8

0
.6

1
5
3

0
.6

0
7
3

0
.6

4
1
8

0
.6

4
7
1

0
.6

3
9
1

0
.6

3
5
2

0
.6

2
4
6

0
.7

1
1
2

0
.7

1
0
0

0
.7

0
7
3

0
.6

9
8
6

0
.6

9
7
7

λ
=

2
.0

0
.5

6
9
8

0
.5

9
9
5

0
.5

7
2
9

0
.5

9
8
3

0
.5

9
2
2

0
.6

4
4
3

0
.6

2
7
7

0
.6

1
8
9

0
.6

2
7
5

0
.6

1
8
8

0
.7

0
6
2

0
.7

0
3
7

0
.6

9
8
3

0
.6

9
0
6

0
.6

8
3
9

λ
=

2
.5

0
.5

6
2
4

0
.5

5
2
5

0
.5

9
7
3

0
.5

7
0
9

0
.6

0
6
3

0
.6

3
1
7

0
.6

2
8
1

0
.6

2
4
3

0
.6

3
0
0

0
.6

2
6
5

0
.6

9
8
1

0
.7

0
2
5

0
.6

9
6
8

0
.6

9
4
3

0
.6

8
5
3

ConvSC

λ
=

0
.1

0
.6

0
5
8

0
.6

1
9
6

0
.6

3
7
9

0
.6

3
3
2

0
.6

3
0
0

0
.6

3
5
9

0
.6

5
9
5

0
.6

3
6
9

0
.6

3
1
0

0
.6

2
5
6

0
.7

2
3
6

0
.7

2
4
3

0
.7

1
0
2

0
.7

0
3
2

0
.6

9
1
8

λ
=

0
.2

0
.6

3
4
5

0
.6

1
7
4

0
.6
4
4
1

0
.6

1
4
0

0
.6

3
3
1

0
.6

2
5
4

0
.6

4
5
2

0
.6

6
3
2

0
.6

4
8
9

0
.6

1
8
3

0
.7

2
8
0

0
.7

2
8
6

0
.7

1
9
0

0
.7

2
3
2

0
.7

0
4
3

λ
=

0
.3

0
.6

3
1
8

0
.6

0
9
9

0
.6

1
6
5

0
.6

1
9
0

0
.6

2
5
2

0
.6

6
2
2

0
.6

7
1
4

0
.6

4
8
7

0
.6

4
0
3

0
.6

3
5
5

0
.7
3
5
5

0
.7

3
2
1

0
.7

2
6
7

0
.7

1
6
8

0
.7

0
8
6

λ
=

0
.4

0
.6

0
2
1

0
.5

9
1
6

0
.5

9
9
0

0
.6

1
9
9

0
.6

1
4
5

0
.6
7
1
7

0
.6

5
9
4

0
.6

6
3
9

0
.6

4
7
8

0
.6

3
4
3

0
.7

2
9
1

0
.7

2
6
1

0
.7

2
4
9

0
.7

1
6
8

0
.7

0
7
2

λ
=

0
.5

0
.6

3
7
2

0
.6

1
5
5

0
.6

1
4
8

0
.6

2
6
0

0
.6

2
9
0

0
.6

6
5
6

0
.6

6
9
0

0
.6

4
9
4

0
.6

4
5
8

0
.6

5
7
6

0
.7

2
6
3

0
.7

2
9
7

0
.7

2
3
7

0
.7

1
7
9

0
.7

1
4
3

T
ab

le
6:

T
ab

le
of

ac
cu

ra
ci

es
fo

r
ea

ch
co

m
b
in

at
io

n
of

d
ic

ti
on

ar
y

le
ar

n
in

g
an

d
en

co
d
in

g
m

o
d
el

.
H

ig
h
es

t
ac

cu
-

ra
ci

es
in

ea
ch

d
ic

ti
on

ar
y

le
ar

n
in

g
an

d
en

co
d
in

g
b
lo

ck
is

b
ol

d
.

T
h
e

fu
ll
y

su
p

er
v
is

ed
m

o
d
el

ac
h
ie

ve
d

0.
72

98
.

116

Appendix C

Adversarial Attacks on Sparse Coding

This section shows additional tables for Section 5.3. Table 7 shows

the mean Adversarial Distance (mAD) between the original image

and the adversarial image attacking each model, for all models tested

with varying dictionary learning and encoding methods. Table 8

shows the success rate of the adversarial attack on each model. Ta-

ble 9 shows the Expected Calibration Error (ECE) values for each

model.

117

E
n
co

d
in

g
M

o
d
el

S
o
ft

T
h
re

sh
P

a
tc

h
S
C

C
o
n
v

S
C

α
=

0
.5
α

=
1
.0
α

=
2
.0
α

=
3
.0

α
=

4
.0

λ
=

0
.5
λ

=
1
.0
λ

=
1
.5
λ

=
2
.0
λ

=
2
.5
λ

=
0
.1
λ

=
0
.2
λ

=
0
.3
λ

=
0
.4
λ

=
0
.5

DictionaryLearningModel

Im
p
ri

n
te

d
7
.3

0
8
6

7
.0

3
7
5

7
.0

8
8
7

7
.0

7
0
5

7
.4
4
8
6

3
.7

3
2
3

4
.1

9
4
0

4
.3

1
0
4

4
.5

4
9
3

4
.7
4
8
8

4
.5

8
2
1

4
.9

8
8
2

5
.2

8
7
2

5
.5

5
9
4

5
.7
8
0
8

R
a
n
d
o
m

2
.9

2
2
3

2
.9

3
8
3

3
.4

7
0
7

5
.2

5
8
7

1
0
.2
1
6
3

2
.2

5
2
3

2
.4

0
9
5

2
.7

8
8
6

3
.5

3
3
8

5
.1
1
2
0
3
.6
7
3
3

3
.3

4
0
6

3
.3

0
6
8

3
.4

2
5
8

3
.6

2
0
6

PatchSC

λ
=

0
.5

5
.6

7
1
2

5
.7

6
9
6

6
.0

3
6
0

6
.3

9
7
4

6
.8

1
0
0

3
.5

6
9
1

4
.1

0
1
0

4
.5

6
8
5

4
.8

4
8
0

5
.0

8
4
5

4
.4

6
0
2

4
.9

0
6
6

5
.2

8
6
6

5
.6

0
7
9

5
.9

1
7
0

λ
=

1
.0

6
.1

5
4
7

6
.2

8
2
8

6
.5

4
8
8

6
.6

2
4
4

6
.8

8
4
1

3
.8

5
2
3

4
.3

1
0
8

4
.7

2
6
9

5
.0

3
4
6

5
.3

1
4
9

4
.6

6
7
9

5
.0

7
1
9

5
.4

5
9
2

5
.7

8
4
7

6
.0

6
2
7

λ
=

1
.5

6
.3

7
1
8

6
.6

0
0
3

6
.6

1
4
9

6
.8

6
4
6

7
.1

0
5
6

4
.0

1
5
4

4
.4

9
6
0

4
.8

0
2
4

5
.0

8
9
2

5
.3

8
4
3

4
.8

0
2
7

5
.2

5
5
0

5
.6

2
5
7

5
.8

9
6
7

6
.1

7
3
6

λ
=

2
.0

6
.9

8
6
8

6
.7

9
2
4

7
.0

2
5
5

7
.0

0
3
2

7
.2

3
0
5

4
.1

8
1
7

4
.6

2
0
9

4
.8

9
8
1

5
.2

5
2
1

5
.4

1
1
9

4
.9

5
0
2

5
.3

9
9
1

5
.7

2
1
2

6
.0

1
0
3

6
.2

7
1
3

λ
=

2
.5

7
.1

0
4
3

7
.3
3
1
6

7
.0

8
3
1

7
.2

5
7
6

7
.2

8
7
0

4
.3

2
1
4

4
.7

2
6
2

5
.0

0
7
7

5
.3

2
5
2

5
.5
3
2
5

5
.0

5
4
8

5
.5

0
4
7

5
.8

4
5
2

6
.1

3
9
6

6
.3
6
1
4

ConvolutionalSC

λ
=

0
.1

5
.1

7
0
1

5
.1

5
7
0

5
.4

1
1
9

5
.9

7
0
6

6
.4

3
4
8

3
.2

9
0
3

3
.9

4
3
1

4
.4

6
9
8

4
.9

5
7
7

5
.2
8
9
4

3
.9

5
2
3

4
.5

3
4
4

5
.0

6
6
6

5
.5

0
7
2

5
.8
6
3
0

λ
=

0
.2

5
.4

8
2
2

5
.4

9
1
2

5
.5

5
6
5

5
.9

9
6
2

6
.3

5
3
6

3
.3

4
1
9

3
.9

0
2
4

4
.3

5
0
9

4
.8

2
9
1

5
.2

2
1
8

4
.1

2
6
3

4
.5

5
8
6

5
.0

0
0
3

5
.3

9
9
1

5
.7

6
1
7

λ
=

0
.3

5
.7

9
6
6

5
.8

2
8
1

5
.8

6
8
3

6
.0

1
6
8

6
.3

7
6
4

3
.3

2
0
6

3
.8

2
1
2

4
.2

5
1
6

4
.7

1
9
6

5
.0

1
5
1

4
.2

9
7
8

4
.6

5
1
6

5
.0

1
0
1

5
.3

7
1
3

5
.7

2
2
2

λ
=

0
.4

5
.9

4
1
0

6
.1

4
0
2

6
.0

7
5
0

6
.1

3
7
4

6
.4

3
5
0

3
.3

8
9
6

3
.8

1
1
8

4
.1

9
7
1

4
.5

6
6
5

4
.9

2
2
0

4
.4

3
5
4

4
.7

4
8
5

5
.0

6
2
6

5
.3

8
4
1

5
.6

9
4
1

λ
=

0
.5

5
.8

9
0
6

6
.1

3
8
2

6
.1

5
5
8

6
.3

2
7
6

6
.4
8
9
8

3
.4

1
8
9

3
.8

2
9
1

4
.2

3
2
2

4
.5

3
6
8

4
.8

1
5
1

4
.5

7
0
6

4
.8

6
8
5

5
.1

3
9
2

5
.4

2
8
7

5
.7

0
7
0

T
ab

le
7:

m
A

D
b

et
w

ee
n

th
e

cl
ea

n
an

d
ad

ve
rs

ar
ia

l
im

ag
e

fo
r

al
l

m
o
d
el

s
te

st
ed

.
T

h
e

m
os

t
ro

b
u
st

m
o
d
el

(i
.e

.,
h
ig

h
es

t
m

A
D

)
w

it
h
in

ea
ch

b
lo

ck
is

in
b

ol
d
.

118

E
n
co

d
in

g
M

o
d
el

S
o
ft

T
h
re

sh
P

a
tc

h
S
C

C
o
n
v
o
lu

ti
o
n
a
l

S
C

α
=

0
.5
α

=
1
.0
α

=
2
.0
α

=
3
.0
α

=
4
.0
λ

=
0
.5
λ

=
1
.0
λ

=
1
.5
λ

=
2
.0
λ

=
2
.5
λ

=
0
.1
λ

=
0
.2
λ

=
0
.3
λ

=
0
.4
λ

=
0
.5

DictionaryLearningModel

Im
p
ri

n
te

d
0
.9

8
4
6

0
.9

8
9
1

0
.9

8
7
6

0
.9

9
2
3

0
.9

9
0
9

0
.9

8
4
8

0
.9

8
1
6

0
.9

8
4
5

0
.9

8
4
5

0
.9

8
5
5

0
.9

9
7
5

0
.9

9
9
1

0
.9

9
8
8

0
.9

9
8
5

0
.9

9
8
7

R
a
n
d
o
m

0
.9

9
7
3

0
.9

9
8
0

0
.9

9
8
0

0
.9

9
6
5

0
.8

5
1
3

0
.9

8
2
8

0
.9

8
9
1

0
.9

9
4
1

0
.9

9
6
6

0
.9

9
5
9

0
.9

9
8
7

0
.9

9
8
4

0
.9

9
8
6

0
.9

9
8
5

0
.9

9
8
7

PatchSC

λ
=

0
.5

0
.9

9
0
3

0
.9

9
1
0

0
.9

9
3
5

0
.9

9
4
4

0
.9

9
4
2

0
.9

8
4
0

0
.9

8
4
1

0
.9

8
1
5

0
.9

8
2
5

0
.9

8
4
9

0
.9

9
8
8

0
.9

9
8
3

0
.9

9
8
2

0
.9

9
8
5

0
.9

9
8
5

λ
=

1
.0

0
.9

8
8
5

0
.9

8
7
9

0
.9

9
0
3

0
.9

9
1
4

0
.9

9
3
0

0
.9

8
4
9

0
.9

8
3
5

0
.9

8
2
2

0
.9

8
3
1

0
.9

8
3
5

0
.9

9
8
8

0
.9

9
9
0

0
.9

9
8
1

0
.9

9
7
7

0
.9

9
7
8

λ
=

1
.5

0
.9

8
8
3

0
.9

8
7
7

0
.9

9
1
3

0
.9

9
1
3

0
.9

9
3
1

0
.9

8
4
0

0
.9

8
4
0

0
.9

8
2
4

0
.9

8
1
6

0
.9

8
5
4

0
.9

9
8
9

0
.9

9
8
6

0
.9

9
8
4

0
.9

9
8
2

0
.9

9
8
4

λ
=

2
.0

0
.9

8
5
6

0
.9

8
8
9

0
.9

8
9
2

0
.9

9
1
9

0
.9

9
0
9

0
.9

8
5
1

0
.9

8
0
7

0
.9

8
2
8

0
.9

8
1
1

0
.9

8
3
5

0
.9

9
8
8

0
.9

9
9
0

0
.9

9
8
7

0
.9

9
8
8

0
.9

9
8
1

λ
=

2
.5

0
.9

8
6
7

0
.9

8
4
9

0
.9

8
9
7

0
.9

8
8
9

0
.9

9
3
3

0
.9

8
2
5

0
.9

8
2
1

0
.9

8
1
5

0
.9

8
1
0

0
.9

8
2
9

0
.9

9
8
9

0
.9

9
8
6

0
.9

9
8
6

0
.9

9
8
3

0
.9

9
8
2

ConvolutionalSC

λ
=

0
.1

0
.9

8
9
8

0
.9

9
2
3

0
.9

9
3
1

0
.9

9
4
0

0
.9

9
6
5

0
.9

8
5
2

0
.9

8
9
2

0
.9

8
9
2

0
.9

8
9
2

0
.9

9
0
4

0
.9

9
9
1

0
.9

9
8
6

0
.9

9
8
2

0
.9

9
8
7

0
.9

9
8
2

λ
=

0
.2

0
.9

9
0
4

0
.9

9
0
5

0
.9

9
2
5

0
.9

9
3
3

0
.9

9
4
4

0
.9

8
1
3

0
.9

8
4
5

0
.9

8
7
0

0
.9

8
7
9

0
.9

8
8
5

0
.9

9
8
7

0
.9

9
8
9

0
.9

9
8
3

0
.9

9
8
1

0
.9

9
8
4

λ
=

0
.3

0
.9

8
9
5

0
.9

9
0
9

0
.9

9
2
4

0
.9

9
3
4

0
.9

9
4
8

0
.9

8
6
5

0
.9

8
7
2

0
.9

8
4
7

0
.9

8
6
9

0
.9

8
7
0

0
.9

9
9
0

0
.9

9
8
8

0
.9

9
8
6

0
.9

9
8
6

0
.9

9
8
9

λ
=

0
.4

0
.9

8
8
6

0
.9

8
9
2

0
.9

9
0
5

0
.9

9
2
0

0
.9

9
3
6

0
.9

8
5
2

0
.9

8
5
4

0
.9

8
6
9

0
.9

8
5
1

0
.9

8
6
9

0
.9

9
9
1

0
.9

9
9
0

0
.9

9
8
4

0
.9

9
8
7

0
.9

9
8
4

λ
=

0
.5

0
.9

9
1
7

0
.9

9
0
3

0
.9

9
2
4

0
.9

9
4
2

0
.9

9
4
6

0
.9

8
5
4

0
.9

8
6
7

0
.9

8
3
3

0
.9

8
4
8

0
.9

8
4
2

0
.9

9
9
1

0
.9

9
8
8

0
.9

9
8
5

0
.9

9
8
2

0
.9

9
7
2

T
ab

le
8:

S
u
cc

es
s

ra
te

of
th

e
u
n
b

ou
n
d
ed

ta
rg

et
ed

ad
ve

rs
ar

ia
l

at
ta

ck
.

119

E
n
co

d
in

g
M

o
d
el

S
o
ft

T
h
re

sh
P

a
tc

h
S
C

C
o
n
v

S
C

α
=

0
.5
α

=
1
.0
α

=
2
.0
α

=
3
.0
α

=
4
.0
λ

=
0
.5
λ

=
1
.0
λ

=
1
.5
λ

=
2
.0
λ

=
2
.5
λ

=
0
.1
λ

=
0
.2
λ

=
0
.3
λ

=
0
.4
λ

=
0
.5

DictionaryLearningModel

Im
p
ri

n
te

d
4
.7

5
4
7

4
.3

2
0
8

5
.2

1
3
1

6
.4

5
6
1

7
.1

8
9
3

1
.8

6
0
0

2
.2

7
9
5

2
.9

6
4
6

3
.0

2
3
7

2
.6

0
0
0

1
6
.0

2
5
3

1
4
.8

1
0
0

1
5
.4

6
8
7

1
4
.4

3
1
7

1
4
.3

1
2
6

R
a
n
d
o
m

1
2
.6

6
6
7

1
3
.1

0
8
1

1
9
.2

2
7
1

3
0
.5

1
2
2

4
6
.2

9
3
3

3
.3

3
3
3

5
.8

8
4
9

1
1
.2

6
2
8

2
0
.7

8
5
6

3
0
.5

7
6
1

1
4
.3

0
3
5

1
4
.4

8
9
4

1
4
.6

3
6
7

1
5
.8

4
3
8

1
8
.5

1
6
3

PatchSC

λ
=

0
.5

4
.5

2
2
0

3
.4

4
8
5

5
.4

1
2
5

6
.3

2
3
1

7
.3

7
6
5

1
.7

7
9
2

1
.7

8
2
3

1
.7

3
3
6

1
.7

9
7
2

2
.9

6
5
3

1
5
.2

6
1
0

1
4
.1

0
3
7

1
2
.9

1
6
4

1
3
.1

6
7
5

1
4
.0

8
8
1

λ
=

1
.0

3
.7

3
4
5

3
.5

8
2
2

4
.7

1
6
8

6
.2

6
7
4

6
.7

6
1
8

1
.4

7
2
1

1
.3

9
1
1

2
.1

6
5
5

2
.6

9
3
9

2
.7

6
7
8

1
4
.4

9
5
1

1
3
.5

3
0
6

1
3
.0

9
0
1

1
3
.0

4
4
7

1
2
.2

0
2
7

λ
=

1
.5

3
.9

0
9
0

3
.6

3
5
4

5
.4

9
6
0

5
.5

5
5
8

6
.4

0
2
9

1
.5

7
5
8

1
.7

0
6
5

1
.4

8
6
6

1
.8

8
3
0

2
.1

1
3
5

1
5
.9

2
9
3

1
2
.8

4
6
9

1
2
.3

4
8
9

1
3
.3

0
1
2

1
3
.0

9
8
1

λ
=

2
.0

3
.4

8
5
1

5
.1

6
1
8

4
.2

9
9
1

5
.1

0
6
7

5
.8

4
1
7

2
.0

6
1
3

1
.7

7
2
2

1
.5

8
7
8

1
.3

9
6
9

2
.1

2
5
5

1
5
.3

3
0
4

1
3
.2

4
8
0

1
2
.8

0
5
6

1
2
.5

2
7
7

1
3
.3

8
9
3

λ
=

2
.5

3
.5

9
1
8

4
.2

2
6
8

5
.1

5
4
8

5
.7

9
6
2

6
.5

1
5
6

2
.2

7
5
3

2
.0

2
5
7

1
.9

3
6
5

1
.6

0
4
9

2
.1

0
8
4

1
5
.5

1
4
8

1
4
.4

9
0
2

1
4
.1

1
6
2

1
3
.7

8
2
1

1
3
.7

1
4
8

ConvolutionalSC

λ
=

0
.1

4
.0

6
2
1

6
.1

2
7
5

5
.8

2
2
8

7
.1

7
8
9

9
.6

6
7
1

2
.1

6
8
8

3
.0

4
8
8

3
.4

8
0
8

3
.6

3
4
2

4
.8

9
1
9

1
3
.7

1
9
0

1
2
.9

9
2
3

1
2
.9

8
3
3

1
3
.1

6
8
3

1
3
.7

7
2
1

λ
=

0
.2

4
.0

2
2
9

4
.8

6
7
2

5
.8

2
5
1

5
.5

8
8
9

9
.0

7
1
8

1
.5

3
7
6

1
.9

2
6
6

3
.0

6
1
0

3
.3

4
6
8

4
.2

7
7
4

1
2
.6

5
3
2

1
2
.3

5
8
1

1
2
.4

0
4
5

1
2
.4

8
3
5

1
2
.7

0
9
7

λ
=

0
.3

4
.2

7
1
1

4
.3

4
4
2

4
.8

2
8
7

5
.4

6
7
8

7
.4

9
0
4

1
.8

3
2
1

2
.0

7
4
1

2
.4

5
5
4

2
.3

9
6
8

3
.2

2
2
2

1
3
.7

1
7
7

1
2
.7

1
4
3

1
1
.3

4
1
1

1
1
.2

9
0
7

1
1
.4

0
0
1

λ
=

0
.4

4
.5

6
7
4

4
.6

0
0
6

4
.4

7
4
6

6
.1

7
9
0

6
.6

3
7
6

1
.8

2
6
2

2
.2

3
6
3

2
.6

1
5
6

2
.2

6
0
0

2
.9

8
8
0

1
3
.8

6
6
2

1
2
.4

6
9
1

1
2
.1

1
4
8

1
3
.0

9
7
5

1
2
.2

6
8
1

λ
=

0
.5

3
.8

5
8
3

4
.0

5
3
6

5
.5

7
0
1

5
.8

4
0
1

7
.0

4
4
5

1
.5

0
9
3

1
.8

9
9
9

2
.0

2
4
9

2
.4

4
5
1

2
.1

3
1
9

1
3
.9

2
1
2

1
1
.6

4
0
5

1
2
.4

2
3
2

1
2
.2

1
3
6

1
2
.1

1
6
5

T
ab

le
9:

E
x
p

ec
te

d
C

al
ib

ra
ti

on
E

rr
or

(E
C

E
)

of
te

st
ed

m
o
d
el

s.

120

Appendix D

Classification on Corrupted Images

This section shows additional figures for Section 5.4. Figure 21 show

examples of each corruption type at each level of severity. Figure 22

shows the accuracy of fully supervised versus convolutional sparse

coding for each corruption type at each severity level.

121

(a) Corruption severity 1

Figure 21: Examples of corrupted images from CIFAR-10-C [25].

122

(b) Corruption severity 2

Figure 21: Examples of corrupted images from CIFAR-10-C [25].
(cont.)

123

(c) Corruption severity 3

Figure 21: Examples of corrupted images from CIFAR-10-C [25].
(cont.)

124

(d) Corruption severity 4

Figure 21: Examples of corrupted images from CIFAR-10-C [25].
(cont.)

125

(e) Corruption severity 5

Figure 21: Examples of corrupted images from CIFAR-10-C [25].
(cont.)

126

(a) Gaussian noise

(b) Impulse noise

Figure 22: Accuracy versus corruption severity on various types of
corruptions.

127

(c) Shot noise

(d) Spatter

Figure 22: Accuracy versus corruption severity on various types of
corruptions. (cont.)

128

(e) Speckle noise

(f) Defocus blur

Figure 22: Accuracy versus corruption severity on various types of
corruptions. (cont.)

129

(g) Gaussian blur

(h) Glass blur

Figure 22: Accuracy versus corruption severity on various types of
corruptions. (cont.)

130

(i) Motion blur

(j) Zoom blur

Figure 22: Accuracy versus corruption severity on various types of
corruptions. (cont.)

131

(k) Brightness

(l) Fog

Figure 22: Accuracy versus corruption severity on various types of
corruptions. (cont.)

132

(m) Frost

(n) Snow

Figure 22: Accuracy versus corruption severity on various types of
corruptions. (cont.)

133

(o) Contrast

(p) Elastic transform

Figure 22: Accuracy versus corruption severity on various types of
corruptions. (cont.)

134

(q) JPEG compression

(r) Pixelate

Figure 22: Accuracy versus corruption severity on various types of
corruptions. (cont.)

135

(s) Saturate

Figure 22: Accuracy versus corruption severity on various types of
corruptions. (cont.)

136

	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background for Deep Neural Networks
	Supervised vs. Unsupervised Learning
	Deep Convolutional Neural Networks
	Fully Connected Layer
	Convolutional Layer
	Pooling Layer

	Gradient Descent
	Cross-Entropy Supervised Loss Function

	Background for Sparse Coding
	Encoding
	Dictionary Learning
	Convolutional Sparse Coding
	Implementation

	Exploring Convolutional Sparse Coding for Supervised Image Classification
	Related Work
	Experiments
	Dataset
	Dictionary Learning Methods
	Encoding Methods
	Classifier
	Fully Supervised Model

	Results
	Summary

	Sparse Coding for Model Robustness
	Background on Adversarial Examples
	Related Work
	Robustness of Sparse Coding on Adversarial Examples
	Effect of Sparsity on Adversarial Robustness
	Calibration of Classification Models

	Robustness of Sparse Coding on Corrupted Images
	Summary

	Sparse Coding with Limited Labels
	Related Work
	Sparse Coding of Stereo-Video for Vehicle Detection
	Experiments
	Results

	Final Conclusions
	Sparse Coding Results
	Effect of Sparsity on Classification
	Adversarial Attacks on Sparse Coding
	Classification on Corrupted Images

