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Abstract

Advances and new insights into algorithms for piecewise smooth image reconstruction

are presented. Such algorithms fit a piecewise smooth function to image data without

prior knowledge of the number of regions or the location of region boundaries in the

best fitting function. This is a difficult model selection problem since the number of

parameters of possible solutions varies widely.

The approach followed in this work was proposed by Yvan Leclerc. It uses the

Minimum Description Length principle to make the reconstruction problem well-

posed—the best fitting function yields the shortest encoding of the image data. In

order to derive a code length formula, the class of functions is restricted to piecewise

polynomial. The resulting optimization problem may have many local minima, and

a good initial approximation is required in order to find acceptable solutions. Good

initial approximations may be generated at the cost of solving a sequence of related

optimization problems, as prescribed by a continuation method.

Several problems with this approach are identified and addressed. First, success or

failure of the continuation method is found to be sensitive to the choice of objective

function parameters. Second, the optimization method used in prior work may fail to

converge, and, third, it converges too slowly to be useful in many vision applications.

I address the first problem in three different ways. First, a revised continuation

method is less sensitive to parameter choice. Second, I show how to move control over

success or failure from the objective function parameters to the continuation method.

Third, a new objective function is derived which includes one parameter instead of

the two parameters used in prior work. Experimental results show that all measures

improve robustness with respect to parameter choice.
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In order to address the optimization-related problems I use a quasi-Newton line-

search method. This method is guaranteed to converge and may converge at a faster

rate than the relaxation method used in prior work. To realize a faster convergence

rate, I introduce a new parameter whose role is to improve variable scaling and

problem conditioning. Further runtime improvements result from using extrapolation

in the continuation method. Experimental results show overall runtime improvements

of an order of magnitude and more.

My reconstruction algorithm performs superior to the well-known Canny edge

detector on the Berkeley boundary detection task. This is a novel result that demon-

strates the merits of image reconstruction as a means for extracting information from

an image.
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Chapter 1

Introduction

Figure 1.1. Simple, idealized scene of two objects illuminated by a distant point source

and homogenous ambient light (left). Discontinuities in the intensity function (right).

People have eyes to see the world around them. “Seeing” means extracting rel-

evant information from the light intensity pattern that is hitting the retina. What

information is relevant depends on the situation; the information might be visual in

nature, such as the subtle texture on a mushroom’s skin that reveals the mushroom

species, or it might be more abstract, such as the type of beverage consumed at a

social gathering.

Computers may use a camera to record light intensity projecting from their sur-

roundings. If we want a computer to carry out tasks such as identifying mushroom

species, interpreting medical images, or driving a car, information relevant to the task
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at hand needs to be extracted from this intensity data.

Computer vision is concerned with developing methods for extracting information

from visual data. While there has been continuous progress in the field for over

fifty years, today there is yet no general-purpose computer vision system with the

flexibility and analytical capabilities of a seeing human. Rather, a new system needs to

be developed for each new task involving analysis of visual data. Some computational

steps like segmenting images into regions, or detecting points of large change in visual

data need to be carried out in many vision systems. It is economical to develop and

study algorithms for such common computational steps in their own right.

This dissertation is concerned with algorithms for “reconstructing” intensity func-

tions from recorded intensity data. Such algorithms may be used as a component

in computer vision systems when contours need to be extracted from images, when

noise in the recorded data needs to be removed, or when intensity or derivatives of

the intensity need to be estimated accurately.

To understand the purpose of a reconstruction algorithm, consider Figure 1.1.

The image on the left shows a simple scene where all visible surfaces are smooth.

As a result, the intensity incident on the camera’s image plane is smooth almost

everywhere; points where this intensity function is not smooth are marked black

in the image on the right. The recorded intensity data, on the other hand, is not a

function but a finite set of gray values. The reconstruction problem is to estimate the

intensity function, given the gray values. The requirement that the estimated function

be smooth almost everywhere makes this task feasible.

In this dissertation I discuss a particular formulation of the reconstruction problem

put forth by Leclerc in a seminal work [48], as well as algorithms derived from this

formulation. My main goal is to develop a reconstruction algorithm that is more prac-

tical as a component of a computer vision system than Leclerc’s original algorithm.

My improvements concern robustness and runtime performance.
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1.1 The Nature of Visual Data

Figure 1.2. 10× 10 gray squares of varying intensity (left) and 256× 256 gray squares of

varying intensity (right). The left image is a close-up of a small piece of the right image.

Teaching machines how to make sense of visual data is difficult. Almost equally

hard is to convince people that this is so. To get a sense of the magnitude of the task

consider Figure 1.2. It shows two regular arrangements of gray squares of varying

intensity. Human subjects have no difficulty seeing the squares in the left image but

have great difficulty seeing the squares in the right image. If instructed to do so,

however, most subjects are able to give a verbal description of the right image in

terms of visible surfaces, their shape and reflectance properties, and a rough estimate

of the lighting that must have illuminated the scene when the image was taken.

The image on the right in Figure 1.2 really is an arrangement of gray squares.

And although the light hitting the retina is a faithful replication of those squares

on paper, human observers do not have access to the retina images at the signal

level . It appears that the human visual system constantly summarizes its input and

generates abstract descriptions of it. What reaches awareness usually is a much more

compact description in terms of setting, objects, and interactions between objects.

When consciously directing attention to it, human observers can notice aspects of
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lower-level , less abstract descriptions (surfaces, their interaction with illumination,

imaging blur), but perception of the raw, uninterpreted, non-summarized visual input

seems out of reach.

Machines acquire visual input by using imaging sensors which record intensity.

This input is an arrangement of “gray squares” or pixels representing recorded inten-

sity levels. In a general sense the task of machine vision is to generate increasingly

abstract descriptions of this input. Borrowing from our intuition about human vision

[60] it seems like a good strategy to do this in a hierarchical fashion and to organize

descriptions in layers of abstraction. The bottom layer would contain some form of

description of the pixel values, the top layer contain descriptions in terms of setting,

objects, and so on. Descriptions from lower levels could be utilized in generating

descriptions at higher levels.

This dissertation addresses a problem in machine vision. Its topic is the gener-

ation of particular kinds of descriptions for the lowest layer within a hierarchy of

descriptions. In order to summarize the array of pixel values, regularities need to be

identified and exploited, and relevant and irrelevant properties of the intensity data

must be separated. Regarding the regularities to exploit and the particular form of

the descriptions, I build on prior work [13, 48]. The contributions of this dissertation

include both new insights as well as algorithmic improvements. I state them in Section

1.6 after presenting some preliminaries.

1.2 The Image Reconstruction Problem

In deciding what form a description of an array of pixel values should take we need

to consider what regularities to expect in the visual signal, and which of its features

ought to be made explicit in order to aid the generation of more abstract image
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descriptions. The light hitting an imaging sensor reaches it directly from a light source

or from the surfaces of an object. Points in close proximity on an object’s surface

project to points in close proximity on the imaging sensor. We can imagine dividing

up the area occupied by the imaging sensor into regions corresponding to the different

surfaces in the scene that project onto those regions.

For the image on the left of Figure 1.1, for example, this division is shown in the

image on the right. Intensity changes gradually within each region but may change in

a “jump” when moving from one region to another. A more precise way to state this

property is to say that the intensity function across an imaging sensor is piecewise

smooth.

The assumption of a piecewise smooth intensity suggests that piecewise smooth

functions are one suitable type of description at the lowest level of the image descrip-

tion hierarchy. This immediately motivates the problem of image reconstruction [13,

48, 58]. The problem is to identify which piecewise smooth function has most likely

given rise to the recording of the given pixel values.

A sudden change or jump in a function is called a discontinuity . Discontinuities

in the intensity function may be traced back to a number of causes, such as one

object occluding another, sharp changes in the light hitting a surface (shadows), sharp

changes in surface reflectance (markings), and so on. The causes of discontinuities

are not explicit in a piecewise smooth reconstruction, but the precise shape of the

intensity function around discontinuities contains clues [26, 36, 51] that might be

exploited by other processes concerned with inferring those causes [5]. For example,

the contours on the ground in Figure 1.1 may be identified as shadow contours by

determining that the derivatives (of the logarithm) of the intensity on both sides

of the discontinuity are of equal magnitude [51]. This information may be readily

computed when the intensity is known as a function, but not directly from the raw

intensity data. The piecewise smooth function description thus aims to make two
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kinds of information explicit—discontinuities and the shape of the intensity function

in the neighborhood of discontinuities.

Note that the piecewise smoothness assumption is not appropriate for all images.

Scenes of nature, for example, often contain highly textured regions to which the

assumption does not apply. For scenes of urban or other man-made environments,

on the other hand, that contain predominantly smooth surfaces, the assumption

is appropriate [6]. Also, some applications deal with special kinds of images where

piecewise smoothness or even stronger assumptions apply (see Chapter 3).

One question that makes the reconstruction problem interesting is whether or not

it has a unique answer. Estimation problems without a unique answer are ill-posed

[78, 68]. This question must be addressed before methods for solving the reconstruc-

tion problem can be entertained. Addressing it requires that the meaning of “most

likely” in the informal problem statement above be made precise.

1.3 Steps to a Well-Posed Problem

Two aspects add difficulty to the image reconstruction problem. First, the discon-

tinuities delineating the “pieces” of the piecewise smooth function are not known

beforehand. Second, the idea of piecewise smoothness is an idealization, as the image

acquisition process introduces distortions to the signal through blurring, sensor noise,

and quantization. Some of these distortions are random.

Thus, even if the discontinuities were known beforehand, given the intensity levels

it is not obvious what each smooth piece of the reconstruction should look like. This

is the question of how to make the problem well-posed. Different approaches answer

this question differently. This section and the next discuss one such answer, while

other approaches are described in Chapter 3.
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Figure 1.3. A set of data points (top left) and its average. The same points with best

fitting linear (top right), quadratic (bottom left), and quartic polynomial (bottom right),

respectively.

To simplify the discussion, consider the estimation problem in one dimension.

Suppose the intensity levels in Figure 1.3 (top left) have been observed and we are to

estimate a smooth function that gave rise to this observation. To solve this problem,

we need both a set of candidate functions to choose from, and a criterion for making

the choice.

Criteria for choosing a set of functions may include prior knowledge about the

problem (e.g., knowledge about what “typical” smooth functions look like), and com-

putational considerations, such as the potential for fast feature extraction from the

function representation. Suppose we choose low-degree polynomials with some max-

imum degree pmax, knowing that the unobserved functions are sometimes linear and

generally non-oscillatory over the interval sizes considered. Absent any additional

constraints or prior knowledge, we would, for each variety of polynomials (constant,

linear, etc.), choose the polynomial which best fits the observations in the least-

squares sense. For example, Figure 1.3 shows the constant, linear, quadratic and
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quartic (degree four) polynomial, respectively, that best fits the observations.

While we have the least-squares criterion for selecting a function within each

variety of polynomials, we still need a criterion for selecting among the varieties. We

know that the observations include two components—random distortions and the

non-random signal. Ideally, we would like to separate the two. The minimum least-

squares criterion fails to do this. Since the minimum least-squares criterion would

always choose the polynomial of largest degree pmax, the chosen polynomial would

always interpolate the data when pmax is sufficiently large. Thus, the polynomial

would depend on both components of the data.

Intuitively speaking, we are looking for a criterion that selects a function of “appro-

priate complexity”. Ideally, it should both capture all of the qualitative trends in

the observations, and be free of accidental detail. A suitable criterion is to select the

polynomial that best serves to compactly encode the observations. This is explained

in the following section.

1.4 The Minimum Description Length Principle

Rissanen formalized the intuitive notion of “appropriate complexity” as the Minimum

Description Length (MDL) principle [71], for which he borrowed ideas from commu-

nication theory [75]. To develop the MDL principle using our example, suppose that

observations like the ones in Figure 1.3 must be sent frequently from one scientist to

another over a costly, digital channel. The scientists agree to a sufficient precision of

the numerical data and set out to devise an efficient code for it.

For their first version of the code, the scientists use the fact that, averaged over

long periods of time, the observations average to zero and have a mean-square of σ2.

They use Shannon’s results to construct a code which minimizes the worst case code

8



length [75]. This leads to an entropy code for a Gaussian process with mean zero and

variance σ2. On average, the code length for a vector of observations z is

L0(z)=−log2
∏

i=1

n

P (zi) = a
∑

i=1

n (

c+
zi
2

σ2

)

(1.1)

bits, where a = 1/(2 log 2) and c = log 2π + 2 log σ. This code is efficient when the

values zi in z are uncorrelated and when the assumption of zero-centered Gaussianity

holds.

The mean and mean-square of each vector z are quite different from zero and

σ2, respectively. The scientists realize that a better code with shorter average code

length can be constructed if short-term estimates of mean and variance, ẑ and σ̂ 2,

are included in the message and utilized in the code. The average code length of this

encoding scheme is

L1(z)=L(ẑ )+L(σ̂)+L0(z− ẑ ) =
2

2
log2n+ a

∑

i=1

n (

c+
(zi− ẑ )2

σ̂ 2

)

(1.2)

bits, where the term log n on the r.h.s. of (1.2) accounts for the encoding of the two

parameters ẑ and σ̂ . This term depends on n because, in an optimal code, the more

observations to be transmitted, the more accurately ẑ and σ̂ need to be encoded [71].

The second code is more efficient than the first when L(ẑ ) + L(σ̂) < L0(z) −

L0(z− ẑ ), that is, when the number of bits used to encode the parameters ẑ and σ̂ is

smaller than the number of bits saved by entropy encoding the data z− ẑ instead of

z. This will in general only be the case when the observations contain a non-random

component.

After a good night’s sleep, the scientists realize that even more efficient codes

might be constructable in which more data trends are included in the message. The

third code they create includes a variable number of parameters in the message.

The encoder for this version of the code has more work to do. It fits polynomials of

increasing degree p to the observations and calculates the length of the code which
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would result if σ̂ and the p+ 1 coefficients of each polynomial were included in the

message,

Lp(z) = log2 (p) +
p+2

2
log2n+ a

∑

i=1

n (

c+
(zi−up(i))2

σ̂ 2

)

. (1.3)

The first term in (1.3) accounts for encoding the polynomial degree, and up denotes

the polynomial of degree p chosen by the encoder. The encoder stops when Lp+1(z)>

Lp(z) and uses the code with length Lp(z). (No matter what code the encoder

chooses, the message always begins with an encoding of p, so the decoder knows

how to proceed after decoding p.)

The third encoding scheme uses the MDL principle. Simply put, the principle

states that, when it comes to separating random and non-random data components,

the best model (non-random part) of the data is the one which minimizes the length

of an optimal code using that model1.1. Note that the principle is agnostic about

model classes. Choosing good model classes usually requires insight into the processes

generating the data at hand.

The MDL criterion for choosing the polynomial up
∗ that best represents the non-

random component of the observations in Figure 1.3 is

up
∗= argmin

up

{Lp(z)|p∈ [0, pmax]}, (1.4)

where Lp is the code length formula (1.3). Note that the least-squares criterion for

selecting a polynomial of any given degree is implied by (1.4) (if up were not the least-

squares polynomial of degree p, then the contribution of the last term in (1.3) could

be reduced).

1.1. MDL is a principle for model selection and belongs to statistics [33], and not to commu-

nication theory. A common misunderstanding for novices to the MDL idea is that applying MDL

involves construction of encoders and decoders. This is not the case. Knowledge of how to construct

efficient codes for certain data is usually not required. What needs to be known is existence of codes

and ways to compute the length of encodings.
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1.5 Using MDL for Image Reconstruction

Image reconstruction is a difficult model selection problem where the data consists of

recorded intensity levels and the model class is the set of piecewise smooth functions.

This class contains many functions, some simple with few regions of simple shape,

others complex and consisting of many regions with complex shapes, and the number

of model parameters varies widely for this class of models.

MDL can serve as the model selection criterion for this problem. This requires

that code lengths for plausible encodings of the model functions are available. In

order to develop code length formulas, the class of piecewise smooth functions needs

to be restricted. Just as the scientists in Section 1.4 choose sufficient precision and

parametric functions for capturing trends in their data, the class of piecewise smooth

functions needs to be replaced with approximations which admit finite encodings.

For example, the functions can be restricted to piecewise polynomial with regions

consisting of connected sets of pixels. (This is, in fact, exactly the class of functions

that is used in this work.)

For the image reconstruction problem the MDL criterion then gives the length

of an encoding of the intensity data in terms of a model (a piecewise polynomial

function) and residuals (the differences between the model and the data). As in the

example of Section 1.4, the view is that model and residuals describe deterministic

and stochastic components of the observations, respectively, and that the model min-

imizing the encoding length is the best representation of the deterministic component.

At this point the problem is reduced to an optimization problem—the search for

the model that minimizes the encoding length. It turns out that compromises are

necessary in order to arrive at a solution algorithm. Specifically, the encoding length

for the model is approximated to fulfill the differentiability requirements of numerical

optimization methods. This introduces unknown constants (parameters) into the

MDL criterion (note that in (1.3) above all constants are known) for which values

need to be determined experimentally (parameter tuning).
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1.6 Dissertation Contributions

The program laid out above—posing the image reconstruction problem, formulating

it as a model selection problem amenable to an MDL-based solution, and devising a

suitable optimization method—was done for the first time in groundbreaking work by

Leclerc [48]. His work inspired other work in computer vision at the time (cf. Section

3.3), but is cited much less today.

Reviewing the state of the art in image reconstruction today, however, one finds

that currently used and recently proposed algorithms solve seemingly less difficult

problems than the algorithm developed by Leclerc. Either simpler image models are

being used (e.g., piecewise constant functions) or the problem solving techniques

require additional user input for success (e.g., good initializations with level set

methods).

Given the continuing interest in image reconstruction, why is it that Leclerc’s

algorithm (or a more powerful one that might have been developed since) is not

widely used today? It turns out that reproducing Leclerc’s work and implementing

his method is a major undertaking. I did not find accounts of other researchers who

have implemented it, except for one recent publication [41]. Most of what is known

about the algorithm therefore is from Leclerc’s own presentation.

I implemented Leclerc’s algorithm and studied its behavior extensively. My

findings disagree with Leclerc’s account on several points. Most importantly, his

algorithm generates poor results when implemented exactly as published. In this

work I develop and evaluate a number of modifications and show that these greatly

improve the algorithm’s performance, both in terms of quality of results as well

as runtime. There are four main contributions.

Characterization of Performance. I present quantitative evaluations of the

algorithm’s reconstruction performance. Since it is practically impossible to

obtain ground truth for natural images, I use synthetic test images to probe
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algorithm behavior and to discover weaknesses. In a separate study using

natural images I evaluate how my derivative reconstruction algorithm performs

on the related task of detecting image contours.

Robustness Improvements. I find two separate issues concerning algorithm

robustness. One issue is that Leclerc’s minimization procedure may fail to

converge. The second issue is that the choice of values for the MDL criterion’s

parameters may be crucial for success or failure of the method, and that there

is no choice of values which guarantees success for all problems. I suggest

changes to the optimization method that alleviate this problem: solutions are

found for a larger set of problems. This is a precondition for fixing parameter

values that work for many problems.

Improved MDL Criterion. Without parameters in the MDL criterion, finding

good parameter values would not be a problem. The two parameters in

Leclerc’s MDL criterion are introduced in the course of two approximation

steps, which in turn are necessitated by computational concerns. I derive

another MDL criterion which caters better to the computational concerns

and which requires only one approximation step. The new criterion is more

compelling and has only one parameter. Experimental results suggest that

it is less sensitive to parameter choice.

Optimization. Leclerc’s optimization method may fail to converge; if not, its

slow convergence is prohibitive for many applications. In order to guarantee

convergence I choose a different optimization method (a quasi-Newton line-

search method). Runtime is addressed by a combination of techniques that

together accelerate convergence by one to two orders of magnitude. Perhaps

the most significant contribution is a new parameter in the MDL criterion

which does not affect the calculated code length, but which offers some control

over the scaling and the conditioning of the optimization problem.
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1.7 Overview

The text is structured as follows. Chapter 2 recapitulates the derivation of Leclerc’s

MDL criterion and discusses the resulting optimization problem. Chapter 3 discusses

related work. Chapter 4 introduces test problems, illustrates the general behavior of

Leclerc’s algorithm, and demonstrates parameter sensitivity.

Chapter 5 describes those elements of my new reconstruction algorithm that are

not directly related to runtime performance. These elements include a new MDL cri-

terion, new terms for the evaluation of discontinuities, and an improved “embedding”,

which is a central part of the solution method. Chapter 6 presents experimental eval-

uations of the new algorithm with a focus on quality of results. The main “takeaways”

are that good solutions are found more reliably with the new embedding, and that

the new MDL criterion results in an algorithm that is less sensitive with respect to

choice of parameters.

The focus of Chapter 7 is runtime performance. Different methods for solving

the optimization problem are described, including the relaxation method used by

Leclerc, and the quasi-Newton method which I use in my derivative algorithm. An

experimental runtime evaluation shows improvements of an order of magnitude or

more. Additional experiments provide the interesting insight that the quasi-Newton

method may perform worse than the relaxation method if no additional measures are

taken.

Chapter 8 summarizes the main points and suggests directions for future work.
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Chapter 2

Leclerc’s MDL-based Reconstruction Algorithm

This chapter summarizes the derivation of Leclerc’s reconstruction algorithm [48].

The algorithm produces reconstructions of gray-scale images as piecewise polynomial

functions. A function is piecewise polynomial when there is a partitioning of the

function’s domain into regions such that the function is polynomial over each region.

The polynomials of different regions may be of different degree. In this work an

additional requirement is that the polynomial degree is not larger than some upper

bound pmax.

Leclerc considers any pmax, that is, he actually derives a family of algorithms.

The pmax = 0 version of the algorithm produces piecewise constant reconstructions

and is also referred to as the piecewise constant algorithm. Figure 4.1 (top row) in

Chapter 4 shows examples of piecewise polynomial functions we consider here. The

upper left image in Figure 4.1 shows a piecewise constant function, the other images

in the top row are not piecewise constant.

Considering that algorithms for pmax > 2 become less practical as the number

of independent variables multiplies, and that piecewise quadratic (pmax = 2) image

descriptions are “appropriate for a large class of real images” ([48], page 92), I simplify

the presentation by deriving the pmax=2 algorithm directly. The pmax=2 version of

the algorithm is also referred to as the piecewise polynomial algorithm in this work.
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2.1 Representation of Images and Reconstructions

An image is a piecewise constant function z from a bounded two-dimensional domain

Ω⊂R2 (Figure 2.1a) to a bounded set Z ⊂R of gray levels,

z: Ω→Z. (2.1)

Ω is partitioned into cells2.1 {Ωi}i∈I (I is a set of cell labels), Ω=∪i∈IΩi, which are

the smallest regions over which z is constant (Figure 2.1b). The value of z in cell

i, zi, presumably corresponds more or less directly to a measurement of intensity at

an imaging sensor [39]. (This is just a more precise way of saying that an image is

a “tiling of gray squares”.)

Figure 2.1. (a) Rectangular domain Ω. (b) The domain is partitioned into cells {Ωi} with

centers {xi}, i∈ I. (c) Example partition of Ω into six regions. Note that region boundaries

always go along cell boundaries.

Possible reconstructions u of z are defined over the same domain Ω, u: Ω →

R. Reconstructions are piecewise polynomial and the regions over which u may be

smooth are unions of cells (Figure 2.1c). The polynomial degree of u may be different

in different regions.

Since u is piecewise polynomial and the regions are unions of cells, we may com-

pletely describe any possible reconstruction u by tuples of polynomial coefficients

{ui}, one tuple per cell. That is, with ui=(ui,0,ui,1, ...,ui,5), u over cell i’s domain Ωi is

u|Ωi
= ui,0+ui,1(x− xi) +ui,2(y− yi)+

ui,3

2
(x−xi)

2+ ui,4(x−xi)(y− yi)

+
ui,5

2
(y− yi)

2, (2.2)

2.1. I use the terms cell and pixel interchangeably.
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where xi=(xi, yi) are the coordinates of the center of cell i. When there are |I | cells,

u is represented by a coefficient vector u with |I | × 6 entries2.2.

Note that the coefficients of cell i are with respect to i’s own coordinate system,

which is centered on xi. Coefficient vectors ui and uj of two adjacent cells i and j,

respectively, belong to the same smooth region when they share coefficients, that is,

when they have the same coefficients in the same coordinate system. In regions in

which u is of degree less than two, the higher-order coefficients are zero. For instance,

for a cell i in a degree-1 region ui,3=ui,4=ui,5=0.

2.2 Simple Descriptions

The image z, as defined in (2.1), is a possible result of Leclerc’s algorithm—it is

piecewise polynomial with discontinuities consisting of cell boundary segments. The

trivial “reconstruction” u=z will in general not be the right answer, of course, and will

fail to separate the random and non-random components of z. We need to state some

additional properties that u must have in order to make the reconstruction problem

well-posed [22, 68].

As is made clear in Chapter 1, u should be close to z with “appropriate com-

plexity”. We now develop an MDL criterion to select the best u. This requires that

there is an encoding scheme suitable for encoding any u, and that the length of the

encoding for any u can be computed. If we write L(u) for the length (in bits) of some

encoding of u and L(z |u) for the length (in bits) of an encoding of z utilizing u, then

the encoding length of z is

L(z) =L(u)+L(z |u). (2.3)

2.2. This representation of u is akin to a finite element representation and I sometimes refer to

the restriction u|Ωi
of u to a single cell as a finite element.
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The problem of finding the best reconstruction of z is then to find u∗ that minimizes

(2.3),

u∗= argmin
u

L(z). (2.4)

Note that the |I | × 6 numbers in the vector u are an encoding of u, albeit not an

efficient one (with this encoding L(u) would be constant). To realize a more efficient

encoding we exploit the piecewise smooth nature of u.

Let {Rj}j∈J denote the (maximal) regions over which u is smooth (J is a set of

region labels), that is, Ri∩Rj=∅ when i=/ j, ∪j∈JRj=Ω, and each Rj is a connected

set of the form Rj = ∪i∈IjΩi. Then u|Rj
is a polynomial of degree zero, one, or two.

We may fully describe u by specifying the regions {Rj} plus a tuple of polynomial

coefficients per region.

The next two sections develop formulas for computing the length of region-wise

descriptions as a function of the coefficient vector u. It is convenient to introduce

another vector r with |I | entries which holds all the residuals {ri=zi−ui,0}. Our task

then is to construct functions L(u) and L(r) that play the role of L(u) and L(z |u)

in (2.3).

2.3 The Piecewise Constant Case

We begin with the simpler problem of piecewise constant reconstruction (cf. Section

5 in [48]). In this case u has just |I | entries—the constant coefficients {ui,0}i∈I. From

Section 1.4 we understand that if the residuals {ri}i∈I have mean-square σ2, the

optimal encoding with minimal worst-case code length is

L(r) = a
∑

i∈I

[

c+
(

ri

σ

)

2
]

. (2.5)
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We want the other term, L(u), to evaluate the code length of u in terms of regions

and the polynomial coefficients per region. Let there be |J | regions, {Rj}j∈J. In the

piecewise constant case there is always exactly one coefficient per region to encode.

If we knew the regions, L(u) could be calculated as2.3

L(u) =L(|J |)+
∑

j∈J

L(u|Rj
)+
∑

j∈J

L(Rj), (2.6)

where L(u|Rj
) is the length of an encoding of the coefficient describing u over Rj. One

way to encode the regions Rj (Figure 2.1c) is to encode all the region boundaries using

a chain code [27]. In a chain code encoding we specify one element of the boundary

as the starting element and then give a sequence of successor elements by which to

continue the curve. Because the number of possible successor elements at any point

on the curve is small—three for interior cells—only slightly more than log2 3 bits per

element are required. With this encoding

L(Rj)=L(∂Rj) = ls+ le (|∂Rj | − 1)≈ le |∂Rj |, (2.7)

where ∂Rj denotes the boundary of region Rj, and |∂Rj | the number of elements it

consists of. The constant ls is the description length required for specifying a starting

element, and le = ε+ log2 3 is the description length per boundary element (we add

some small number ε > 0 since log2 3 is theoretically the shortest code length in the

limit |∂R|→∞).

With the approximation L(Rj)≈ le|Rj | we can compute
∑

j∈J
L(Rj) in (2.6) by

simply counting all cell boundary elements across which u is discontinuous. That is,

∑

j∈J

L(∂Rj) =
∑

j∈J

le |∂Rj |=
le

2

∑

i∈I

∑

j∈Ni

δ̃ (ui,0−uj ,0), (2.8)

where δ̃ :R→{0, 1} is a “counting function” defined as

δ̃ (x)=

{

0 if x=0
1 if x=/ 0

,

and Ni denotes the cells adjacent to cell i.

2.3. Note that our notation deviates here from Leclerc’s [48]. Leclerc writes L(u) to denote the

length for an encoding of the image z when u is used as the model.
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Finally, Leclerc drops the first two terms in (2.6) and approximates L(u) as

L(u) = L(|J |)+
∑

j∈J

L(u|Rj
)+

le

2

∑

i∈I

∑

j∈Ni

δ̃ (ui,0−uj ,0)

≈
b

2

∑

i∈I

∑

j∈Ni

δ̃ (ui,0−uj,0), (2.9)

and suggests that we can account for the dropped terms by defining the parameter b

appropriately. He writes

“... b is the sum of (1) the number of bits required to encode each

element in the chain code and (2) the number of bits required to encode

the constant intensity and starting element, divided by the average

region-boundary length.” ([48], page 80)

“..., for 4-connected elements, b should be at least as large as log2 3,

but not much more than two.” (ibid, page 81)

In summary, we have derived the following approximate code length for z using

a piecewise constant reconstruction u,

L(z) =min
u

∑

i∈I

{

a
(

zi− ui,0

σ

)

2
+ a c+

b

2

∑

j∈Ni

δ̃ (ui,0−uj,0)

}

, (2.10)

where c represents the constant terms in (2.5) and may be dropped from the expres-

sion when only the minimizer u∗ of (2.10) is of interest.

2.4 The Piecewise Polynomial Case

We now add extra degrees of freedom to the reconstruction problem and allow u to

be piecewise polynomial (pmax= 2). Remember that ui in this case represents a set

of six polynomial coefficients, ui=(ui,0, ui,1, ui,2, ui,3, ui,4, ui,5). The calculation of the

code length L(u) in (2.3) must be modified accordingly: the number of coefficients

that must be encoded for region j—one, three, or six—depends on the polynomial

degree of u|Rj
. Leclerc assesses a fixed encoding cost lc per coefficient, so the term

20



L(u|Rj
) in (2.6) becomes proportional to the number of coefficients (this neglects the

small cost for encoding the number of coefficients itself). Let uij be the coefficient

vector of some cell Ωij that belongs to region Rj, then

L(u) = L(|J |)+
∑

j∈J

lc

[

1+2 max
k∈{1,...,5}

δ̃ (uij ,k)+ 3 max
k∈{3,4,5}

δ̃ (uij,k)

]

+
∑

j∈J

L(Rj) (2.11)

≈
∑

i∈I

d

[

1+ 2 max
k∈{1,...,5}

δ̃ (ui,k) + 3 max
k∈{3,4,5}

δ̃ (ui,k)

]

+
∑

j∈J

L(Rj) (2.12)

The term maxk∈{1,...,5}δ̃ (uij,k) in (2.11) determines whether the polynomial order in

region j is at least linear, in which case two linear coefficients must be encoded. The

second max-term determines if u|Rj
is quadratic, in which case three more coefficients

need to be encoded. Note that in (2.11) the first sum is over all regions, whereas in

(2.12) it is over all cells. Leclerc says the new parameter “d is the number of bits

required to encode a nonzero coefficient, divided by the average region size” ([48],

page 88). This approximation brings the length formula into an efficiently computable

form. It is also necessitated by the optimization method (this becomes clear in the

following section).

The term for L(R) in (2.6) must be modified as well for the piecewise polynomial

case. It is no longer sufficient to compare the zero-order coefficients of adjacent cells

to determine a discontinuity. We now must also consider discontinuities in the deriv-

atives of u. Only when u and all its derivatives are continuous across the boundary

of two adjacent cells i and j do i and j belong to the same region.

Some new notation helps to make this more precise. Let ∆i,j ,k(u), or simply

∆i,j ,k, denote the difference between the k-th derivatives of u|Ωi
and u|Ωj

at the point

xi,j =
1

2
(xi+xj) on the boundary between Ωi and Ωj, :

∆i,j ,0 = u|Ωi
(xi,j )−u|Ωj

(xi,j )

∆i,j ,1 =
∂u|Ωi

∂x
(xi,j )−

∂u|Ωj

∂x
(xi,j )

∆i,j ,2 =
∂u|Ωi

∂y
(xi,j )−

∂u|Ωj

∂y
(xi,j )
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∆i,j ,3 =
∂2u|Ωi

∂x2
(xi,j )−

∂2u|Ωj

∂x2
(xi,j )

∆i,j ,4 =
∂2u|Ωi

∂x∂y
(xi,j )−

∂2u|Ωj

∂x∂y
(xi,j )

∆i,j ,5 =
∂2u|Ωi

∂y2
(xi,j )−

∂2u|Ωj

∂y2
(xi,j ).

With these terms a cell boundary element ∂Ωi ∩ ∂Ωj is a region boundary element

when ∆i,j ,k=/ 0 for any k=0, ..., 5, or, equivalently, when maxk δ̃ (∆i,j,k)= 1. Hence,

the last sum in (2.11) becomes

∑

j∈J

L(Rj)=
le

2

∑

i∈I

∑

j∈Ni

max
k∈{0,...,5}

δ̃ (∆i,j ,k). (2.13)

Curiously, instead of (2.13), Leclerc writes down a different sum (expression (12) in

[48], page 88). Adapted to the notation used here and for the case pmax=2 Leclerc’s

sum is

∑

j∈J

L(Rj)≈
b

2

∑

i∈I

∑

j∈Ni

[

δ̃ (∆i,j ,0)+2 max
k∈{0,1,2}

δ̃ (∆i,j,k)+ 3 max
k∈{0,...,5}

δ̃ (∆i,j ,k)

]

. (2.14)

Leclerc says the following about (2.14):

”The second term in the description length is proportional to the

number of discontinuities in the function and its derivatives (up to order

pmax) between adjacent elements.” ([48], page 88)

Note that (2.13) is the direct generalization of (2.8) to the piecewise polynomial

case. That is, it counts the number of pairs of adjacent cells that belong to different

regions, and the encoding length of the region boundaries is proportional to the

total boundary length (chain code encoding), just like in the piecewise constant case.

Leclerc’s sum (2.14), on the other, is not proportional to total boundary length, and

Leclerc does not explain how to interpret it as the length of an encoding of the region

boundaries.
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With (2.12) and (2.14) L(z) for the piecewise polynomial case then becomes

L(z) = min
u

∑

i∈I

{

1

2 log 2

(

zi−ui,0

σ

)

2

+d

[

1+2 max
k∈{1,...,5}

δ̃ (ui,k)+ 3 max
k∈{3,4,5}

δ̃ (ui,k)

]

+
b

2

∑

j∈Ni

[

δ̃ (∆i,j ,0)+ 2 max
k∈{0,1,2}

δ̃ (∆i,j,k) + 3 max
k∈{0,...,5}

δ̃ (∆i,j ,k)

]

}

(2.15)

= min
u

F0(u).

2.5 Solving the Optimization Problem

A value u∗ is called a global minimizer of F0 if F0(u
∗) ≤ F0(u) for all u. In the

derivation leading up to expression (2.15) we have reduced the piecewise polynomial

reconstruction problem to the problem of finding the global minimizer of F0. Finding

the global optimizer of F0 is difficult because F0 has none of the properties such as con-

vexity or separability that standard methods for solving such problems require. The

only sure method of finding a global minimizer—exhaustive search—is not feasible.

2.5.1 Continuation Method

As a way out of this quandary, instead of trying to solve minu F0(u) directly, Leclerc

uses what is called a continuation method [21, 48]. In a continuation method the

problem of interest is replaced by a family of related problems, which are easier to

solve individually. In the context of solving minuF0(u), the objective function F0(u)

is replaced by a family of objective functions F0(u, s), s > 0, which must meet the

following requirements:

1. F0(u, s) is smooth,

2. for s≥slarge≫1 F0(u, s) is convex with a unique (hence global) minimum, and
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3. F0(u) = lims→0F0(u, s).

The first requirement comes from the optimization methods we want to use for solving

minu F0(u, s). The second requirement will become clear momentarily, and the

third requirement means that F0(u, s) resembles F0(u) more and more closely as

the continuation parameter s approaches zero. It is therefore said that the objective

function F0(u) is embedded in a family of functions F0(u, s), and the particular choice

of F0(u, s) is called the embedding .

The continuation method then consists of solving a sequence of minimization

problems minu F0(u, s) for a decreasing sequence of continuation parameter values s0,

s1, s2, ..., sf. Solving the initial problem with s0 ≥ slarge yields a minimizer u∗,0 that

is a global minimizer because of the second requirement above. For each following

problem minuF0(u, sk), k > 0, the solution u∗,k−1 from the previous problem is used

as the starting point. The corresponding sequence of minimizers u∗,0, u∗,1, u∗,2, ...,

u∗,f converges to a minimizer u∗ of F0(u).

As the continuation parameter decreases, F0(u, s) develops more and more local

minima and the problem of finding the global minimizer becomes increasingly diffi-

cult. The idea is that by starting with a problem F0(u, s0) that is easy enough so that

a global minimizer may be found, and by using the minimizer u∗,k−1 as the starting

point for the next minimization, the search is always started from a point close to

the global minimum of F0(u, sk) and will converge to it. The continuation process

therefore “traces a path” through the search space from u∗,0 to the minimizer u∗,f of

the final problem minuF (u, sf). Leclerc writes2.4 “For an ideal embedding, there will

be no bifurcations along this path, and the value of u∗,k for a sufficiently large k (and

hence a sufficiently small sk) will be close or equal to the global minimum of F0(u).”

([48], page 82). Below I occasionally refer to this path as “the continuation path” to

a solution.

2.4. The mathematical symbols in this quote are translated to match the notation used in this

work.
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2.5.2 Constructing an Embedding for F0

To meet the first requirement for the embedding, two non-smooth functions occurring

in F0 (see (2.15)), max and δ, need to be replaced by smooth functions. To that end

we first rewrite F0 as

F0(u)=
∑

i∈I

{

1

2 log 2

(

ui,0− zi

σ

)

2
+ d

[

1+ 2

(

1−
∏

k=1

5

δ(ui,k)

)

+3

(

1−
∏

k=3

5

δ(ui,k)

)]

+
b

2

∑

j∈Ni

[

1− δ(∆i,j ,0)+ 2

(

1−
∏

k=0

2

δ(∆i,j ,k)

)

+3

(

1−
∏

k=0

5

δ(∆i,j ,k)

)}

(2.16)

with δ(x) = 1− δ̃ (x), where we made use of the relationships

max
k

δ̃ (xk)= 1−min
k

δ(xk) (2.17)

and mink δ(xk)=
∏

k
δ(xk). This removes the max operation. Next the δ-functions are

replaced by smooth functions e(x, s) with the property lims→0 e(x, s) = δ(x) for the

third embedding requirement. Leclerc uses exponentials and makes the substitutions

δ(ui,k) → exp (−ui,k
2 /(f s σ)2) (2.18)

δ(∆i,j ,k) → exp (−∆i,j ,k
2 /(s σ)2). (2.19)

The new parameter f goes unmentioned ([48], page 88). Detailed expressions for the

objective function resulting from this embedding is given in the Appendix, Section

A.1.

To see that the second embedding requirement is met, consider the exponential

terms (2.18) and (2.19) as a function of s. As s tends to infinity, the value of the

exponentials tend to one, and we see (replace the δ-terms in (2.16) by ones) that

F0(u,∞)= lim
s→∞

F0(u, s) =
1

2 log 2

∑

i∈I

(

ui,0− zi
σ

)

2
,

which is convex. We also see that the minimizer of F0(u,∞) is ui= (zi, 0, 0, 0, 0, 0),

i ∈ I, and this value should be used as the starting point for the initial problem of

the continuation method.
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2.5.3 Structure of the Optimization Algorithm

Chapter 7 discusses methods for solving the problem minu F0(u, s). These are iter-

ative methods that take an initial estimate of a minimizer—a point u0 in the search

space—and generate a sequence of points u1, u2, ... that converge to a minimizer

u∗. The optimization scheme therefore consists of two nested loops. The outer loop

implements the continuation method and in each iteration s gets reduced by a con-

stant factor r, 0<r< 1,

si+1= r si. (2.20)

The inner loop solves minuF0(u, si) for fixed si.

2.6 When σ is Unknown

In Section 2.3 above I introduced the term a
∑

i∈I

( zi−ui,0

σ

)

2 as the code length for

the residuals. This term is justified when two assumptions hold, namely, when the

variance σ2 of the residuals is known, and when it is constant across the image.

For scenes satisfying the piecewise smoothness assumption (see Section 1.2), σ

quantifies noise introduced by the imaging process and the assumption of constant

variance is appropriate. When σ is constant but unknown, it may be inferred by

running the algorithm several times with different values for σ, until a shortest code

length L(z) for the image is obtained (bisection search suggests itself).

With scenes violating the piecewise smoothness assumption, constant σ may no

longer be assumed. In this situation, the residuals are dominated by texture and will

have different variance in different parts of the image. This suggests treating σ as a

piecewise-wise constant unknown ([48], Section 6.3), which requires |R| numbers to

describe (σr for each region r ∈R).
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The description length formula then needs to account for the encoding of the

σr-values, that is, the values for parameters b and d in (2.15) need to be adjusted

accordingly. Appendix A.3 gives details on an algorithm for the case of unknown,

non-constant variance.

2.7 Some Remarks on Lecler’s Work

Before discussing related work I pause to highlight some aspects of Leclerc’s work

that I will return to in the following chapters.

2.7.1 A Parameter-Free Problem Should Have a Parameter-Free Solution

The question “Which piecewise polynomial function u minimizes the code length L(z)

in (2.3)?” does not involve any parameters except for pmax. Its answer should therefore

not depend on any parameters other than pmax.

However, Leclerc’s objective function F0 in (2.15) does include two parameters,

b and d, annihilating one advantage of the MDL-approach. Those parameters are

introduced in the course of approximations to more accurate code-length formulas.

Note how the optimization strategy discussed in Section 2.5 necessitates some approx-

imations: in the context of the continuation method, L(u), as in (2.11), cannot be

used since a separation of u into regions is not well defined for most values s0, s1,

s2, ... . With the approximation (11), on the other hand, F0(u) generalizes to F0(u, s)

seamlessly.

In Chapter 5 I derive a new MDL criterion for this problem, where the underlying

encoding is a run-length encoding of u. Fewer approximations are required to derive

an objective function amenable to the optimization strategy described in Section 2.5,

and my objective function includes only one parameter instead of two.
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2.7.2 Finding Good Solutions

While we wish to find a global minimum of the objective function F0, the continuation

method described in Section 2.5.1 is not guaranteed to find one. Empirically it often

finds good solutions, however, meaning that the solution found is qualitatively very

similar to a globally optimal solution. As I show in Chapters 4 and 6, the quality

of solutions found depends the values of b and d in F0, the accuracy to which the

intermediate solutions u∗,0, u∗,1, ... are computed, and on details of the embedding

(e.g., (2.18) and (2.19)). Much of my work is aimed at improving the quality of

solutions by making changes in these areas.

2.7.3 The Objective Function with Correct Boundary Term

In Section 2.4 I argued that (2.13) and not (2.14) is the correct estimate for the code-

length of a chain-code encoding of the region boundaries. The objective function F2

that would result with (2.13) reads

F2(u) =
∑

i∈I

{

1

2 log 2

(

zi−ui,0

σ

)

2
+ d

[

1+ 2 max
k∈{1,...,5}

δ̃ (ui,k) + 3 max
k∈{3,4,5}

δ̃ (ui,k)

]

+
b

2

∑

j∈Ni

max
k∈{0,...,5}

δ̃ (∆i,j ,k)

}

. (2.21)

Note that (2.21) accounts for the encoding of the coefficients in the d-term. In

Leclerc’s criterion (2.15), on the other hand, it is accounted for in the d-term and

the b-term.

2.7.4 Stability of Region Boundaries

An interesting feature of Leclerc’s algorithm is that it produces stability scores for all

boundary elements in the reconstruction. Some boundaries or parts of a boundary

are more prone to change with small changes in the input or in the objective function

parameters than other boundaries. The stability score is an indicator of this sensi-

tivity and it correlates with the contrast-to-noise ratio of a boundary element ([48],

pages 83 ff). The stability scores are used in Section 6.5.

28



Chapter 3

Related Work

3.1 Related Problems

A solution to the image reconstruction problem includes the solutions to a few closely

related problems such as image segmentation [34], boundary detection [15], and image

denoising [72]. Considering these problems in their own right may lead to algorithms

which perform better in some sense, or algorithms that are applicable in situations

where the piecewise smoothness assumption does not hold.

3.1.1 Image Segmentation

The problem of image segmentation is to partition an image into regions. The recon-

struction u that Leclerc’s algorithm generates includes a segmentation of the image.

Some authors consider segmentation the main purpose of image reconstruction [12,

46]. Applications may require other criteria than smoothness for determining regions

[70], or they may allow for utilization of prior knowledge about expected region shape

[19].

There are a few general algorithmic approaches to segmentation. The most promi-

nent are region growing [46, 83], the evolution of curves represented as level sets [17,

61], and graph partitioning methods [74].

29



3.1.2 Detection of Contours

Contours in images are important features for recognition tasks [24, 65]. Algorithms

for detecting contours are therefore of interest in their own right [56].

Capturing the intuitive notion of contour in precise terms is quite difficult. A

conceptually simple substitute with a long tradition in computer vision is disconti-

nuity—discontinuity in intensity or some other visual quantity.

There are two general kinds of algorithms for detecting discontinuities aside from

reconstruction algorithms. One approach is to first smooth an image by convolving

it with a linear filter, then to look for large gradients in the result [15]. (Algorithms

in this category are commonly referred to as “edge detectors”). The smoothing step

reduces noise and is to avoid detection of “false discontinuities”. One difficulty in this

approach is deciding what level of smoothing is appropriate, so that “true disconti-

nuities” are not missed or distorted.

Algorithms following the second approach try to locally fit “templates” of step

edges to the image data (i.e., to cutouts like Figure 1.2, left) [38]. Locations of good-

enough fit are labeled as discontinuities.

More recent approaches try to detect changes in local image statistics rather than

just in intensity [69]. They use machine learning ideas and try to learn to detect

contours from training data. More specifically, a classifier is trained to distinguish

contour and non-contour pixels based on local image statistics [56].

3.1.3 Image Denoising

Algorithms for denoising an image take an image z and produce a new image u which

contains fewer noise artifacts than z. This is not the same problem as the image

reconstruction problem since discontinuities and differential structure need not be

made explicit.
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A popular approach to noise removal results from a problem formulation that is

very similar to the Mumford-Shah formulation of the reconstruction problem (Section

3.2.1). In this total variation based approach Rudin, Osher and Fatemi pose the

problem of minimizing

∫

Ω

|∇u| dω subject to

∫

Ω

(u− z)2 dω= σ2,

where σ2 is the known noise variance. The name of the method derives from the term
∫

Ω
|∇u| dω, which measures the total variation of u. In other words, the problem is

to find the function of lowest total variation which is compatible with the noise level.

The problem may be shown to be equivalent to minimizing

∫

Ω

(|∇u|+λ (u− z)2) dω,

when λ is chosen appropriately [16].

Another important denoising approach uses a wavelet decomposition of the image

[54], and reduces the wavelet coefficients in the detail sub-bands by some rule [23,

18]. The inverse wavelet transform then gives the noise-reduced image.

3.1.4 The Piecewise Smoothness Constraint

Finding a piecewise smooth approximation of an intensity image is just one appli-

cation of the piecewise-smoothness constraint. In fact, it applies to other areas of

computer vision such as reconstruction of visible surfaces from sparse data [32, 76],

the estimation of motion/optical flow [7, 80], or the decomposition of an object’s

silhouette contour [4, 10, 43].

For the problem of estimating optical flow, for example, the intensity data z

becomes time-dependent. The brightness conservation assumption

z(x, y, t)= z(x+u δt, y+ v δt, t+ δt)

31



expresses how intensities in consecutive frames are related (δt is a small time incre-

ment). The object of interest here is the flow field with components u and v. With

independently moving objects in the scene, or with a moving camera and objects at

varying distances to the camera, u and v are piecewise smooth functions.

3.2 Other Approaches to Reconstruction

3.2.1 Mumford-Shah and Blake-Zisserman

Around the same time in the mid 1980s, both Mumford and Shah [9, 58] as well as

Blake and Zisserman [9, 13] propose the piecewise smooth reconstruction problem

in the following way. Let u denote a possible solution defined over Ω and that is

differentiable over Ω \Γu. Consider the following functional,

Eλ,α(u)=

∫

Ω

(u− z)2 dω+

∫

Ω\Γu

λ2 (∇u)2 dω+α

∫

Γu

dγ . (3.1)

The solution to the reconstruction problem is the function u∗ which minimizes Eλ,α.

The functional (3.1) is called the energy of u and plays the same role as the MDL

criterion in the MDL-based approach. Note that Γu ⊂ Ω depends on u: Γu are the

points at which u is discontinuous or not differentiable. The first term in (3.1) ensures

closeness to the data z. The term λ2(∇u)2 penalizes “roughness”, for solutions are

to be piecewise smooth . The last term is proportional to the length of Γu when Γu

consists of a set of curves. Its purpose is to penalize long and “rough” boundaries in

u. The parameters λ and α weight the penalty terms and offer some control over the

degree of smoothness (λ), the sensitivity to noise (α), and the contrast-to-noise ratio

threshold at which discontinuities are detected (α and λ) [13].

Blake and Zisserman motivate the use of (3.1) for several computer vision prob-

lems [13]. In their work the continuous formulation (3.1) is used to study the behavior

of solutions with respect to the parameters λ and α. Discrete versions of (3.1) are used

to develop algorithms. One discretization leads to an algorithm simulating a “weak
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membrane”, which may be considered Blake and Zisserman’s solution to the recon-

struction problem.

Mumford and Shah, on the other hand, concern themselves with mathematical

questions such as the appropriate space of possible solutions, how, precisely, to define

the last term in (3.1), the existence and uniqueness of minimizers, and so on [59].

Their work generated interest in the mathematics community and gave rise to a

number of theoretical works [1, 2, 62]. But finding solutions to the minimization

problem (3.1) turned out to be difficult, and a striking gap between theoretical and

algorithmic progress developed [12]. Most published algorithms treat the special case

λ → ∞ [17, 47, 66], which Mumford and Shah call the cartoon limit : in this case

solutions are piecewise constant. More recent works expressly treat the piecewise

smooth case λ<∞ [77, 12, 31, 67].

3.2.2 Reconstruction as Bayesian Inference

Other authors cast the reconstruction problem in probabilistic terms. In this view

not only the observed image z is a realization of a stochastic process: the unobserved

image u is as well. The problem then becomes that of constructing a probability

distribution over the space of possible reconstructions u, and of finding the most

probable u. Well-posedness in this framework means that there is a unique most

probable u.

Geman and Geman established these ideas in a seminal work [30]. In their formula-

tion the unobserved variable (reconstruction) consists of both an intensity process and

a line process . A realization of the intensity process gives the unobserved intensities

for each cell, the line process gives the discontinuities between cells (cf. Figure 2.1).

Using piecewise continuity and other assumptions, they construct a prior distribution

for the unobserved variable, and using a simple model of the imaging process they

derive a probability distribution for the observed image. Applying Bayes rule then

gives the posterior distribution of the unobserved image given the observed image.
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The distributions used in their work have the structure of Markov Random Fields

(MRF).

To find solutions Geman and Geman propose a Markov chain Monte Carlo

algorithm for sampling the posterior distribution [30]. Such randomized algorithms

perform poorly compared to deterministic minimization algorithms [8], and this

aspect of their work is of lesser interest today. The recent development of fast algo-

rithms for approximate energy minimization [11] has rekindled interest in MRF

models for vision and image processing [14], however.

3.2.3 Discussion

It is reasonable to ask how the Mumford-Shah formulation (3.1) and Leclerc’s formu-

lation differ in capturing the piecewise smoothness constraint. Leclerc’s formulation

restricts the concept to piecewise polynomial. What biases are implicit in the energy-

based formulation?

Blake and Zisserman discuss discrete versions of the energy-based formulation

and admit some shortcomings [13]. The first order discretization leading to their

weak membrane algorithm, for instance, is biased towards flat reconstructions. As a

consequence there is an upper bound on gradient magnitude of a solution u. It is not

clear whether Blake and Zisserman considered the piecewise polynomial model, which

does not have this problem, when they conclude “that a spline under weak continuity

constraints (or the equivalent MRF) is not quite the right model. But it is the best

that is available at the moment.” ([13], page 15).

The MDL approach can be shown to be equivalent to a Bayesian inference

approach [48]. Communication theory tells how to construct short codes given prob-

abilities of messages. The other way—constructing probabilities given (lengths of)

codes—is also possible: by the Kraft inequality [20]

∑

i

2−L(ui)≤ 1,
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message ui may be assigned the probability p(ui) = 2−L(ui)/
∑

i
2−L(ui). From the

probabilistic point of view L(u) in (2.6) implicitly defines a prior on possible recon-

structions, whereas L(z) in (2.15), the encoding length of the image given the

model u, implicitly defines the posterior. Leclerc comments on the equivalence of

MDL and probabilistic approaches. In his view the MDL approach holds greater

appeal because intuition about processes underlying observations are more easily

expressed by describing models and conceiving encodings for their descriptions, than

by assigning probabilities to models.

3.3 MDL-based Approaches to Problems in Computer Vision

Leclerc was among the first to suggest the MDL principle as a guiding principle for

solving inference problems in computer vision [48, 49]. I review some of the works

where his influence is most apparent. The algorithms have in common that a solution

is found by minimizing an MDL criterion.

Kanungo, Dom, Niblack and Steele develop an algorithm that also produces piece-

wise polynomial image descriptions [46]. Their solutions may include only jump

discontinuities, however. The MDL-criterion is developed along the same lines as

Leclerc’s but approximation steps and the introduction of parameters into the crite-

rion are avoided. A greedy region-merging algorithm is used for generating reconstruc-

tions. The algorithm starts with a gross over-segmentation of the image, with regions

of one to three pixels in size. The algorithm proceeds by iteratively merging the

respective pair of adjacent regions whose merging reduces the description length

the most. In the first merging phase only constant regions are created (p = 0).

In each subsequent phase p is increased and merging steps may create regions of

maximum degree p. The algorithm terminates after pmax+1 phases when the descrip-

tion length may not be reduced any further.
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It is the region-merging strategy that allows for the use of a more accurate MDL

criterion. Since every step of the merging process yields an explicit segmentation,

region sizes and boundary lengths are always known. On the other hand, there is

little reason to expect the region-merging will yield solutions that are close to optimal.

Errors committed early in the process (i.e., merging of regions that should not be

merged) may not be corrected later.

Pan uses a variant of Kanungo et al’s algorithm for segmenting remote sensing

data [64], and Lee for segmenting microscopic images of aluminum grains as well as

remote sensing data [52]. Ivanovska uses a variant of Leclerc’s algorithm for analyzing

histological images [40]. All three authors consider only piecewise constant recon-

structions.

Zhu and Yuille draw inspiration from Leclerc’s and other works for devising

their “region competition” segmentation algorithm [83]. The algorithm starts with

growing regions from many small “seed regions”. It then alternates between moving

region boundaries and merging adjacent regions. All the steps of the algorithm are

guided by an MDL criterion and the algorithm terminates at a local minimum. The

objective function is a simplification of Leclerc’s and contains one parameter.

Avoiding free parameters in their algorithm is the main motivation for Galland et

al. to consider an MDL approach for segmenting Synthetic Aperture Radar images

[28]. Their algorithm is different in that regions are described by polygons and the

length of region descriptions may be computed accurately from the number of polygon

vertices and segments. The algorithm starts like Kanungo et al.’s with an over-seg-

mentation into many small regions. To modify a segmentation the algorithm uses

merging of regions, shifting of polygon vertices, and removal of polygon vertices.

Again, the algorithm terminates when neither of these operations would bring about

a further reduction in description length. The reconstructions are piecewise constant

with region-specific noise parameters [28].
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Chapter 4

How Leclerc’s Algorithm Behaves

In this chapter I first describe the general behavior of Leclerc’s algorithm in Section

4.2. In the following two sections I describe two problems I encountered while working

with the algorithm. First, Section 4.3 demonstrates that different images require

different parameter choices for the algorithm to produce satisfactory solutions. This

is at odds with Leclerc’s own characterization of his algorithm [48].

A more subtle algorithmic aspect affecting the quality of results is to what

accuracy intermediate solutions are computed in the continuation process. In his

dissertation Leclerc mentions the continuation step size (r) as an important factor

[50]. In Section 4.4 I add the relative accuracy to which coefficients are computed

as another factor.

The synthetic test images I use might seem simplistic at first, but they were chosen

carefully and each one poses a different challenge to a reconstruction algorithm.
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4.1 Test Images

Figure 4.1. Test cases 1 to 4 (bottom row) and the corresponding generating images used

to generate the test images (top row).

In order to study the behavior of Leclerc’s algorithm, I use synthetic test images

which are generated in a way that exactly matches the algorithm’s encoding scheme

(cf. Figure 4.1). That is, zero-centered Gaussian i.i.d. noise is added to the samples

of piecewise polynomial functions. This way we have good known solutions, namely

the respective functions we sample (Figure 4.1, top row). I use ug to denote the

coefficient vectors of these generating images .

Note that the generating image is the expected optimal solution, which is close to

but in general not identical to the optimal solution for any realization of the noise

process. The polynomial coefficients of the optimal solution will differ slightly from

ug in a way that depends on the realization of the noise process. This makes ug a

good solution to compare against. If the objective function value for ug is lower than

the value for the algorithm’s solution then we know that the algorithm did not find

the optimal solution.

The four synthetic test images in Figure 4.1 pose different challenges to a recon-

struction algorithm. The first image in the top row is similar to a test image used by
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Leclerc (see Fig. 3 in [48]); the generating image is piecewise constant. The challenging

aspect of this test image is that the ratio of the difference between foreground and

background to the noise level (σ)—called the contrast-to-noise ratio (CNR) in this

work—is low for all points on the boundary.

The CNR distribution is one indicator of the difficulty of a test image. Figure 4.2

shows the CNR distribution for all four test images, that is, the CNRs of all boundary

elements arranged in order of increasing CNR. In my experience, boundary elements

with CNR above two are typically recovered with negligible location error. Bound-

aries with CNR between two and one become increasingly challenging to recover and

localize, and boundaries with CNR one or below are usually not recovered by the

algorithm4.1.
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Figure 4.2. CNR over boundary elements for the test images 1 (upper left) to 4 (lower right)

shown in Figure 4.1. CNR values above 8 are not shown.

4.1. Leclerc reports his algorithm recovering boundaries with a CNR of 0.5 (Fig. 3f in [48]).

Note that this result was obtained with pmax = 0, that is, with a piecewise constant image model.

The results I discuss here are all obtained with pmax=2.
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For the second test image the CNR is not constant but varies along the boundaries.

The CNR is large for the most part but drops below one and even approaches zero (cf.

Figure 4.2, top right). The challenge of this test case is to recover these extremely low

CNR boundary segments. In this case we have reason to expect a recovery because

we know the high-CNR parts of the boundary will be recovered reliably and any alter-

native closures of the boundaries are likely to result in a reconstruction u requiring

longer descriptions.

The generating image ug of test image 3 consists of two regions, a quadratic and

a constant region. The challenge posed by this test case is to correctly recover the

quadratic region.

The boundaries in test images 1, 2 and 3 are C0-discontinuities. The generating

image for test image four also includes C1-discontinuities, where all vertical bound-

aries are C1, all horizontal boundaries are C0. Figure 4.3 shows a horizontal cross

section through the center of the test image and a cross section of ug. The challenge

of this test image is to recover the C1 discontinuities. (To clarify, the lower right chart

in Figure 4.2 includes CNR values for both C0 and C1 boundary elements.)
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Figure 4.3. Horizontal cross section through the center of test image four. Dots are gray

values, the solid line is a cross section of the graph of the corresponding generating image

ug, featuring three C1 discontinuities.
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4.2 Evolution of a Solution

Before proceeding to specifics, I use test case 3 as an example to describe the algo-

rithm’s general behavior. In this example F0 is minimized with parameter values

b=0.41, d=0.01, and f =0.5. The continuation method is started at s0=10, stopped

at sf = 0.001, and the intermediate steps are calculated with r = 0.96 (cf. (2.20)).

Figure 4.4 shows the progression of value F0(ui
∗, sf) in the iteration, where u∗,0,u∗,1,

u∗,2, ...u∗,f is the sequence of minimizers produced by the outer loop.
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Figure 4.4. The value F0(u∗,i,0.001) over iterations i of the outer loop for test image 3. In

the continuation method we minimize with respect to a different objective function F0(., si)

in each iteration, whereas the plot above shows the value of the same objective function

F0(., 0.001) at all minimizers {ui
∗}. This explains why the value initially increases.

Figure 4.5 shows aspects of selected minimizers u∗,0,u∗,25,u∗,50, ... corresponding

to the iterations marked by vertical dashed lines in Figure 4.4. The left column shows

per-pixel samples of the minimizers, respectively, the right column shows horizontal

cross sections through the center.
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Figure 4.5.
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Figure 4.5. The constant coefficients of the minimizers {u∗,i} (left column), and horizontal

cross-sections through the minimizers and z (right column). From top to bottom row the

displayed data corresponds to the iterations marked by vertical dashed lines from left to

right in Figure 4.4. The value of the continuation parameter s corresponding to each row is

10, 3.6, 1.3, 0.47, 0.17, 0.061, 0.022, and 0.0028, respectively.

It is most instructive to compare the cross section plots in the right column of

Figure 4.5. At the beginning of the continuation when the continuation parameter s is

larger than one, mismatches at cell boundaries (∆i,j,k=/ 0) incur a negligible penalty

in the objective function and the first term in (2.16)—the data term—dominates

the character of the minimizers. These minimizers are discontinuous everywhere (cf.

Figure 4.5 rows a) to c) with s= 10, 3.6 and 1.30, respectively).

As the continuation method progresses, the width of the embedding functions
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(2.18) and (2.19) decreases and the influence of the other terms in (2.16) increases.

In response to increasing penalties for nonzero ∆i,j,k the finite elements move away

from the gray level values z, line up, and form a smooth graph almost everywhere (cf.

Figure 4.5 rows d) and e) with s=0.47 and 0.17, respectively). Discontinuities remain,

however, where their penalties are offset by a decrease in the data term for cells near

the discontinuities. This happens earlier in the continuation for discontinuities with

larger contrast, as may be seen in the first column of Figure 4.5, rows d) and e), at

the corners of the square region.

As the continuation parameter decreases further, the penalties for nonzero poly-

nomial coefficients gain influence, making the finite elements increasingly stiff (cf.

Figure 4.5, rows f) to h) with s = 0.061, 0.022, and 0.0028, respectively). This may

cause discontinuities to be introduced or to spread relatively late in the process, as

is evident around the lower right corner of the square region when comparing rows f)

and g) in Figure 4.5.

To summarize, throughout the continuation process, the intermediate solutions

u∗,k gradually morph into a smoothed version of the input image where the smoothing

is adaptive and stops at discontinuities found in the process. As the continuation

parameter decreases further, the spatial scale over which the piecewise polynomial

form is enforced increases, and u∗,k evolves from a locally polynomial to a globally

piecewise polynomial function.

4.3 Sensitivity to Cost Function Parameters

I now turn attention to the quality of the results produced by the reconstruction

algorithm. The quality depends crucially on the choice of values for the parameters

b and d (cf. Section 2.5.1). We will see in this section that excellent results may be
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achieved for each test case if the parameters are tuned specifically for the test case,

but not when the same parameters are used for all test cases.
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Figure 4.6. Best values in the interval (0, 2) for parameters b and d for the different test

images. From each generating image in Figure 4.1, top row, ten test images are created

by adding different realizations of the same Gaussian noise process. For each test image

the algorithm was run with a large number of combinations of values for b and d and the

parameter value combination from the run producing the largest noise reduction (see text)

was recorded in the above plot. Preliminary tests suggested 0.5 as a good value for the

embedding parameter f (cf Section 2.5.1), and f = 0.5 was used for all results discussed in

this section.

Since results obtained with different objective functions (i.e., F0 with different

values for b and d) are to be compared, the objective function value itself may not be

used as a measure of quality of results. Instead we make use of each test case’s good

known solution ug (cf. Section 4.1) by pretending it is the optimal solution. We may

then compute the mean squared error,

mse(u, v)=
1

|I |

∑

i∈I

(ui,0− vi,0)
2, (4.1)

between ug and the solution u∗,f produced by the algorithm, and compare it to the
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mean squared error of the input. I call the ratio of the two (in decibel) the noise

reduction (NRED),

nred(z)= 10 log10

(

mse(ug, z)

mse(ug,u∗,f)

)

, (4.2)

achieved for a test case.

Running the reconstruction algorithm for each test image with many different

parameter value combinations and identifying the maximum-NRED result, respec-

tively, one finds that the parameter value combination yielding the best solution is

different from test case to test case (cf. Figure 4.6).

Figure 4.7 shows the maximum-NRED result for each test case. Aside from a

few small artifacts in a) and b) we note that rows a) to c) exhibit the correct image

descriptions. That is, all regions are found with excellent boundary localization and

the polynomial degree of each region is correctly recovered. The reconstruction in

Figure 4.7 d) is almost as expected—two out of three C1-contours are reconstructed.

The C1-contour forming the crest of the rooftop-shaped generating image (cf. Figure

4.3), on the other hand, was instead described as a narrow, quadratic region that

smoothly connects the two faces of the rooftop (see the cross section in Figure 4.7 d)).

That different data require different objective function parameter values for best

reconstruction is not a remarkable observation. The more important question is

whether there are parameter value combinations that give reasonably good results

for all test cases. If this is the case then we should expect a point that is near

the points in Figure 4.6 to be a good parameter value choice.
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Figure 4.7. Results with test-case specific parameter values: a) b= 0.31, d= 0.96, b) b= 0.26,

d= 0.16, c) b= 0.41, d= 0.01, d) b= 0.66, d= 0.31. The display above is similar to Figure 4.5,

but the center column shows the C0-discontinuities in the reconstruction.

The average of all the points in Figure 4.6 gives b = 0.4938 and d = 0.5013.

Figure 4.8 shows the results for the four test images with these parameters (all other

parameters are the same as in the runs producing Figure 4.7).
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Figure 4.8. Results similar to Figure 4.7 but with test-case independent parameter values

b= 0.42938 and d= 0.5013. The reconstruction of test case 1 shown in a) is essentially flat. The

intensity values of the pictures in the left column are scaled to utilize the full gray-value range,

which causes the appearance of a bell-shaped graph in the left picture a).

The results shown in Figure 4.8 are not all satisfactory. The reconstructions

are particularly bad for test cases 1 and 3. For test case 1 the algorithm failed to

separate the two regions (Figure 4.8 a). And for test case 3 the inner region with

quadratic variation was not reconstructed as such but is instead reconstructed as
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piecewise linear involving multiple regions (Figure 4.8 c). This result seems at odds

with Leclerc’s suggestion that the algorithm does not require parameter tuning4.2.

4.3.1 Results for Objective Function F2
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Figure 4.9. Best parameter values for objective function F2, see Figure 4.6 for more

information.

In order to gauge its viability I include objective function F2, (2.21), in this

parameter-sensitivity study. The scatter plot of best results (Figure 4.9) shows some

similarity to the plot for F0 (Figure 4.6), the main differences being a shift to larger b-

values and a wider spread of b-values. The quality of results with F2 turns out to be as

good as with F0 for test cases 1, 2 and 3. For test case 4 the results are qualitatively

different in that the F2-results contain C0-discontinuities where F0-results have C1-

or C2-discontinuities. Figure 4.10 shows the best F2-result for test case 4.

4.2. Leclerc emphasizes the fact that the same parameter values were used in producing all his

results in Section 7 of [48] (page 92). I note that except for his first experiment (Fig. 3 in [48]), the

noise levels are lower in his test images than in the ones used here, which makes for less challenging

test cases. Also, Leclerc does not present a quantitative evaluation of results.

49



 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 0  20  40  60  80  100

In
te

n
s
it
y

Figure 4.10. Result similar to Figure 4.7 for test case 4 with objective function F2, b=2.82,

d= 0.36. Note that the discontinuities in the reconstruction are C0, not C1.

4.4 Solution Accuracy Affects the Continuation Path

Different images are more or less difficult to reconstruct. More difficult cases require

a higher accuracy of the solution produced by the inner loop (Section 2.5.1), and a

smaller step size for the continuation parameter s (i.e., a value for r closer to 1). Thus

more difficult reconstructions require more computation time.

4.4.1 Cases with Low CNR

Leclerc explains this phenomenon for cases that are difficult due to the presence of

low-CNR contours and concludes that the lower the CNR of contours one expects to

reconstruct, the smaller the step size needs to be in the continuation loop ([50], page

156).

Intuitively, the decision as to whether a discontinuity ought to be introduced into

the solution becomes harder as CNR decreases. In terms of the optimization problem,

two minima corresponding to two qualitatively different solutions—with or without a

discontinuity—both make themselves felt at some point in the continuation process.

In the worst case a bifurcation may occur, that is, a point with multiple descent

directions leading to qualitatively different solutions. It is plausible that close to such
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a bifurcation point the branch completing the continuation path may be decided

quasi-randomly because the continuation path is computed approximately.

4.4.2 Cases with Non-Constant Regions
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Figure 4.11. Development of the quantities ‖(∇F0(u, s))−,k‖2/max (1, ‖u−,k‖2) for con-

stant, linear, and quadratic coefficients, respectively, over iterations of the inner-loop in

the minimization of objective function F0 with test case 3. The notation u−,k denotes the

vector consisting of the k-th coefficients in vector u.

Other kinds of decisions may manifest themselves in bifurcations as well—for

instance the decision as to whether part of an image ought to be described with

quadratic or linear regions (cf. Figure 4.12). A subtlety of the finite element repre-

sentation might aggravate the problem for these kinds of bifurcations.

The range of values of the linear coefficients is typically an order of magnitude

smaller than the range of values of the constant coefficients. The same applies to

the quadratic coefficients compared to the linear coefficients. This means that the

termination criteria used in the optimization effectively apply to the constant coef-

ficients only (i.e., (41) and (43) in Chapter 7). The relative errors in the linear and

quadratic coefficients, on the other hand, are much larger than these criteria would

suggest (Figure 4.11). Reliable reconstruction of cases including quadratic regions

then generally require lower tolerances in the termination criteria than cases including

linear or constant regions. Figure 4.12 b) shows an example of this phenomenon. In

Section 5.3.2 I present a way to address this issue.
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Figure 4.12. Example showing different results for test case 3 obtained with different accuracy

of the intermediate solutions computed in the inner-loop. For the result on the left gtol=10−4 was

used, for the result on the right gtol= 10−6 was used in (7.4). The values for parameters b and

d where chosen differently than in Figure 4.7 and Figure 4.8 to demonstrate this phenomenon.

4.5 Discussion

4.5.1 Recoverability of Low-CNR Contours

Using a test case similar to 1 in Figure 4.1 Leclerc observes that the pmax=0 version

of the algorithm can reconstruct contours of CNR as low as 1/2 [48]. He further

notes that contours of CNR below some threshold are not recovered—as one would

expect. In my experiments with the pmax=2 version of the algorithm I have not been

able to reproduce Leclerc’s result. Contours with CNR below one appear to be non-

recoverable.

I believe that the CNR threshold for recoverable contours of the pmax = 0 algo-

rithm is different from and lower than the CNR threshold of the pmax=2 algorithm.

Intuitively, the new degrees of freedom that the piecewise polynomial image model

introduces can be used to achieve smaller ∆i,j,0-values early in the continuation

process (see Figure 4.5 a) and b), right column). Hence, differences in gray-values

that would cause discontinuities to develop with the pmax = 0 model may instead

develop as a locally smooth reconstruction of nonzero slope with the pmax=2 model.
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4.5.2 F0 vs F2 and the Meaning of the b-Term

In Section 4.3.1 we see that, except for cases with higher-order discontinuities, objec-

tive function F2 may be used in place of F0 and achieve the same quality of results. We

also see in Figure 4.9 that good values for parameter b with F2 lie around 2. This better

fits Leclerc’s prescription from Section 2.3 that “b should be at least as large as log2 3,

but not much more than two”, than the significantly smaller values for b in Figure 4.6.

It lends support to my claim that the b-term in F2 has the same meaning as the b-term

in (2.10), and reinforces the question as to how to interpret Leclerc’s b-term (2.14).
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Chapter 5

Improving Algorithm Robustness

Lack of plausible reasoning for some steps in the derivation recounted in Section 2.4

and the issues discussed in Chapter 4 led me to explore modifications of Leclerc’s

algorithm. In this chapter I present alternative algorithmic choices that are connected

by a common theme—they all lead to a different algorithm than Leclerc’s for the case

pmax> 0.

In Section 5.1 I derive a different MDL criterion for the reconstruction problem. Its

derivation uses approximations that are tighter than Leclerc’s and it does not require

use of unknown quantities such as an average region size. Because fewer approxima-

tions are required, my MDL criterion contains only one parameter instead of two. A

second improvement, presented in Section 5.2, is a redefinition of the difference terms

∆i,j ,k (Section 2.4). It helps to avoid misclassification of cell boundary elements that

may occur in cases of vanishing CNR (e.g., for test case 2).

In Section 5.3 I argue that Leclerc’s embedding for the piecewise polynomial case

does not account for the scale of the coefficients, and I derive a different embedding

which does account for scale. In this section I also suggest a way to address the

problem that higher-degree coefficients are computed to lower accuracy than lower-

degree coefficients (Section 4.4.2); in Section 5.4 I suggest a second way to address

this problem.

In Section 5.5 I discuss the relationship between Leclerc’s MDL criterion and

mine, and I contemplate the roles the MDL parameters and the embedding play,

respectively, in finding global optima.
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5.1 MDL Criterion

Figure 5.1. (a) Two regions. (b) Description length L0 may be reduced when adjacent cells

share coefficients. Boundary elements between coefficient-sharing cells are covered with a

white diamond. When the worst case description length is corrected for each white diamond,

the resulting description length is proportional to the number of coefficients in each region,

as well as proportional to the boundary length.

In deriving an expression for the description length of the image z the first step is

the same as in Chapter 2, and we encode z in terms of a reconstruction and residuals

as in (2.3). We use the same estimate for the code length of the residuals (2.5) but

derive an alternative to (2.6) for an estimate of the length of u.

Consider the worst case where every cell has different coefficients from its neigh-

boring cells. The code length for u in this case is

L0(u) = lc
∑

i∈I

[

1+2 max
k∈{1,...,5}

δ̃ (ui,k)+ 3 max
k∈{3,4,5}

δ̃ (ui,k)

]

.

For cases other than the worst case there are regions consisting of more than one

cell and this code length may be improved upon. To realize a more efficient code we

need to determine the number of coefficients that are shared by any pair of adjacent

cells and subtract from L0 a number of bits proportional to the number of shared

coefficients.

For example, if cells i and j, j ∈Ni, have a common (equivalent) constant coef-

ficient, we subtract lc (1/|Ni| + 1/|Nj |). If, in addition, i and j share the two first-

order coefficients we subtract 2 lc (1/|Ni|+1/|Nj |) more bits. Finally, if i and j also

share the second-order coefficients, we subtract 3 lc (1/|Ni| + 1/|Nj |) more bits. To
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evaluate what coefficients are shared we may use the ∆i,j ,k-terms defined in Section

2.4. Thus, the code-length “correction” for cell pair (i,j) is

(

lc

|Ni|
+

lc

|Nj |

){

δ(∆i,j,0) + 2 max
k∈{1,...,5}

δ̃ (ui,k)× min
k∈{0,1,2}

δ(∆i,j ,k)

+3 max
k∈{3,4,5}

δ̃ (ui,k)× min
k∈{0,...,5}

δ(∆i,j ,k)

}

with δ(x)=1− δ̃ (x). Subtracting this term from L0 for all cell boundary elements we

get

L(u) = lc
∑

i∈I







1−
1

|Ni|

∑

j∈Ni

δ(∆i,j,0)

+2 max
k∈{1,...5}

δ̃ (ui,k)×

(

1−
1

|Ni|

∑

j∈Ni

min
k∈{0,1,2}

δ(∆i,j ,k)

)

+3 max
k∈{3,4,5}

δ̃ (ui,k)×

(

1−
1

|Ni|

∑

j∈Ni

min
k∈{0,...,5}

δ(∆i,j ,k)

)







(5.1)

Formula (5.1) approximates the length of a run-length encoding [44] of u. In a run-

length encoding data on a grid is encoded on a row-by-row or column-by-column

basis. It exploits runs (homogeneous sub-strings) in a row by replacing each run by

the respective value and its repetition-count. It is an effective encoding when typical

row data consists of a small number of runs per row. In a run-length encoding of u

a run is a sequence of equivalent or “same-region” cells.

Unlike an actual run-length encoding, however, (5.1) is invariant with respect to

90-degrees rotation of the image. It achieves this by effectively averaging the run-

length encodings with respect to columns and with respect to rows. To see this,

consider that the correction terms are nonzero for all cell-boundary elements inside

a region but are zero at region boundaries (Figure 5.1). The effect is that only cells

along a boundary contribute to the description length, and (5.1) scales with boundary

length and number of coefficients,

L(u)≈
∑

j∈J

|∂Rj | ×L(u|Rj
). (5.2)
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The encoding of run-length is not accounted for in (5.1). To account for it we replace lc

by a new parameter g, which may be interpreted as the sum of lc and a fixed number

of bits for encoding the run-lengths. With this result the new MDL criterion for the

piecewise polynomial case reads

L(z) = min
u

∑

i∈I

{

1

2 log 2

(

zi−ui,0

σ

)

2
+ g

(

1−
1

|Ni|

∑

j∈Ni

δ(∆i,j,0)

)

+2 g max
k∈{1,...5}

δ̃ (ui,k)×

(

1−
1

|Ni|

∑

j∈Ni

min
k∈{0,1,2}

δ(∆i,j ,k)

)

(5.3)

+3 g max
k∈{3,4,5}

δ̃ (ui,k)×

(

1−
1

|Ni|

∑

j∈Ni

min
k∈{0,...,5}

δ(∆i,j ,k)

)







= min
u

F1(u).

Note that unlike (2.11), which requires knowledge of the regions, (5.1) uses only local

information to estimate the code length L(u). The approximation we make in (5.3)

to account for run-length with the parameter g is a much tighter approximation than

Leclerc’s, which introduces an average region size for parameter d and an average

boundary length for parameter b in (2.15).

5.2 Difference Terms

Figure 5.2. Ramp image from Leclerc’s paper [48] (left), C0-discontinuities in reconstruc-

tion with difference terms from Section 2.4 (middle), and C0-discontinuities with revised

difference terms from Section 5.2 (right).
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Leclerc uses the ramp image Figure 5.2, left, to demonstrate that his reconstruc-

tion algorithm is capable of detecting contours in situations where CNR vanishes. I

use the same example to illustrate a problem with the difference terms {∆i,j ,k} as

defined in Section 2.4.

The C0-discontinuities that result with the definitions from Section 2.4 are shown

in Figure 5.2, middle. The gaps in the boundary occur where the value of u in the

ramp region coincides with the value of u in the background region. Each gap is

exactly one cell wide and the two cells adjacent to a gap have the same value exactly

at the center of the cell boundary that is the gap5.1. In other words, the two adjacent

cells are discontinuous across the cell boundary except for a single point. This cell

boundary element therefore ought to be classified as a C0-discontinuity. (Another

way to make this argument is to note that the relative size of the gap goes to zero as

the resolution of the image increases.)

The problem occurs because the difference terms as defined in Section 2.4 evaluate

u (or a derivative of u) at a single point on the cell boundary. There is no problem

when pmax = 0, and one might call this an instance of inappropriate generalization

from the piecewise constant to the piecewise polynomial case.

To fix the problem I redefine the difference term ∆i,j ,0 such it evaluates u at all

cell boundary points,

∆i,j,0
2 =

1

h

∫

∂Ωi∩∂Ωj

(u|Ωi
(x, y)−u|Ωj

(x, y))2 dτ , (5.4)

where h is the cell size (i.e., the length of the line segment ∂Ωi ∩ ∂Ωj). The other

terms ∆i,j ,k, k > 1, are defined in a similar way. Expressions for evaluating the terms

∆i,j ,k
2 are given in the appendix, Section B. Unless indicated otherwise, the difference

terms defined by (5.4) etc. are used in this work.

5.1. Leclerc makes the same observation about this example, see page 94 and Figures 4b and 4c

in [48].
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5.3 Embedding

We now consider the embedding discussed in Section 2.5.1, specifically the use of

(2.18) and (2.19). I will argue that the noise level σ is not a good choice of scale factor

except for the C0-discontinuity terms and will suggest different scale factors and other

modifications to the embedding.

Leclerc first develops an objective function for the piecewise constant case, pmax=

0, then generalizes to the general case pmax > 0. This includes the embedding. In

the piecewise constant case the embedding concerns only one type of quantity—the

potential C0-discontinuities {∆i,j,0}. Leclerc suggests the embedding

δ(∆i,j ,0)→ exp (−∆i,j ,0
2 /(s σ)2) (5.5)

([48], page 82). Here s is the embedding parameter (cf. Section 2.5.1) and σ serves

as a scale for ∆i,j ,0: when s=1 and ∆i,j ,0≫σ, then u has a true discontinuity across

the cell boundary between i and j; when ∆i,j,0∼ σ then the mismatch between ui,0

and uj ,0 is more likely due to noise.

The use of σ as a scale for {∆i,j ,0} makes sense. In the piecewise polynomial

case pmax > 0 more δ-terms in the objective function, involving other quantities,

require a similar embedding treatment. Leclerc uses the same scale factor σ in those

embeddings—cf. (2.18) and (2.19)—but the reasons are unclear. We next consider

the quantities in the δ-terms of (2.16) and derive appropriate scale factors for them.

5.3.1 Coefficient Scaling

We begin with the polynomial coefficients {ui,k}. Their typical scale depends on the

image data, where the important data-specific quantities are the range of valid gray

values G and the typical region diameter R. For example, if gray values span the

range [0,255] we have G=255. We now consider a quadratic polynomial with domain

[−R/2 , R/2]× [−R/2, R/2] and range [0, G],

u(x, y) =u0+u1 x+ u2 y+u3 x
2+ u4 x y+u5 y

2,
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and ask what is the typical magnitude of the coefficients {uk}? Since a polynomial

is linear in its coefficients, we have uk∼G for all k. The dependency of the uk on R

derives from the constraint 0≤u≤G: u0 is independent of R, whereas u1, u2∼
1

R
, and

u3, u4, u5∼
1

R2 . The polynomial coefficients therefore scale as

u0∼G, u1, u2∼
G

R
, u3, u4, u5∼

G

R2
. (5.6)

An embedding that accounts for this scaling behavior is

δ(ui,k) → exp (−ui,k
2 /(min (1, s) ρk)

2), with (5.7)

ρk =







G

2R
, if k=1, 2

G

2R2 , if k=3, 4, 5
. (5.8)

The value for G is determined by the image data format. The value for R is taken as

a fraction of the image diagonal D so that R scales with image resolution,

R= fRD, (5.9)

where fR values in the range 1/10− 1/5 should work well for most images (fR=1/6

is used in this work). The min operation in (5.7) is to prevent unrealistically large

coefficients early in the continuation process.

5.3.2 Scaling the Coefficients for Improved Accuracy and Runtime

With an understanding of the coefficient’s scaling behavior we are in a position to

improve the accuracy of the higher-degree coefficients (cf. Section 4.4.2). If we arrange

for the cell size h to be variable instead of fixed (cf. Section 5.2), then (5.6) becomes

u0∼G, u1, u2∼
G

Rh
, u3, u4, u5∼

G

(Rh)2
, (5.10)

and we see that all coefficients will have similar scale when h=1/R. The reconstruc-

tion algorithm can set h internally and rescale the coefficients according to h = 1

before returning its solution.

Note that Leclerc does not have parameter h in his formulation [48]. Using h in

the way described here is also important for achieving good runtime performance.

This is discussed in detail in Chapter 7.
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5.3.3 Discontinuity Scaling

While σ makes sense as a scale factor for ∆i,j,0 in (5.5), σ is not directly related to

differences in derivatives of u across cell boundaries, {∆i,j ,k}, k>1. Those differences

become zero when the reconstruction is smooth across a cell boundary and nonzero

when there is a change in slope or a change in curvature. In general, the scale for

differences in slope is the same as the scale for slope, and likewise for curvature. In

other words, the same scale factors (5.8) apply to the quantities {∆i,j,k}, k>1, as well.

5.3.4 Embedding for the Piecewise Polynomial Case

To summarize, I suggest the following embedding for the pmax=2 algorithm:

δ(∆i,j ,k) → exp (−∆i,j ,k
2 /(s ρk)

2), k > 1 (5.11)

δ(ui,k) → exp (−ui,k
2 /(min (1, 2 s) ρk)

2) (5.12)

ρk =

{

σ, k=0
G/2, k > 0

(5.13)

h = 1/R. (5.14)

The factor 2 included in (5.12) effects a delay of the tightening of the coefficients’

embedding functions relative to the discontinuities’ embedding functions. The moti-

vation for this may be understood from rows a) to d) of Figure 4.5: there need to be

continuity between cells before there can be a meaningful reading of the coefficient

values.

5.4 Ensuring Coefficient Accuracy

As I discuss in Section 4.4, care must be taken to ensure that all coefficients are

computed to comparable accuracy in all intermediate problems of the continuation

method. A measure complementary to the choice of cell size (5.14) is to perform

optimizations with subsets of coefficients.
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Suppose we separate the independent variables u and arrange them into three

vectors q, v, and w, such that q contains all constant coefficients, v all linear, and

w all quadratic coefficients. Writing objective function F as a function of these three

vectors, F (q , v , w , s), an effective way of improving the relative accuracy of the

independent variables v and w is to solve the problems

min
(v,w)

F (q ,v ,w , s) (5.15)

and

min
w

F (q, v ,w, s), (5.16)

respectively.

In practical terms, the continuation method would consist of solving three prob-

lems in each iteration instead of one—minimization of F (u, s) w.r.t. u, followed by

minimization w.r.t. (v ,w), followed by minimization w.r.t. w.

5.5 Discussion

5.5.1 Relation Between F0 and F1

The objective functions F0 and F1 appear to have not much in common besides the

data term. But it can be shown that F0 is included in F1 in the sense that

F1(u) = F0(u)+M (u) when d= g and b= g/2, where (5.17)

M(u) =
g

4

∑

i∈I

∑

j∈Ni

[

2 min
k∈{1,...,5}

δ(ui,k)× min
k∈{0,1,2}

δ(∆i,j ,k)

+3 min
k∈{3,4,5}

δ(ui,k)× min
k∈{0,...,5}

δ(∆i,j,k)− 6
]

(cf. Appendix C).

The result is surprising and it poses the question whether F0 could be regarded

as an approximation to F1. This would correspond to the following, alternative way

of deriving Leclerc’s objective function:

1. start with the MDL criterion based on a run-length encoding of u,
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2. separate terms depending on ui,k and terms depending on ∆i,j ,k

3. drop the mixed terms M , and

4. allow for independent weighting of ui,k-terms and ∆i,j ,k-terms (i.e., introduce

a new parameter).

The experiments of Section 4.3 do not seem to corroborate this view of F0,—the

relation d = 2 b between the two parameters b and d cannot not be seen in the

parameter choices required for F0 (cf. Figure 4.6).

Even so, relation (5.17) may hold new insights into F0 by pointing away from a

chain-code encoding interpretation. The b-term in F0, for instance, scales similar to

(5.2). It is proportional to boundary length and the encoding length for the coeffi-

cients of the two neighboring regions of higher degree. For the underlying image of

test case 3, for example, the b-term is proportional to the encoding length for six

coefficients since the central region is quadratic. That means F0 without the d-term

could be interpreted as an imperfect length estimate of a run-length encoding of u, the

imperfection being that the encoding length of the lower-degree region’s coefficients

is overestimated. The d-term could serve to correct for this by penalizing the use of

higher-degree coefficients.

5.5.2 Solver Bias and Generalized Embeddings

Returning to the idea that F0 could be an approximation of F1, there is a possible

explanation why d=2 b is not born out in experiments. Changing b or d in F0 means

changing the graph of F0, including the number and/or location of local minima

of F0. While it is the global minimum that is of chief interest, other minima (of

F0(u, s)) close to the continuation path may influence the result of the algorithm by

changing the continuation path. Because the synthetic test images used in this work

(cf. Section 4.1) are constructed according to the algorithms’ image model, we may

expect the global optimum to be quite stable with respect to perturbations in b and
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d. A compelling explanation for the parameter sensitivity documented in Section 4.3

then is that—in the ranges considered—perturbations to b and d do not cause the

global optimum to change but cause the continuation path to change.

This situation is undesirable. We wish the objective function to determine the

global optimum and the embedding to determine the continuation path. When this

separation of concerns breaks down, engineering a robust algorithm becomes very

difficult. In order to achieve this separation the embedding needs to be generalized.

There are many ways to generalize the embedding in Section 5.3.4. One way that

is considered in the next chapter is to multiply the exponentials with an s-dependent

weighting function

δ(∆i,j ,k) → w∆(s)× exp (−∆i,j ,k
2 /(s ρk)

2) (5.18)

δ(ui,k) → wu(s)× exp (−ui,k
2 /(min (1, 2 s) ρk)

2) (5.19)

with ρk and h as in Section 5.3.4.
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Chapter 6

Experiments and Results

In the first two sections of this chapter I present experimental results for synthetic

images that show the merits of my new MDL criterion (F1) and the new embedding

developed in Section 5.3. The evaluation is similar to Section 4.3. That is, for each

algorithm variant one parameter is varied and the noise reduction (4.2) is measured

for each parameter value. Larger noise reduction (NRED) means more complete

separation of the stochastic and deterministic components of a test image. In case of

F0 parameter b is varied and d is kept fixed at d= 0.01.

Section 6.3 discusses solver bias , the phenomenon that an optimization algorithm

may perform well on some problem instances and poorly on others. More specifically,

I demonstrate that with Leclerc’s algorithm there is a trade-off between sensitivity for

low contrast-to-noise (CNR) contours on the one hand and the ability to reconstruct

regions with curvature on the other hand. This trade-off may be mitigated with a

more general form of embedding.

Sections 6.4 and 6.5 discuss reconstruction results for natural images (pho-

tographs). I find that the class of reconstruction algorithms studied in this work

significantly outperforms a state-of-the-art edge detector such as the Canny detector

[15] on the Berkeley boundary detection benchmark. This is a new result.
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6.1 Algorithms Using Old and New Embedding
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Figure 6.1. Average noise reduction vs. parameter value for an algorithm based on F0 using

Leclerc’s embedding described in Section 2.5.1 (left column), and using my new embedding from

Section 5.3.4 (right column), respectively. Rows a) to d) correspond to test cases 1 to 4. Ten

different noise realizations were added to each test case’s generating image and the resulting

NRED values averaged. The black line shows the average NRED value, the gray band its

standard deviation, as a function of parameter value.
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In the first experiment algorithms based on F0 are compared. One of the algo-

rithms uses Leclerc’s embedding described in Section 2.5.1 (Figure 6.1, left column);

the other algorithm uses my embedding, described in Section 5.3.4 (Figure 6.1, right

column).

The first thing to note from Figure 6.1 is that the best results achievable are all

of higher quality with the new embedding (Figure 6.1, right column) than with the

embedding proposed by Leclerc. This shows that the details of the embedding are as

crucial for the success of the algorithm as is the choice of parameter values.

As in Section 4.3 above I consider a reconstruction result good when it agrees

qualitatively with the good known solution, that is, when it has the expected number

of regions and the expected polynomial degree in each region. Inspecting individual

reconstruction results from the experiments summarized in Figure 6.1 I find that

results with an NRED value of about 15 or larger are good. Hence, we can tell

from the NRED curves whether an reconstruction algorithm is successful for a given

parameter value and test image. From the NRED curves in the first row of Figure 6.1,

for example, we see that with Leclerc’s embedding the algorithm fails for test image

1 for all choices of parameter b.

Note that with the new embedding a qualitatively correct reconstruction of test

case 1 (Figure 4.7 a) can be achieved and that, in turn, we have found a choice of

parameter values which yields good results for all four test cases (i.e., b≈0.3, d=0.01).

Also interesting is that with the new embedding the quality of results for test case 3

is much less sensitive to the choice of parameters (cf. Figure 6.1, third row).
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6.2 Algorithms Using Old and New MDL Criterion
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Figure 6.2. Average noise reduction vs. parameter value for algorithms based on Leclerc’s

objective function F0 (left column) and my objective function F1 (right column). The left column

contains the same graphs as the right column of Figure 6.1.

In the next experiment I test the viability of the new MDL criterion (F1).

Two algorithms that result with the two objective functions F0 (Leclerc) and F1
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(Juengling), respectively, are compared. Both algorithms use my new embedding.

Figure 6.2 juxtaposes NRED curves for the two algorithms for test cases 1 to 4.

First note that the MDL criterion F1 “works”, that is, it may be used as a basis for the

reconstruction algorithm. Examining the curves in Figure 6.2 one finds that the F1-

based algorithm achieves good results for three out of the four test cases. For test case

3 the F1-based algorithm fails to reconstruct the quadratic region for all parameter

choices (NRED clearly below 15).

Figure 6.2 also shows that the F1-based algorithm’s quality of result is much less

sensitive to the choice of parameter value than the F0-based algorithm. While the F0-

based algorithm requires a value b close to 0.3 for good results, the F1-based algorithm

produces good results for values g in the range 2.5 to 3.5, except for test image 3 (see

the corresponding results in the third row of Figure 6.2).

6.3 Solver Bias

An optimization algorithm performing better on certain problems than on others is

exhibiting bias towards the problems it solves well [79]. In Section 5.5.2 I conjectured

that the parameter sensitivity of Leclerc’s algorithm is a manifestation of solver bias,

and not of unstable optimal solutions. In this section I revisit this hypothesis, provide

experimental evidence for it, and use the insights gained from these experiments to

engineer a generalized embedding with which an algorithm using the F1 objective

function succeeds on test case 3.
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6.3.1 Low-CNR vs. Curvature
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Figure 6.3. Noise reduction vs. parameter d value (top row) for an algorithm using F0 and my

new embedding. The value for parameter b fixed at 0.3. The curve on the left corresponds to

different noise-variants of test case 1, the curve on the right to variants of test case 3. The curves

in the bottom row show desription length vs. parameter d value for the same experimental data

(i.e., value of F0(u∗, sf) with sf = 0.01). The thinner plot line shows F0(ug, sf), the description

length of the good known solution.

Test cases 1 and 3 may serve as examples to demonstrate solver bias in the

continuation method. Figure 4.6 in Section 4.3 already contains clues that these two

problems may require opposing algorithm tunings. In this experiment I evaluate the

quality of results for these two test cases as it depends on parameter d (the CNR-

ratio of test case 1 is decreased to about 1.43 to exhibit the solver bias phenomenon

more clearly).

Figure 6.3 shows that the quality of results for test case 1 improves when d is

increased. For test case 3, on the other hand, we observe the opposite behavior: the

continuation method fails to find good solutions when d is increased beyond a certain

threshold.
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The optimal solutions to the two problems are essentially constant for the d-

values considered in this experiment (cf. the bottom plots in Figure 6.3 comparing

optimization results against the good known solution). This means that changing d

is affecting the continuation path and not the location of the best solution. Higher d

values bias the algorithm towards recovering lower CNR contours (the characteristic

feature of test case 1), whereas lower d values bias the algorithm towards recovering

regions with curvature (the characteristic feature of test case 3).

That the d-parameter might have such an effect is in line with my claim (Sec-

tion 4.5.1) that the piecewise polynomial algorithm has a higher CNR threshold for

detecting discontinuities than the piecewise constant algorithm. Since the d-para-

meter weights the terms which penalize the use of coefficients ui,k, k > 0, increasing

d gradually restricts the degrees of freedom offered by the higher-degree coefficients

(using a physical metaphor we might say that increasing d makes the finite elements

u|Ωi
more stiff ). This causes the values of the difference terms ∆i,j ,0(u

∗,k) of interme-

diate solutions u∗,k to be larger, and thereby effects a reduction in the CNR threshold.

To complete the argument, consider that for large values of d the piecewise polynomial

objective function has the same optima as the piecewise constant objective function.

6.3.2 Controlling Solver Bias with a Generalized Embedding
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Figure 6.4. Noise reduction vs. parameter value with an algorithm using F1 and the embedding

depicted in Figure 6.5. The curve on the left corresponds to Figure 6.2 a), the curve on the

right to Figure 6.2 c) (right column). The solutions for test case 3 are now excellent, while the

solutions for test case 1 degrade and test case 4 (not shown) degrade slightly.
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The reconstruction algorithms have difficulty with test case 3: using F1 the algo-

rithm fails to find a good solution for any value of parameter g, and using F0 the

parameter values need to be finely tuned. As I discuss above in Section 5.5.2 and in

the previous section, we need to modify the embedding to change the reconstruction

algorithm’s biases.

In the previous section we see that the continuation method succeeds for test case 3

when the coefficient-term in F0 is weighted lightly. I now use this insight to construct

a generalized embedding which biases the algorithm towards finding solutions for test

case 3. With a generalized embedding that leaves the weighting of the ∆i,j ,k-terms

alone (i.e., w∆(s)=1), and a function wu which transitionally decreases the weighting

of the ui,k-embedding (Figure 6.5), the F1-based algorithm finds good solutions for

test case 3 as well (Figure 6.4).
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over iterations is shown

as a dashed line. For context the other two curves show 1/s and 1/min (1, 2s), respectively

(cf. the embedding in Section 5.5.2). The point s=1 is marked by a vertical line.

6.4 Results for Natural Images

This section considers the quality of results of the F1-based reconstruction algorithm
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when applied to real-world images. Since good known solutions are not available for

these images, the discussion focuses on qualitative aspects of reconstruction results.

The test images6.1 used as examples contain mostly smooth surfaces and little texture

in order to be in accordance with the smooth-surfaces assumption set forth in Section

1.2.

6.4.1 Boundary Detection

As discussed in Section 3.1.2, discontinuities are used as features in recognition tasks,

where it is assumed that the silhouette contours of objects are included in the discon-

tinuity set. Figure 6.6 shows the discontinuities in the reconstruction of the “peppers”

image from Chapter 1, and the discontinuities for the image of a house, respectively.

The results in the second row in Figure 6.6 are obtained with my reconstruction

algorithm. The results in the third row are obtained with my implementation of

Kanungo et al.’s reconstruction algorithm [46].

As expected, both algorithms generate discontinuities that correspond to silhou-

ette contours, as these are points of large intensity contrast. Low-contrast parts of

silhouette contours are found when a contour also includes high-contrast parts. See,

for example, the contour in the lower left of the “peppers” image which separates a

partially visible light pepper from an elongated, upright standing light pepper.

6.1. The two images are from http://decsai.ugr.es/~javier/denoise/test_images/

index.htm.
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Figure 6.6. Peppers image and C0-discontinuities in its reconstruction (left column).

The same for house the image (right column). The discontinuities in the middle row were

obtained with my reconstruction algorithm; the continuation method was terminated at

sf = 0.1. The results in the bottom row were obtained with the reconstruction algorithm

of Kanungo et al. [46], which is briefly discussed in Section 3.3.
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Both algorithms also produce some discontinuities at points of low contrast, and

which do not correspond to an object’s silhouette (see, for example, contours in

the sky region in the lower right image of Figure 6.6). We might call such con-

tours “spurious”, for they do not correspond to a true discontinuity in the unobserved

generating image. Spurious contours may occur when there is no low-order polynomial

to accurately and completely describe the image of a smooth surface.

The center image on the left in Figure 6.6 exhibits a number of predominantly

vertical or horizontal contours. This phenomenon reflects a bias of the reconstruction

algorithm towards straight contours6.2, which may affect the shape of contours in low-

contrast regions (that is, of spurious contours).

Another undesirable phenomenon on display in in Figure 6.6 are double disconti-

nuities at silhouette contours (for example, the contour separating sky and brick wall

in the house image). This phenomenon may be understood from the fact that pixels

at object boundaries may not exclusively belong to one object’s surface or another.

The intensity of such pixels falls in between the two local intensities corresponding to

the two sides of the boundary. When such “transition pixels” show a large intensity

difference to pixels on either side of the object boundary, the reconstruction algo-

rithms introduce discontinuities to their neighbors on either side.

Transition pixels are a consequence of the imaging process and are absent in the

synthetic images of Section 4.1. One way to avoid double discontinuities is to include

the blurring by the imaging process into the algorithm’s image model6.3 [48], a feature

not included in my implementation.

6.2. Leclerc explains that this bias may be reduced by using an eight-connected pixel neighbor-

hood instead of a four-connected neighborhood in the derivation of the objective function [48].

6.3. In order to model imaging blur, the observed image intensity z is assumed to be the

sum of the convolution of the reconstruction u with some blurring kernel K and the residuals r,

ri= zi−
∑

j−i∈S
Kj−i uj,0, where S is the support of K. Including imaging blur in the algorithm’s

image model means using this definition of residual in the data term (2.5).
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Figure 6.7. Discontinuities obtained similarly as in Figure 6.6, middle row, but the con-

tinuation method was stopped at sf = 0.5. While the discontinuities for the house image are

almost the same as in Figure 6.6, a number of spurious boundaries are absent in the result

for the peppers image.

A useful feature of the continuation method is that discontinuities are introduced,

roughly speaking, in the order of decreasing local image contrast. That is, higher-

contrast discontinuities are being introduced early (cf. Figure 4.5). It is therefore

possible to reduce the number of spurious boundaries by terminating the continuation

method earlier. Figure 6.7 shows the results of my algorithm when the continuation

method is stopped at sf = 0.5. Note that there are fewer spurious contours in Figure

6.7 than in the results of Kanungo et al.’s algorithm in Figure 6.6, especially for the

peppers image.

6.4.2 Image Denoising

To demonstrate that the reconstruction algorithm may be used to remove noise in

images, I created test images by adding Gaussian noise to the peppers and house

image, respectively (Figure 6.8, top row). The middle row of Figure 6.8 shows the

denoised images produced by my reconstruction algorithm, and the bottom row are

the results produced by a state-of-the-art wavelet-based denoising method [18].
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Figure 6.8. Peppers image with Gaussian noise added (σ = 20), its reconstruction, and

denoised image (left column). Same for the house image (right column). The reconstructions

in the middle row are obtained with my algorithm, where the continuation method was

terminated at sf = 0.5. The results in the bottom row are obtained with Chang et al.’s

denoising algorithm [18].
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The smooth regions in the results of my algorithm appear smoother than in the

results of the wavelet-based method and, one might argue, resemble the noise-free

images more closely in this regard (Figure 6.6, top row). Of course, smoothness is

precisely the property my algorithm is designed to exploit in reconstructing the signal,

whereas the wavelet-based method does not incorporate this assumption. On images

which include more texture, a denoising algorithm may be expected to do better than

the reconstruction algorithm.

6.5 Evaluation on a Boundary Detection Benchmark

The quality measure used in the foregoing sections, the noise reduction (4.2), is tailor-

made for evaluating reconstruction algorithms (i.e., algorithms separating signal and

noise). I use it in this work to gauge the benefits of different algorithms devised within

Leclerc’s methodical framework. In order to compare my algorithm to algorithms

devised along other approaches, I shift the focus in this section to the related boundary

detection task (Section 3.1.2). A widely used benchmark and dataset for this task is

the Berkeley boundary detection benchmark [56].

In the following Section 6.5.1 I briefly describe the Berkeley boundary detection

benchmark. The benchmark dataset consists of photographs spanning a wide variety

of scenes, and the code that performs the benchmarking expects detection results in

a particular data format. In Section 6.5.2 I describe what technical modifications I

implemented to cater to these two aspects. Section 6.5.3 presents and discusses results

for the benchmark.

6.5.1 The Berkeley Boundary Detection Benchmark

The Berkeley boundary detection benchmark consists of the dataset “BSDS300”,
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and of computer codes for automatic evaluation of boundary detection results for the

images in the dataset. Both may be downloaded from a UC Berkeley server6.4.

Figure 6.9. Example images and overlaid contours from human-generated segmentations

from the BSDS300 dataset. Darker contours have been selected by more human subjects.

The images, 481x321 pixels in size, are a subset from the “Corel image database”

(see Figure 6.9 for two examples). Martin et al. say they “chose images of natural

scenes that contain at least one discernible object.” ([55], page 418).

Human subjects were instructed to segment these images assisted by an image

segmentation tool. For each image, five to ten human segmentations were collected.

The segmentations define contours which are shown overlaid on the right in Figure

6.9. As this figure makes clear, segmentations from different subjects may very well be

6.4. http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench
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different. There are two kinds of differences: small differences in the exact localization

of a contour, and differences in the number of contours. With regards to differences in

the number of contours the authors remark that “Even if two observers have exactly

the same perceptual organization of an image, they may choose to segment at varying

levels of granularity.” ([55], page 417).

6.5.1.1 Evaluation Methodology

Figure 6.10. Image from the BSDS300 dataset (left) and a soft boundary map (right).

In a later publication, Martin et al. propose a performance measure which applies

to algorithms for image segmentation as well as to algorithms for boundary detection.

It is based on a concept called a boundary map. A boundary map for an image is a

labeling of an image’s pixels as being either part of a contour or not part of a contour.

Assume there is ground truth which tells for each pixel whether it truly is part of a
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contour or not. The quality of a detected boundary map may then be expressed by

two numbers, precision (P ), the fraction of all detected boundary pixels that are true,

and recall (R), the fraction of all true boundary pixels that were detected. Together

precision and recall mark a point (P ,R) in the interval [0,1]× [0,1]. Higher precision

and recall values mean better results. A detection result which reproduces the ground

truth perfectly corresponds to the point (1,1).

Instead of simply labeling pixels, many algorithms may quantify (on some con-

tinuous scale) a degree of certainty that a given pixel is part of a contour or not. If

this scale goes from zero to one then these quantities may be interpreted as pixel-wise

probabilities for the presence of a contour. Martin et al. call such a detection result

a soft boundary map (see Figure 6.10 for an example). Note that one may obtain

a boundary map from a soft boundary map by thresholding , that is, by labeling all

pixels with probability larger than some threshold t, t∈ [0,1] as contour pixels. Thus,

for each threshold t we get a point (Pt,Rt) in the precision-recall interval, and, taken

together, these points make up what is called a precision-recall curve. Martin et al.

write

“The precision and recall measures are particularly meaningful in

the context of boundary detection when we consider applications that

make use of boundary maps, such as stereo or object recognition. If

it is reasonable to characterize higher level processing in terms of how

much true signal is required to succeed R (recall), and how much noise

can be tolerated P (precision). A particular application can define a

relative cost α between these quantities, which focuses attention at a

specific point on the precision-recall curve. The F-measure, defined as

F =PR/(αR+(1−α)P ) (6.1)

captures this trade off as weighted harmonic mean of P and R. The
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location of the maximum F-measure along the curve provides the

optimal detector threshold for the application given α, which we set

to 0.5 in our experiments.” ([56], page 536).

To compute precision and recall, boundary maps derived from the human-gener-

ated segmentations serve as ground truth. As we observed above, this ground truth

data is not accurate in terms of boundary-localization, and detected boundary pixels

need to be brought into correspondence with ground-truth boundary pixels in some

way that is tolerant of these location errors (see Martin et al. [56] for how this problem

is solved in the Berkeley benchmark).

For each image in the dataset, there are five to ten ground-truth boundary maps

from the human segmentations. To generate a single precision-recall curve from

these multiple ground truths, Martin et al. correspond detected boundary pixels

to each ground-truth boundary map in turn. Only those detected boundary pixels

not matching any ground-truth boundary pixel are counted as false positives. The

recall values are averaged over the different ground-truths, “so that to achieve perfect

recall the machine boundary map must explain all of the human data.” ([56], page 536)

Finally one precision-recall curve for the whole dataset is produced, which

expresses precision and recall for the entirety of the data.

6.5.1.2 Training Set vs. Test Set

The BSDS300 dataset in fact consists of two datasets. The purpose of the first set,

consisting of 200 images plus ground-truth data, is to train or tune a contour detection

algorithm. That is, benchmark results obtained with this training set may suggest

modifications to the algorithm which could improve results.

The second dataset, the test set , is to be used for the actual evaluation and to be

reported in publications. It consists of 100 images plus ground-truth data.
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6.5.2 My Algorithm for the Boundary Detection Task

In Sections 6.1 to 6.4 of this chapter I discuss results of reconstruction algorithms

where σ is assumed to be constant and known. To the images of the BSDS300

datasets these assumptions do not apply. For the boundary detection task posed

by the Berkeley benchmark I therefore use the more complicated algorithm out-

lined in Section 2.6, which performs region-wise estimation of the variance as part

of the reconstruction process.

Note that the “discontinuity maps” I present in Section 6.4.1 above (cf. Figure

6.6) are not like the soft boundary maps expected by the benchmarking code. The

discontinuity elements subject to labeling are not pixels, but pixel boundaries, and,

secondly, the labels are binary instead of “soft” probabilities of contours.

To obtain “soft” contour indicators I record the stability of the discontinuity ele-

ments, which is the value of the continuation parameter s at which a discontinuity

first occurs (see also Figure 6.7 and the discussion at the end of Section 6.4.1). The

stability is zero when no discontinuity was detected. From this “stability map” I obtain

a soft boundary map in two steps. First, each pixel in the map is assigned the average

of the pixel boundaries’ stability values. Next the logarithm of the averages is taken

(since the continuation parameter values are equally spaced on a log-scale), and the

result is rescaled so the map values span the range [0, 1]. Figure 6.10 above shows an

example of a soft boundary map obtained this way.

Finally, to increase precision I apply a standard image processing technique and

remove small connected components from the stability map (see Figure 6.11 for an

example). This a reasonable measure since the images in the dataset “contain at least

one discernible object” [55], which means that the boundaries of objects of interest are

generally much longer than boundaries attributable to distant background objects,

clutter, or small-scale artifacts.
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Table 6.1 lists the parameter values I used to obtain the results reported in the

following section. My experiments also included a version of the algorithm using

Leclerc’s objective function F0, and I found it to perform equally well with certain

parameter combinations (but not better).

Objective function g o connected-component size

F1 4 100 250

Table 6.1. Parameter values used in the evaluation runs on the Berkeley boundary detec-

tion benchmark.

Figure 6.11. Soft boundary map before removal of small connected components (left), and

after removal (right).
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6.5.3 Results on the Berkeley Benchmark
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Figure 6.12. Precision-recall points for human segmentations (left), and precision-recall

curves for three different algorithms (right).

The precision-recall curve of a detector with perfect precision would consist of the

points on the upper boundary of the precision-recall interval {(x,1)|x∈ [0,1]}. Coming

close to this result is unrealistic for the Berkeley boundary detection benchmark,

however, considering that matching the different human ground-truth data for a given

image do typically not result in such points (see Figure 6.12, left). In other words,

humans do not achieve perfect scores on this benchmark, and it seems implausible

that machines could do any better.

To rank different algorithms the authors of the Berkeley benchmark use the F -

measure (6.1), which is a single number derived from a precision-recall curve. It turns

out that the practical range of F -measure values is [0.41,0.79], where the upper bound

0.79 is the score achieved by human subjects, and the lower bound 0.41 is the score

achieved by an algorithm producing random soft boundary maps.

Figure 6.12 (right) shows the precision-recall curve “Piecewise Polynomial Recon-

struction” that I obtain with my reconstruction algorithm described in the previous

section. To put my result into perspective, the diagram also shows a result demon-
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strating current state-of-the-art performance for boundary detection on grayscale

images (“Global Probability of Boundary” [3]), and a result obtained with a standard

edge detector similar to Canny’s [15] (“Gradient Magnitude”)6.5.

The figure shows that the reconstruction algorithm performs significantly better

than a standard edge detector, but it does not achieve state-of-the-art performance.

Example results are shown in Figure 6.13 below and in Appendix D.

6.5.3.1 What Makes a Good Boundary Detector?

To gain some understanding as to why the reconstruction algorithm performs as it

does on the Berkeley benchmark, consider Figure 6.13. It shows some results for an

image from the BSDS300 test dataset. The first thing to note is that the ground-truth

contains fewer boundaries than are present in the machine’s soft boundary maps, and

that most if not all ground-truth contour pixels are contained in a machine’s boundary

map for some threshold. This situation is typical and what it means is that it is easy

(for most images) to achieve high recall, but difficult to achieve high precision. Algo-

rithms incorporating strategies designed to boost precision may therefore expected

to be superior. For example, the contour marking the shoreline in the marina picture

of Figure 6.13 is assigned higher probability by the “Global Probability of Boundary”

algorithm than by the other two algorithms. This puts it ahead of the other two

algorithms because the shoreline contour is included in the ground truth.

There are two general strategies for improving precision over a standard edge

detector. The first strategy is to search for better local criteria for determining pres-

ence of a boundary [69]. The second strategy is to identify salient contours in the

soft boundary map and to assign higher probability to them [73].

6.5. The detector uses Gaussian derivatives and non-maxima suppression just like the Canny

edge detector. The three parameters of this detector—the scale of the Gaussian, and two parameters

in the logistic function mapping detector response to a probability—were determined by optimizing

detector performance on the training dataset.
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Figure 6.13. Results for a particular image from the BSDS300 test dataset. Top row:

grayscale image (left) and ground-truth boundaries from human segmentations overlaid

(right). Middle row: soft boundary maps by “Global Probability of Boundary” [3] (left), and

by my “Piecewise Polynomial Reconstruction” algorithm (right). Bottom row: soft boundary

map by “Gradient Magnitude” [56] (left), and precision-recall curves for the three named

algorithms. Darker tone in the soft boundary maps mean higher probability of boundary.

The first strategy is pursued systematically by Martin et al. [56], who use a

combination of histogram-based change detectors sensitive to brightness, color, and
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texture changes, respectively, and who cleverly combine them into a single boundary

detector. More recent improvements in state-of-the-art performance on the Berkeley

benchmark are achieved by the second strategy (boosting salient contours), also called

a “globalization” step by some authors [3].

The reconstruction algorithm is a globalization strategy by design, that is, the

problem of finding contours is posed in the form of a global optimization problem.

Simply put, my reconstruction algorithm (“Piecewise Polynomial Reconstruction” in

Figure 6.13) incorporates the second strategy but not the first. This explains why it

performs better than a standard edge detector, which uses neither strategy, and worse

than a state-of-the-art contour detector, which uses both.

6.6 Summary and Discussion

With my new embedding, the continuation method appears to be working more

reliably than with the embedding used by Leclerc; good solutions are found for more

problems and over a wider range of parameter choices (Section 6.1). Combining

this embedding with my new MDL criterion (F1) produces an even more reliable

reconstruction algorithm in terms of parameter sensitivity, with the exception of test

case 3 (Section 6.2).

An investigation into the failure on test case 3 points to solver bias. Solver bias

may be observed with either MDL criterion and is a plausible explanation of the

parameter sensitivity observed in Section 4.3. I argued that it is the embedding and

not the objective function that is the appropriate place in which to address problems

with solver bias. Section 6.3 gives an example: insight into how the weighting of the

d-term in F0 influences the results for test case 3 is used to construct a generalized

embedding which lets an algorithm using F1 succeed on all four test cases.

Experimental results not discussed above show that the staggered optimization

scheme for improved coefficient accuracy (Section 5.4) does not significantly improve

results when the new embedding is used.
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Application to natural images that meet the smooth surfaces assumption shows

that my reconstruction algorithm produces useful results. When applied to denoising

problems it excels at restoring the piecewise smooth appearance of an image. When

used for detecting contours the algorithm makes silhouette contours explicit as discon-

tinuities. It tends to generate double discontinuities when imaging blur is not taken

into account in the image model, however.

An evaluation of the reconstruction algorithm on the Berkeley contour detection

benchmark clearly shows that it is superior to standard edge detectors on natural

images. This belatedly demonstrates the merit of global image analysis approaches

pioneered in the mid-to-late 1980s by Leclerc and others [13, 30, 48].
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Chapter 7

Solving the Optimization Problem

7.1 Methods for Solving Unconstrained Problems

Section 2.5.1 presents

min
u

F (u, s) (7.1)

as the optimization problem to be solved repeatedly by the continuation method

(F may be F0 or F1). Since there are no constraints on the variables u ∈ R|I |×6

and the range of F is R, problem (7.1) is an unconstrained optimization problem

[45, 63]. General methods for solving unconstrained problems find local minimizers ,

that is, points u∗ for which F (u∗, s) ≤ F (u, s) for all u in a small neighborhood

of u∗. Although these methods may only find local minimizers, in the context of

a continuation method with a perfect embedding and a sufficiently small step size

for the continuation method, those local minimizers are also global minimizers (cf.

Section 2.5.1).

This section introduces general ideas behind the methods studied in this work.

Section 7.2 describes those methods and presents numerical results demonstrating

a significant runtime improvement of the overall algorithm developed in this work

compared to that of Leclerc [48]. Section 7.3 gives more results detailing the individual

runtime improvements of different techniques employed in this work.

To keep the notation simple in this chapter F (u, s) is abbreviated to F (u) when

the continuation parameter is not relevant to the discussion.
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7.1.1 Solving a Nonlinear System

A necessary condition for a minimizer u∗ of F is

∇F (u∗)= 0. (7.2)

One strategy for solving problem (7.1) may therefore be to search for solutions of the

nonlinear system (7.2). However, since maximizers and saddle points satisfy system

(7.2) as well, additional strategies or arguments are required to guarantee that a

solution of (7.2) is also a solution of (7.1).

7.1.2 Line-Search Methods

A broad class of algorithms for solving problem (7.1) are iterative. They start with a

given starting point u0 and generate a sequence of points {uk}k>0 that converges to

some local minimizer u∗ of F , and for which F (uk)<F (uk−1) for all k>0. In practice

only a finite number of points of this sequence are computed and a method uses some

heuristic termination criterion to decide when to stop. This means that minimizers

are determined only approximately by the final point uf in the computed sequence.

One way to compute the next point in the sequence is to generate a descent

direction d, for which

F (uk+ εd)<F (uk) for all ε∈ (0, δ]

is true for some δ > 0, and then to take a step in that direction. Probably the

best known descent direction is the steepest descent direction −∇ F (u) but other

directions can be more effective. Methods generating and taking steps along descent

directions are called line search methods .

The theoretically best step in a chosen descent direction d corresponds to the

value α > 0 minimizing F (uk + α d). Finding the best value α constitutes a new

minimization problem. Trying to solve this minimization problem would be simple but

inefficient and practical methods for solving (7.1) use other criteria for determining α.
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Such criteria are designed to keep the number of evaluations of F small while at the

same time guaranteeing7.1 convergence of the sequence {uk}k>0 to a local minimizer

[57].

7.1.3 Quasi-Newton Methods

When the Hessian of F at uk is nonsingular, then

∇2F (uk)d=−∇F (uk)

may be solved for d. This vector, called the Newton direction, is a descent direction

whenever ∇2 F (u) is positive definite. Methods using the Newton direction when

applicable are called Newton methods . When close enough to a minimizer they con-

verge quickly, reducing the distance to the minimizer quadratically per step.

Quasi-Newton methods use directions defined in a similar way,

Bkd=−∇F (uk).

The matrices {Bk}k>0 are generated by the method and are positive definite by

construction so d is always a descent direction. These methods are called quasi-

Newton because the matrices Bk are designed to approximate the Hessian ∇2F (u) in

some way to achieve good local convergence behavior. Quasi-Newton methods may

be used instead of a Newton method when either the Hessian is unavailable, costly

to evaluate, or when solving for the Newton direction would be too costly.

7.1.4 BFGS Method

With the difference between uk+1 and uk small enough, the Hessian predicts the

change in gradient as

∇2F (uk) (uk+1−uk)≈∇F (uk+1)−∇F (uk).

7.1. The search directions d also need to meet a requirement for this guarantee.
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This observation motivates imposing the constraint

Bk+1 (u
k+1−uk)=∇F (uk+1)−∇F (uk),

or, with new notation sk=uk+1−uk, yk=∇F (uk+1)−∇F (uk),

Bk+1 sk= yk

on the matrices {Bk}.

With additional constraints like symmetry and positive definiteness update for-

mulas—computing Bk+1 from Bk, sk, and yk—may be derived. As Bk is positive

definite Hk=Bk
−1 exists, and similar formulas may be derived for Hk as well. The so

called BFGS method uses the update formula

Hk+1=

(

I −
skyk

T

yk
T sk

)

Hk

(

I −
yk sk

T

yk
T sk

)

+
sk sk

T

yk
T sk

, for k > 0, (7.3)

and computes search directions d=−Hk∇F (uk). The matrix H0 is user-supplied or

a simple default like I is used. The derivation of (7.3) and analysis of the convergence

behavior of the BFGS method may be found in textbooks on optimization [45, 63].

7.2 Comparing Runtime Performance

The number n of independent variables in u is a multiple of the number of image

cells and can be very large. The size of matrices like Bk or Hk in Section 7.1.4 are

quadratic in this number, making Newton and quasi-Newton methods that generate

such matrices impractical. The next section explains how the quasi-Newton method

used in this work avoids forming the matrices {Hk}.

Relaxation methods is another class of methods applicable when n is very large and

the matrices involved are sparse. Essentially, in every iteration a relaxation method

solves an equation for each independent variable. This requires little work when

each variable depends only on a few other independent variables (sparsity). Section

7.2.2 describes the relaxation method used by Leclerc. The remaining sections cover

numerical performance experiments and results.
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7.2.1 Limited-Memory BFGS

The limited-memory BFGS method (L-BFGS) operates with a matrix H̃k similar

to Hk as defined in (7.3). The difference is that H̃k does not depend on all previous

iterations but on the vectors si and yi obtained over the last m iterations only, and

on a diagonal matrix H̃0,k, which may vary from iteration to iteration.

The second difference to the BFGS method is that the matrix H̃k is never explic-

itly formed. Note that the BFGS method uses Hk to compute the product Hk ∇F .

Because H̃k is a low-rank modification of the diagonal matrix H̃0,k, the product H̃k ∇F

can be computed per a series of dot products, scalar-vector, and vector-vector opera-

tions involving the vectors si, yi, i=k−m, ..., k− 1, and H̃0,k. For example, if m=2

and k > 2 the update formula (7.3) applied twice yields H̃k as

H̃k=

(

I −
sk−1 yk−1

T

yk−1
T sk−1

)(

I −
sk−2 yk−2

T

yk−2
T sk−2

)

H̃0,k

(

I −
yk−2 sk−2

T

yk−2
T sk−2

)(

I −
yk−1 sk−1

T

yk−1
T sk−1

)

+

(

I −
sk−1 yk−1

T

yk−1
T sk−1

)(

sk−2 sk−2
T

yk−2
T sk−2

)(

I −
yk−1sk−1

T

yk−1
T sk−1

)

+
sk−1 sk−1

T

yk−1
T sk−1

.

The L-BFGS method keeps the vectors si, yi, and the dot products yi
T · si, i =

k−m, ....k− 1, in memory and uses them to compute H̃k∇F . If arranged carefully,

this computation requires just 4mn+n multiplications [53, 63].

The termination criterion I use with this method is

‖∇uF (u)‖2< gtolmax (1, ‖u‖2), (7.4)

with gtol= 10−5.

7.2.2 Nonlinear Jacobi Method

Leclerc derives a method for solving the system (7.2). Linearizing the gradient of F ,

(7.2) takes the form

∇F (u) =A(u)u+ f =0,
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where A(u) is sparse. One can take advantage of the sparsity of A(u) and solve the

equations for each cell’s coefficient vector ui individually. That is, with

∇ui
F (u)=Ai,i(u)ui+

(

∑

j∈Ni

Ai,j(u)uj − fi

)

=0,

where Ai,j(u) are 6× 6 matrices, the method consists of solving

Ai,i(u
k)ui

k+1= fi−
∑

j∈Ni

Ai,j(u
k)uj

k (7.5)

for ui
k+1 for all i.

This is a variant of the Jacobi method normally used for solving linear systems

[82]. When A is diagonally dominant this scheme (using (7.5) in a fixed-point iter-

ation) is known to converge. While there is no proof for the diagonal dominance of

A, empirically this scheme converges with F =F0 (see also [50], appendix C).

Leclerc combines this method with a termination criterion based on step size.

That is, the iteration is stopped when

‖uk+1−uk‖∞<utol s σ, (7.6)

where Leclerc recommends the value 0.1 for parameter utol [48].

7.2.3 The Algorithms Compared

The runtime performance of two algorithms for a pmax = 2 piecewise polynomial

reconstruction is compared. The first algorithm, A, is Leclerc’s algorithm [48] with

the following modifications:

1. the embedding based on (5.7) and (5.8) is used (cell size h=1),

2. the termination criterion (7.4) is used.

The embedding is modified as it affects the continuation paths (cf. Chapter 6), there-

fore both algorithms ought to use the same embedding. The termination criterion is

modified for the same reason.
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The second algorithm, B, uses the same objective function and representation of

u as algorithm A but differs with respect to the optimization. Algorithm B utilizes

the L-BFGS method for the minimization problem (7.1), for instance. Other features

unique to algorithm B are described in Section 7.3.

The comparison is in terms of total number of function evaluations. To be pre-

cise, for the first algorithm the Jacobi iterations (7.5) are counted, for the second

algorithm gradient evaluations are counted. This turns out to be a fair comparison.

With the implementations considered here the runtime of one Jacobi iteration is

about 1.75 times the runtime of one gradient and one function evaluation together.

When including the time for the L-BFGS logic—averaged over number of gradient

evaluations—the factor drops to about one.

7.2.4 Runtime Comparison
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Figure 7.1. Box plots indicating the distribution of runtimes for algorithm A (gray) and B

(black), respectively, with objective function parameters b= 0.3 and d= b/10. From left to

right the box plots correspond to test cases 1, 2, 3 and 4. Each box stretches from the first

to the third quartile of the group of measurements, respectively. The second quartile—also

known as median—is shown as a horizontal line inside each box (see Table 7.1 for the

median values). The whiskers above and below extend out up to 1.5 times the box’s height.

Measurements outside this range are considered outliers and are plotted as individual dots.

For the comparison 50 instances of each of the four test cases from Chapter 4

are generated (that is, 50 variants obtained with 50 different realizations of the noise
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component) and both algorithms are run on all 4 × 50 problems. With parameters

s0= 10, sf = 0.01, and r= 0.96 for the continuation method the outer loop generates

170 iterations.

Figure 7.1 shows nonparametric statistics of the total function evaluation counts

after grouping by test case. Notice that expected runtime does not only depend on

problem size.

Test case 1 Test case 2 Test case 3 Test case 4
Algorithm A 128848 206643 256783 156457
Algorithm B 2237 10125 7193 7160

ratio 57.6 20.4 35.7 21.9

Table 7.1. Median runtimes (in # function evaluation) for algorithms A and B, respec-

tively.

As Figure 7.1 makes clear algorithm B greatly outperforms algorithm A. This

improvement is one of the major contributions of this dissertation. The speedup is

20-fold to 57-fold for the cases considered (cf. Table 7.1). A closer investigation in

Section 7.3 shows that this speedup is not simply owed to the use of the L-BFGS

method but to a combination of factors.

7.2.5 Comments

• The Jacobi iteration (7.5) was found not to converge with F = F1. Even

algorithm A (F =F0) occasionally fails to converge (either algorithm is stopped

when the termination criterion is not satisfied within 106 iterations).

• When termination criterion (7.6) with utol = 0.1 is used, algorithm A gives

poor results for the test cases used in this study. Results improve and runtime

increases when parameter utol is lowered, but so does the algorithm’s tendency

of failing to terminate. Overall, criterion (7.4) appears to be more appropriate

for this problem than criterion (7.6).
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7.3 Runtime Improvements in Detail

7.3.1 Jacobi Method vs L-BFGS

Test case 1 Test case 2 Test case 3 Test case 4
Jacobi method, h=1 (alg. A) 128848 206643 256783 156457

L-BFGS method, h=1 814078 375421 368274 598173
ratio 0.158 0.550 0.697 0.262

Jacobi method, h=1/R 44276 176381 47635 78343
L-BFGS method, h=1/R 3060 18667 8915 9725

ratio 14.5 9.45 5.34 8.06

Table 7.2. Median runtime numbers with Jacobi method and L-BFGS method, respec-

tively.

Changing the optimization method from Jacobi (Section 7.1.2) to L-BFGS alone

does not improve runtime. To the contrary, runtime degrades if algorithm A is modi-

fied in this way (cf. Table 7.2). The picture reverses, however, if parameter h is chosen

as described in Section 5.3.2 (h=1/R).

7.3.2 Extrapolating the Continuation Path

Another way to reduce runtime does not concern the method used for solving problem

(7.1) but rather the initial guesses from which a method starts its search. The pre-

scription in Section 2.5.1 is to start the search in iteration k of the continuation

method from the minimizer u∗,k−1 obtained in the previous iteration.

However, a better starting point vk can be constructed from the two previous

iterations by linearly extrapolating the continuation path,

vk=u∗,k−1+ω
sk− sk−1

sk−1− sk−2
(u∗,k−1−u∗,k−2), (7.7)

where a good value for factor ω can be found by experiment (ω= 0.7 is used in this

work).

Comparing runtimes with and without extrapolation shows that a speedup factor

of 1.3 or better may be expected from this technique (cf. Table 7.3).
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Test case 1 Test case 2 Test case 3 Test case 4
Without extrapolation 3030 18254 9100 9360

With extrapolation (algorithm B) 2237 10125 7193 7160
ratio 1.35 1.80 1.27 1.31

Table 7.3. Median runtime numbers of variations of algorithm B without and with extrap-

olation of the continuation path, respectively.

7.4 Discussion

The study discussed in this chapter brings about a few insights and recommendations.

The Jacobi method of Section 7.2.2 is unsafe; it may fail to converge. Generalizations

such as the weighted Jacobi method or related relaxation methods such as the method

of successive over-relaxation (SOR) [82] could be used to overcome this. However,

alternatives to relaxation methods like the conjugate gradient method or limited-

memory quasi-Newton methods are nowadays recommended for large-scale problems

[63], and the prospect of developing a superior relaxation method seems remote.

Aside from the added safety of a globally convergent line-search method, the

quasi-Newton method chosen in this work can greatly outperform the Jacobi method

developed by Leclerc. Introducing the cell size parameter h is a key requisite to its

success, however.

Setting h as described in Section 5.3.2 benefits the optimization in two ways. First,

proper scaling of the independent variables ensures that the termination criterion

(7.4) is appropriate (this is discussed in Section 4.4.2). Second, the conditioning of the

problem improves, that is, the spread of eigenvalues of the Hessian matrix ∇2F0(u)

decreases. It is this second effect that brings about the dramatic improvement of the

L-BFGS method seen in Table 7.2.
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Chapter 8

Summary and Conclusions

I studied a particular approach to the problem of decomposing an image into two

signal components, which are thought to represent different influences on the image

formation process. The first, deterministic, component is modeled as a piecewise

smooth function and represents the idealized projection of surfaces in the scene onto

an image plane. The second, stochastic, component models noise in the image acqui-

sition system as well as small-scale texturing of objects. The image features made

explicit by the first component—discontinuities and differential structure—are of

interest in computer vision applications.

This decomposition problem is ill-posed, and a simplicity argument is used to

make it well-posed. The argument is formalized in an MDL criterion. The MDL

criterion selects the decomposition which gives the shortest description of the image

in terms of its two component signals. In its final form the problem is posed as a

minimization problem.

This formulation of image reconstruction as a minimization problem, as well as

an algorithm to solve it, was developed by Leclerc [48]. I studied Leclerc’s work,

reimplemented and evaluated his method, and developed solutions for problems I

encountered. My contributions are quite technical in nature and I summarize them

below. But first a few words to put Leclerc’s work into broader perspective.

8.1 Leclerc’s Work in Computer Vision

The piecewise smoothness assumption for visual data is a premise common to a

number of formulations of the image reconstruction and the image segmentation

problem [13, 30, 46, 48, 58]. These formulations are the basis of algorithms used in a
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variety of applications such as segmentation of medical images [17, 77, 61], analysis

of remote-sensing data [28, 29, 64], image database retrieval [25, 37], interpretation of

range data (robotics) [13, 32, 76], and estimation of optical flow (video compression,

robotics) [7, 80].

The formulation generating the most follow-up research turned out to be the

formulation of Mumford and Shah (Section 3.2.1). The work of Leclerc, on the other

hand, has inspired much less follow-up work and is rarely cited in recent related

publications. This might seem curious, considering that Leclerc’s MDL formulation

appears less ad hoc than Mumford and Shah’s. The simplicity principle driving his

approach has also been suggested as a basis for understanding human visual per-

ception [35]. More importantly, perhaps, it provides a framework in which more

sophisticated image analysis problems may be formulated [48].

I suggest two reasons why Leclerc’s work may not have had a wider impact. The

first reason is that workers in computer vision cannot easily evaluate Leclerc’s recon-

struction method because no implementation of his algorithm is readily available.

The algorithm is fairly complex and reimplementing it requires a major effort.

The second reason is more mundane; I think Leclerc’s work has been mostly

forgotten. In a white paper, the initiators of the 2011 “Frontiers in Computer Vision”

workshop are taking stock of recent research trends and identify areas for development

in computer vision. On the state of the discipline’s scholarship the authors comment:

The current lack of scholarship not only results in the frequent

reinvention of classic research but, perhaps more seriously, in good

papers and grants being rejected ... There is a culture which evaluates

researchers based on the number of papers they produce without taking

their quality into account. In addition, older work, beyond a ten year

time-span, seems often forgotten and is frequently being re-invented.

([81], page 6)
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8.2 Contributions

8.2.1 Performance Characterization of Leclerc’s Algorithm

In a recent article [3] published by the group at UC Berkeley who developed the

Berkeley contour detection benchmark (Section 6.5), the authors present a chart jux-

taposing benchmark results for a range of contour detection algorithms that have been

published over the years (cf. Table 8.1). This chart shows how the field has gradually

progressed over decades. But the selection of algorithms suffers from “availability

bias” and one notices an awkward gap of almost 20 years—from the seminal work of

Canny [15] to the work of Martin et al. [56]. Other interesting algorithms have been

published during this time, of course, but for lack of readily available implementations,

those other works are not mentioned.

F -measure Algorithm Year

0.70 gPb - Arbelaez, Maire, Fowlkes, Malik [3] 2011

0.68 Multiscale - Ren 2008

0.66 BEL - Dollar, Tu, Belongie 2006

0.66 Mairal, Leordeanu, Bach, Herbert, Ponce 2008

0.65 Min Cover - Felzenswalb, McAllester 2006

0.65 Pb - Martin, Fowlkes, Malik [56] 2004

0.64 Untangling Cycles - Zhu, Song, Shi 2007

0.64 CRF -Ren, Fowlkes, Malik 2005

0.58 Canny [15] 1986

0.56 Perona, Malik 1990

0.50 Hildreth, Marr 1980

0.48 Prewitt 1970

0.48 Sobel 1968

0.47 Roberts 1965

Table 8.1. Algorithms ranked by F -measure achieved on the Berkeley boundary detection

benchmark (taken from Figure 1 in [3]).

One of my contributions consists of adding another data point to this ranking.

If we attribute the new entry with F -measure value 0.62 (Section 6.5.3) completely

to Leclerc, then this result asserts a significant improvement in contour detection

performance over the Canny detector just three years after Canny’s publication8.1.
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I also studied the behavior of Leclerc’s algorithm on synthetic images and discov-

ered a number of previously undocumented weaknesses, such as parameter sensitivity,

solver bias, and a generally higher CNR threshold than was previously asserted.

8.2.2 Implementation

My source code is available to the research community so others may build on this

work. The code represents a family of algorithms ranging from Leclerc’s original

algorithm to my derivative algorithm, which uses a newly derived objective function

and includes a number of technical improvements boosting robustness and runtime.

In the next section I briefly recount what these improvements are.

8.2.3 Robustness Improvements

A quantitative evaluation of the algorithm’s performance on synthetic images revealed

strong parameter sensitivity—a result at odds with Leclerc’s claims. An investigation

into the causes showed that the continuation method used for solving the optimization

problem may fail to find good solutions, and that the choice of parameters sometimes

determines success or failure. The continuation method’s failure is an instance of

solver bias, however, and should not force changes to an objective function. I pre-

sented two solutions.

8.2.3.1 More Appropriate Embedding Functions

First, I mitigated the problem with a new and more appropriate embedding which

makes the continuation method work more reliably. Second, I showed that the para-

meter sensitivity is an expression of solver bias, and that solver bias may be controlled

in the solver itself by use of more general forms of embeddings.

8.1. This would make Leclerc’s entry the best performing method among those that are older

than the Berkeley benchmark. It should also be noted that all the algorithms listed above Canny’s

are using color information, whereas Canny’s and all entries below it do not. The F -measure value

achieved by a state-of-the-art method using no color information is 0.68 (cf. Section 6.5).
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8.2.3.2 An MDL Criterion with Fewer Parameters

MDL criteria are inherently parameter-free. In Leclerc’s solution parameters are intro-

duced when approximations are being made. To approach the parameter sensitivity

problem from a different angle, I reconsidered the MDL criterion. The approxima-

tions in question are necessitated by the constraint that evaluation of the encoding

length may only use information from pairs of connected cells. A run-length encoding

caters better to this constraint and allows a tighter approximation than a chain-code

encoding. This leads to the derivation of a new MDL criterion based on a run-length

encoding. The new criterion has one free parameter instead of two, and experiments

suggest the resulting algorithm is more robust with respect to parameter choice.

8.2.3.3 Ensuring Convergence using a Line-Search

The method for solving the optimization problem proposed by Leclerc is another

source of difficulties. The termination criterion has proven inappropriate for achieving

high-quality results, and the Jacobi relaxation method may fail to converge. Using

a termination criterion based on gradient magnitude and employing a line-search

method solves the robustness problems.

In recent PhD work Ivanovska extends Leclerc’s piecewise constant algorithm so it

may work directly on color images (RGB) [41, 40]. She also finds that the relaxation

method produces poor results on synthetic test images and reports that minimizing

by steepest descent instead “gives high quality results and reconstructs the initial

images” ([40], page 80). (It is not clear from her description whether she used the

same termination criterion when comparing both methods or not.)

8.2.4 Runtime Improvements

The steepest descent method chosen by Ivanovska performs poorly in terms of run-

time, however. She reports that “the computational costs are high, for example, for

a 100× 100 color image the costs are in the range of several hours” ([40], page 80).
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My algorithm, using a quasi-Newton method and including the runtime improve-

ments reported in Section 7.3, typically converges in less than a minute for images

of this size. The main runtime improvement is achieved through a rescaling of the

independent variables, which accelerates convergence of the quasi-Newton method by

one to two orders of magnitude.

8.3 Future Research

Future work may be concerned with further runtime and robustness improvements

or with more extensive reconstruction problems.

8.3.1 Improving Runtime

Preliminary results that I did not report in this work indicate that “diagonal precon-

ditioning” improves the runtime of the L-BFGS method for this problem.

Use of higher-level termination criteria and of approximate solutions may be

promising opportunities for improving runtime. The number of steps the contin-

uation method needs to take until all regions are identified depends on the image.

A higher-level termination criterion could terminate the continuation method when

no more progress in terms of discontinuity detection is to be expected.

If parts of the reconstruction could be approximated quickly, for instance by

standard smoothing techniques, this information might be used to derive cell-specific

bounds on the values of coefficients or other kinds of constraints on the solution. It

might be possible to incorporate such constraints into the embedding in order to

accelerate convergence.

Finally, one might try to apply entirely different optimization approaches such as

genetic algorithms, dynamic programming or search heuristics.
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8.3.2 Extending the Reconstruction Problem

As already mentioned above, the reconstruction problem itself may be extended in

several ways. Perhaps most beneficial would be the incorporation of texture models to

generalize the piecewise smoothness constraint to “piecewise smoothness or continuity

in texture”. Generalization to color images is another compelling next step.

There are different causes for discontinuities in intensity (occlusion, shadows, etc.).

One might try to make more information related to those causes explicit, for example

in form of “intrinsic images” [5]. Intrinsic images contain information about scene

illumination, surface geometry, and albedo. A simple rendering equation expresses

how these quantities interact to cause the intensity recorded by an imaging sensor.

For a suitable class of images only might pose the problem of inverting the rendering

equation and to reconstruct a scene’s intrinsic images [42]. Piecewise smoothness

constraints imposed on the intrinsic images and simplicity arguments would be used

in order to make the problem well-posed.

8.4 Conclusion

Computer vision—enabling machines to “see”—is an incredibly challenging inference

problem. Some hold that Bayesian statistics provides a framework for developing

solutions in a rigorous way. Leclerc argued that MDL provides another suitable

framework. He considered reconstruction of image intensity as a first step on a long,

uncharted path towards solving the computer vision problem. I hope that this work

will rekindle interest in the MDL approach, and that it will help others in taking

the next step.
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Appendix A

Function and Gradient Expressions

A.1 Expressions for Objective Function F0

With an embedding as described in Section 2.5.1 F0 turns into a function with two

arguments,

F0(u, s)=
∑

i∈I

{

1

2 log 2

(

zi− ui,0

σ

)

2

+d

[

1+ 2

(

1−
∏

k=1

5

e(ui,k, s)

)

+3

(

1−
∏

k=3

5

e(ui,k, s)

)]

+
b

2

∑

j∈Ni

[

1− e(∆i,j,0, s) + 2

(

1−
∏

k=0

2

e(∆i,j,k, s)

)

+3

(

1−
∏

k=0

5

e(∆i,j ,k, s)

)]}

It is helpful to introduce names for the new product terms to,

C1(ui) =
∏

k=1

5

e(ui,k, s), (A.1)

C2(ui) =
∏

k=3

5

e(ui,k, s), (A.2)

D0(ui,uj) = e(∆i,j ,k, s), (A.3)

D1(ui,uj) =
∏

k=0

2

e(∆i,j ,k, s), (A.4)

D2(ui,uj) =
∏

k=0

5

e(∆i,j ,k, s). (A.5)

With these definitions F0(u, s) reads

F0(u, s)=
∑

i∈I

{

1

2 log 2

(

zi− ui,0

σ

)

2
+ d (1+ 2 [1−C1(ui)]+ 3 [1−C2(ui)])

+
b

2
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j∈Ni

(1−D0(ui,uj)+ 2 [1−D1(ui,uj)]+ 3 [1−D2(ui,uj)])

}

(A.6)
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The gradient of (A.6) with respect to ui is

∇ui
F0(u, s) =

1

log 2

ui,0− zi

σ2

−d (2∇ui
C1(ui)+ 3∇ui

C2(ui))

−b
∑

j∈Ni

{∇ui
D0(ui,uj) + 2∇ui

D1(ui,uj)+ 3∇ui
D2(ui,uj)} (A.7)

where we made use of the fact that ∇ui
Dl(ui,uj)=∇ui

Dl(uj ,ui). The gradients of

the product terms (A.1) to (A.5) read

∇ui
C1(ui) = −2C1(ui)

(

0
ui,1

s2 σ2

ui,2

s2 σ2

ui,3

s2 σ2
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s2σ2

ui,5
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T
, (A.8)

∇ui
C2(ui) = −2C2(ui)

(

0 0 0
ui,3

s2 σ2

ui,4

s2σ2

ui,5

s2σ2

)

T
, (A.9)

∇ui
D0(ui,uj) = −D0(ui,uj)

1

s2 σ2
∇ui

∆i,j ,0
2 (u) , (A.10)

∇ui
D1(ui,uj) = −D1(ui,uj)×

(

∑

k=0

2
1

s2 σ2
∇ui

∆i,j,k
2 (u)
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, and (A.11)

∇ui
D2(ui,uj) = −D2(ui,uj)×

(

∑

k=0

5
1

s2 σ2
∇ui

∆i,j,k
2 (u)

)

. (A.12)

The gradient expressions (A.8) to (A.12) assume the embedding (2.18) and (2.19);

with the embedding in Section 5.3.4 similar expressions result. The gradients

∇ui
∆i,j ,k

2 (u) finally are of the form

∇ui
∆i,j,k

2 (u)= 2ENN,kui− 2ENS,kuj ,

(cf. expression (B.1)) with matrices ENN,k etc. as given in Section B.

A.2 Expressions for Objective Function F1

Using relation (2.17) and mink δ(xk)=
∏

k
δ(xk) we can bring F1 in (5.3) into a form

similar to (2.16), then apply the embedding as in Section A.1. The embedded function

F1 reads

F1(u, s) =
∑

i∈I

{

1

2 log 2
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2
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(A.13)
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,

or, using definitions (A.1) to (A.5),

F1(u, s) =
∑

i∈I

{

1

2 log 2

(

zi−ui,0

σ

)

2
+ g (2 [1−C1(ui)] + 3 [1−C2(ui)]) (A.14)

−g
1

|Ni|
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j∈Ni

[D0(ui,uj)+ 2 [1−C1(ui)]×D1(ui,uj)

+3 [1−C2(ui)]×D2(ui,uj)]

}

After fixing |Ni|=4 for all i the gradient of (A.14) with respect to ui reads

∇ui
F1(u, s) =

1

log 2

ui,0− zi
σ2

− 2 g
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1−
1

4
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j∈Ni

D1(ui,uj)
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∇ui
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−
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with ∇ui
C1(ui) etc. as given in Section A.1.

A.3 The Optimization Problem with Piecewise-Constant Variance

When σ is unknown there is an additional unknown σi for each pixel to infer, and we

replace objective function F0 in (2.15) by

F̃0(u,σ)=
∑

i∈I

{

1

2 log 2

(

zi−ui,0

σi

)

2

+ ...

}

, (A.15)

where the remaining terms ’....’ are the same as in F0. We assume piecewise constant

variance where the boundaries are aligned with the intensity boundaries. This means

the solution σ∗ must satisfy the constraint

σi
∗=σj

∗ when δ(∆i,j ,0)= 1. (A.16)
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Leclerc suggests the following approach to solve this problem [48]. Instead of trying

to minimize (the embedded version of) F̃0 with respect to both u and σ directly, in

each iteration of the continuation method one uses an intermediate solution σ∗,t for

σ and minimizes with respect to u only. The intermediate solution σ∗,t is obtained

from solving another minimization problem, namely minimizing E in (A.18) below.

The algorithm then consists of solving two optimization problems in each iteration

of the continuation method, and the embedding consists of the substitutions

δ(ui,k) → exp

(

−ui,k
2

f s σi
∗,t

)

δ(∆i,j ,k) → exp

(

−∆i,j ,k
2

s
[

σi
∗,t+σj

∗,t
]

/2

)

instead of (2.18) and (2.19).

This approach requires that the objective function E “selects” the same solution

σ∗, given u∗, as would be obtained by direct minimization of F̃0 with respect to u

and σ, such that (A.16) is satisfied. It is easily shown that the values σr
∗ minimizing

the description length with region-specific variances {σr} equal the variance estimates

[48], that is,

(σr
∗)2=

1

|Rr |

∑

i∈Rr

(ur
∗− zi)

2. (A.17)

This variance estimate may also be written as an average of local variance estimates

σî,

(σr
∗)2=

1

|Rr|

∑

i∈Rr

σ̂i
2=

1

|Rr|

∑

i∈Rr

∑

i∈N̄j∩Rr
δ(∆i,j ,0) (ur

∗− zj)2
∑

j∈N̄i∩Rr
1

,

where N̄i includes cell i, N̄i = Ni ∪ {i}. With this idea we can write an objective

function for σ, where a solution gradually develops from local to global, per-region

variance estimates as the continuation parameter decreases (recall that the regions R

are not known up front and are only defined in the limit s→ 0),

E(σ , s) = a
∑

i∈I

(

σi− σ̂i

σi
∗

)

2

+
o

2

∑

i∈I

∑

j∈Ni

e(∆i,j,0(u
∗))×

[

1− exp

(

−
(σi−σj)2

[s (σi
∗+σj

∗)/2]2

)]

. (A.18)
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Here o is a new parameter discussed momentarily, σi
∗ denotes the minimum for σi

obtained in the previous step of the continuation method. The local estimate σ̂i is

defined as

σ̂i=max







1,

∑

j∈N̄i
e(∆i,j,0(u∗)) (zj −ui

∗(xj))2
∑

j∈N̄i
e(∆i,j,0(u∗))

√







, (A.19)

to account for quantization effects, where ui
∗(xj) denotes the polynomial with coeffi-

cients ui
∗ evaluated at the point xj. Note that these estimates are not functions of the

coefficients u that are to be determined, but are functions of the known coefficients

u∗, that are the result of the most recent minimization with respect to u.

The first term in (A.18) prefers values for σi that are close to the local estimates

σ̂i, and the second term forces σ to be a piecewise-constant function for s→ 0. The

parameter o has no direct interpretation in terms of number of bits per per coefficient,

but needs to be chosen empirically (e.g., by using training data for parameter tuning

as in Section 6.5.1).

The gradient of E is

∂E

∂σi

=2 a
σi− σ̂i

σi
∗2

+2 o
∑

j∈Ni

ei,j,0
∗ × exp

(

−
(σi−σj)2

[s (σi
∗+ σj

∗)/2]2

)

×
(σi−σj)

[s (σi
∗+ σj

∗)/2]2
,

where ei,j ,0
∗ = e(∆i,j,0(u

∗)), and use is made use of the fact that ei,j ,0
∗ = ej ,i,0

∗ .
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Appendix B

Difference Terms in Detail

To evaluate integrals like (5.4) we first define some vector-valued functions eN,k(x),

eE,k(y), eS,k(x), eW ,k(y),

eN,0
T (x) =

(

1 x −
h

2

1

2
x2 −

h

2
x

h2

8

)

eE,0
T (y) =

(

1
h

2
y

h2

8

h

2
y

1

2
y2
)

eS,0
T (x) =

(

1 x
h

2

1

2
x2 h

2
x

h2

8

)

eW ,0
T (y) =

(

1 −
h

2
y

h2

8
−

h

2
y

1

2
y2
)

eN,1
T (x) =

(

0 1 0 x −
h

2
0
)

eE,1
T (y) =

(

0 1 0
h

2
y 0

)

eS,1
T (x) =

(

0 1 0 x
h

2
0
)

eW ,1
T (y) =

(

0 1 0 −
h

2
y 0

)

eN,2
T (x) =

(

0 0 1 0 x −
h

2

)

eE,2
T (y) =

(

0 0 1 0
h

2
y

)

eS,2
T (x) =

(

0 0 1 0 x
h

2

)

eW ,2
T (y) =

(

0 0 1 0 −
h

2
y

)

,

and

eN,3
T (x)= eE,3

T (y) =eS,3
T (x) =eW ,3

T (y) = ( 0 0 0 1 0 0 )

eN,4
T (x)= eE,4

T (y) =eS,4
T (x) =eW ,4

T (y) = ( 0 0 0 0 1 0 )

eN,5
T (x)= eE,5

T (y) =eS,5
T (x) =eW ,5

T (y) = ( 0 0 0 0 0 1 ).

The expression eN,0
T (x) ui evaluates u|Ωi

on the northern cell boundary at point (x,

−h/2) in the coordinate system of cell i. Analogously, inner products with the other

functions evaluate u|Ωi
or a derivative of u on one of the boundaries of cell i. We now
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use these functions to derive expressions for integrals like (5.4). For instance, if cell

j is to the north of i then

∆i,j ,k
2 (u) =

1

h

∫

−h/2

h/2

(eN,k
T (x)ui− eS,k

T (x)uj)
2 dx

=
1

h

∫

−h/2

h/2

(eN,k
T (x)ui)

2− 2 (eN,k
T (x)ui)(eS,k

T (x)uj) + (eS,k
T (x)uj)

2 dx

= ui
T

[

1

h

∫

−h/2

h/2

eN,k(x) eN,k
T (x)dx

]

ui−

ui
T

[

1

h

∫

−h/2

h/2

eN,k(x) eS,k
T (x) dx

]

uj+

uj
T

[

1

h

∫

−h/2

h/2

eS,k(x)eS,k
T (x)dx

]

uj

= ui
TENN,kui− 2ui

TENS,kuj+uj
TESS,kuj (B.1)

This representation of ∆i,j,k
2 is convenient when it comes to writing out the gradient

of F0 or F1, but we can exploit the symmetry of the matrices in (B.1) to compute

∆i,j ,k
2 more efficientlyB.1. The matrices ENN,0 and so on are obtained by writing out

the outer product and integrating element-wise. For instance,

ENN,0 =
1

h

∫

−h/2

h/2

eN,0(x)eN,0
T (x)dx

B.1. For instance, if j is the northern neighbor cell of i, and writing δNu for

δNu=



















ui,0− uj,0

ui,1− uj,1

ui,2+ uj,2

ui,3− uj,3

ui,4+ uj,4

ui,5− uj,5



















and δN
′ u=



















ui,0− uj,0

ui,1− uj,1

ui,2− uj,2

ui,3− uj,3

ui,4− uj,4

ui,5+ uj,5



















then ∆i,j,0
2 (u) is equal to

∆i,j,0
2 (u) =

1

h

∫

−
h

2

h

2

(

δNu0+ δNu1x− δNu2
h

2
+δNu3

x2

2
− δNu4

h

2
x+ δNu5

h2

8

)2

dx

= δNu
TENN,0 δNu

∆i,j,1
2 (u) =

1

h

∫

−
h

2

h

2

(

δNu1+ δNu3x− δNu4
h

2

)

2

dx = δNu
TENN,1 δNu

∆i,j,2
2 (u) =

1

h

∫

−
h

2

h

2

(

δN
′ u2+ δN

′ u4x− δN
′ u5

h

2

)

2dx = δN
′ uTENN,2 δN

′ u etc.

122



=
1

h

∫

−h/2

h/2



























1 x −
h

2

x2

2
−

hx

2

h2

8

x x2 −
hx

2

x3

2
−

h x2

2

h2x

8

−
h

2
−

hx

2

h2

4
−

h x2

4

h2 x

4
−

h3

16

x2

2

x3

2
−

h x2

4

x4

4
−

h x3

4

h2 x2

16

−
hx

2
−

h x2

2

h2 x

4
−

h x3

4

h2x2

4
−

h3 x

16

h2

8

h2 x

8
−

h3

16

h2x2

16
−

h3 x

16

h4

64



























dx

=



























1 0 −
h

2

h2

24
0

h2

8

0
h2

12
0 0 −

h3

24
0

−
h

2
0

h2

4
−

h3

48
0 −

h3

16

h2

24
0 −

h3

48

h4

320
0

h4

192

0 −
h3

24
0 0

h4

48
0

h2

8
0 −

h3

16

h4

192
0

h4

64



























.

The other matrices turn out to be

ESS,0=

































1 0
h

2

h2

24
0

h2

8

0
h2

12
0 0

h3

24
0

h

2
0

h2

4

h3

48
0

h3

16

h2

24
0

h3

48

h4

320
0

h4

192

0
h3

24
0 0

h4

48
0

h2

8
0

h3

16

h4

192
0

h4

64

































, ENS,0=

































1 0
h

2

h2

24
0

h2

8

0
h2

12
0 0

h3

24
0

−
h

2
0 −

h2

4
−

h3

48
0 −

h3

16

h2

24
0

h3

48

h4

320
0

h4

192

0 −
h3

24
0 0 −

h4

48
0

h2

8
0

h3

16

h4

192
0

h4

64

































,

EEE,0=

































1
h

2
0

h2

8
0

h2

24

h

2

h2

4
0

h3

16
0

h3

48

0 0
h2

12
0

h3

24
0

h2

8

h3

16
0

h4

64
0

h4

192

0 0
h3

24
0

h4

48
0

h2

24

h3

48
0

h4

192
0

h4

320

































, EWW ,0=

































1 −
h

2
0

h2

8
0

h2

24

−
h

2

h2

4
0 −

h3

16
0 −

h3

48

0 0
h2

12
0 −

h3

24
0

h2

8
−

h3

16
0

h4

64
0

h4

192

0 0 −
h3

24
0

h4

48
0

h2

24
−

h3

48
0

h4

192
0

h4

320

































,

EWE,0=



























1
h

2
0

h2

8
0

h2

24

−
h

2
−

h2

4
0 −

h3

16
0 −

h3

48

0 0
h2

12
0

h3

24
0

h2

8

h3

16
0

h4

64
0

h4

192

0 0 −
h3

24
0 −

h4

48
0

h2

24

h3

48
0

h4

192
0

h4

320
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ENN,1=

























0 0 0 0 0 0

0 1 0 0
−h

2
0

0 0 0 0 0 0

0 0 0
h2

12
0 0

0
−h

2
0 0

h2

4
0

0 0 0 0 0 0

























, ESS,1=

























0 0 0 0 0 0

0 1 0 0
h

2
0

0 0 0 0 0 0

0 0 0
h2

12
0 0

0
h

2
0 0

h2

4
0

0 0 0 0 0 0

























,

EEE,1=

























0 0 0 0 0 0

0 1 0
h

2
0 0

0 0 0 0 0 0

0
h

2
0

h2

4
0 0

0 0 0 0
h2

12
0

0 0 0 0 0 0

























, EWW ,1=

























0 0 0 0 0 0

0 1 0
−h

2
0 0

0 0 0 0 0 0

0
−h

2
0

h2

4
0 0

0 0 0 0
h2

12
0

0 0 0 0 0 0

























,

ENS,1=

























0 0 0 0 0 0

0 1 0 0
h

2
0

0 0 0 0 0 0

0 0 0
h2

12
0 0

0
−h

2
0 0

−h2

4
0

0 0 0 0 0 0

























, EWE,1=

























0 0 0 0 0 0

0 1 0
h

2
0 0

0 0 0 0 0 0

0
−h

2
0

−h2

4
0 0

0 0 0 0
h2

12
0

0 0 0 0 0 0

























ENN,2=

























0 0 0 0 0 0
0 0 0 0 0 0

0 0 1 0 0
−h

2

0 0 0 0 0 0

0 0 0 0
h2

12
0

0 0
−h

2
0 0

h2

4

























, ESS,2=

























0 0 0 0 0 0
0 0 0 0 0 0

0 0 1 0 0
h

2

0 0 0 0 0 0

0 0 0 0
h2

12
0

0 0
h

2
0 0

h2

4

























,

EEE,2=

























0 0 0 0 0 0
0 0 0 0 0 0

0 0 1 0
h

2
0

0 0 0 0 0 0

0 0
h

2
0

h2

4
0

0 0 0 0 0
h2

12

























, EWW ,2=

























0 0 0 0 0 0
0 0 0 0 0 0

0 0 1 0
−h

2
0

0 0 0 0 0 0

0 0
−h

2
0

h2

4
0

0 0 0 0 0
h2

12

























,

ENS,2=

























0 0 0 0 0 0
0 0 0 0 0 0

0 0 1 0 0
h

2

0 0 0 0 0 0

0 0 0 0
h2

12
0

0 0
−h

2
0 0

−h2

4

























EWE,2=

























0 0 0 0 0 0
0 0 0 0 0 0

0 0 1 0
h

2
0

0 0 0 0 0 0

0 0
−h

2
0

−h2

4
0

0 0 0 0 0
h2

12

























E..,3=

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















, E..,4=

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

















, and E..,5=

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

















.
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The difference terms as defined in Section 2.4 may be written in the same form,

the matrices ENN,k etc. will then have fewer nonzero entries.
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Appendix C

Relationship Between F0 and F1

Making repeated use of relation (2.17) we can rewrite F1 in (5.3) as

F1(u) =
∑

i∈I

{

1

2 log 2

(

zi−ui,0

σ

)

2
+ c

+g

[

1+ 2 max
k∈{1,...,5}

δ̃ (ui,k) + 3 max
k∈{3,4,5}

δ̃ (ui,k)

]

−
g

4

∑

j∈Ni

(

δ(∆i,j ,0)+ 2 max
k∈{1,...,5}

δ̃ (ui,k)× min
k∈{0,1,2}

δ(∆i,j ,k)

+3 max
k∈{3,4,5}

δ̃ (ui,k)× min
k∈{0,...,5}

δ(∆i,j ,k)

)

}

=
∑

i∈I

{

1

2 log 2

(

zi−ui,0

σ

)

2
+ c

+g

[

1+ 2 max
k∈{1,...,5}

δ̃ (ui,k) + 3 max
k∈{3,4,5}

δ̃ (ui,k)

]

+
g

4

∑

j∈Ni

[

δ̃ (∆i,j ,0)− 1

+2
(

1− min
k∈{1,...,5}

δ(ui,k)
)

×

(

max
k∈{0,1,2}

δ̃ (∆i,j ,k)− 1

)

+3
(

1− min
k∈{3,4,5}

δ(ui,k)
)

×

(

max
k∈{0,...,5}

δ̃ (∆i,j ,k)− 1

)]

}

=
∑

i∈I

{

1

2 log 2

(

zi−ui,0

σ

)

2
+ c

+g

[

1+2 max
k∈{1,...,5}

δ̃ (ui,k)+ 3 max
k∈{3,4,5}

δ̃ (ui,k)

]

+
g

4

∑

j∈Ni

[

δ̃ (∆i,j,0) + 2 max
k∈{0,1,2}

δ̃ (∆i,j,k)+ 3 max
k∈{0,...,5}

δ̃ (∆i,j,k)

]

}

+M(u),
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with M (u) denoting a sum of mixed min-terms and constants,

M(u) =
g

4

∑

i∈I

∑

j∈Ni

[

2 min
k∈{1,...,5}

δ(ui,k)× min
k∈{0,1,2}

δ(∆i,j ,k)

+3 min
k∈{3,4,5}

δ(ui,k)× min
k∈{0,...,5}

δ(∆i,j ,k)− 6
]

. (C.1)

Thus F1(u) =F0(u) +M(u) when d= g and b= g/2.
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Appendix D

More Example Results for the Berkeley Boundary Detection Benchmark
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F=0.80 Global Probability of Boundary (gray)

F=0.73 Piecewise Polynomial Reconstruction

F=0.89 Gradient Magnitude

Figure D.1. Results for the Berkeley benchmark similar to Figure 6.13. For this image,

algorithm “Gradient Magnitude” produces the best result.
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F=0.83 Global Probability of Boundary (gray)

F=0.77 Piecewise Polynomial Reconstruction

F=0.66 Gradient Magnitude

Figure D.2. Results for the Berkeley benchmark similar to Figure 6.13. For this image,

algorithm “Global Probability of Boundary” produces the best result.
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F=0.67 Global Probability of Boundary (gray)
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Figure D.3. Results for the Berkeley benchmark similar to Figure 6.13. Top row: image

(left), ground-truth segments from human segmentations (middle), precision-recall curves

(right). Bottom row: soft boundary maps produced by “Global Probability of Boundary”

(left), “Piecewise Polynomial Reconstruction” (middle), and “Gradient Magnitude” (right),

respectively. For this image, my algorithm (“Piecewise Polynomial Reconstruction”) produces

the best result.
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