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ABSTRACT OF DISSERTATION

THE EVOLUTION OF EMERGENT COMPUTATION
IN CELLULAR AUTOMATA

How does an evolutionary process interact with a decentralized. distributed system
in order to produce globally coordinated behavior? Using a genetic algorithm (GA)
to evolve cellular automata (CAs), it is shown that emergent coordination occurs
when evolution takes advantage of the underlying medium’s potential to form em-
bedded particles. The particles. typically walls or defects between homogeneous
domains. are designed by the evolutionary process to resolve global conflicts in
the system. Descriptions of typical solutions discovered by the GA, and the discov-
ered coordination algorithm in terms of embedded particles dvnamics are presented.
The particle-level description is also emploved to analyvze the evolutionary pathway
through which the solutions were discovered. The results have implications both for
understanding emergent collective behavior in natural systems and for the automatic

programming of decentralized spatially extended multiprocessor systems.
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Summer 1998
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Chapter 1

INTRODUCTION

Natural evolution has created many systems in which the collective actions of
simple. locally-interacting components give rise to sophisticated forms of coordi-
nated global information processing. Although the individual components in these
svstems have their own internal dvnamics and are constrained to interact locally
through restricted communication pathways, the system as a whole is able to dis-
play spontaneous emergent coordination.

A spectacular example of such behavior is displayed in the slime-mold amoe-
bae Dictyostelium discoideum. which are found in soil throughout the world. For
a significant portion of their life cycle. the amoebae occur as free-living unicellular
organisms. However. when their food supply is exhausted. they undergo a fun-
damental transformation and spontaneously aggregate to form motile multicellular
entities consisting of up to 10° cells. The aggregation process is caused by the the
spatial and temporal coordination of several different cellular activities occurring
independently in each amoeba. This remarkable display of globally-coordinated col-
lective behavior arising out of local interactions within a homogeneous population
of identical cells has been the focus of intensive research for the past several decades
[Bon67, Seg84, Dev89].

The collective behavior displayed by slime-mold amoebae is not an isolated
example. Globally coordinated behavior has been observed and studied in a number
of other unicellular and multicellular organisms. For example, insect colonies often

act as a coherent unit when they exhibit intricate nest-building and efficient foraging
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strategies; even though there is no central control-apparatus directing the behavior
of individual insects. Since insects have a limited capacity for storing and processing
information due to their small brains and short life spans. it is remarkable that
evolution has succeeded in discovering a number of mechanisms allowing insects to
display coordinated group behavior and form well organized colonies [HW93].

Other often-cited examples of emergent coordination include the efficacious
group behavior observed in a flock of birds or a school of fish which increases the
chance of survival of an individual organism when the group is attacked by a preda-
tor. In a different biological realm. emergent coordination is also observed in the
brain where the synchronized oscillations of neural assemblies may play a significant
role in encoding information [LD94. LI95. Hop93].

From a computer science standpoint. especially in the field of distributed and
decentralized computer systems. the above observations are germane for two impor-
tant reasons: (i) One of the most vexing problems in computer science today is the
design and operation of large distributed systems where a central control is neither
available nor desirable. Given the preceding observations, it is natural to ask: How
has evolution overcome the problem of designing decentralized distributed systems
capable of displaying coordinated behavior? (ii) In order to attain global coordi-
nation in a multicomponent svstem, the svstem must have the capacity to process
and propagate information. However, the information processing occurring in these
biological systems appears to be very different from the structured and algorithmic
techniques of information processing prevalent in today’s multiprocessor computer
systems. This raises the question: How do we relate the behavioral dynamics of a
natural multicomponent system to the standard model of computation in compu-
tation theory? In the following discussion, we look at both these issues in greater

detail.
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How does evolution design decentralized distributed systems?

The importance of globally-coordinated behavior in decentralized systems has
been recognized for decades in computer science. From the earliest days of analog
and digital computer design. the functioning of an entire computing device has been
critically dependent on the global synchronization of individual processing units.
One of the earliest mathematical articulations of a similar problem—firing squad
synchronization—was given by Myhill 1957 and is still actively studied [Yun94].
The continuing and difficult problems in the contemporary design of multiprocess-
ing systems still require that the issue of global coordination be directly addressed.
Typically. the design choice is to use a central controller which determines the behav-
ior of the individual components. However. such centralized systems can often suffer
serious disadvantages when compared to decentralized distributed systems [CM94].
In a centralized system, a major share of the system'’s resources is preempted by the
central controller that could have otherwise gone to other agents in the system. As
one of the consequences, centralized systems are liable to fail easily if the central
controller is incapacitated. Also, the central controller can often be a bottleneck
for fast information processing or for information transmission. Depending on the
processing load, serious degradation of the response time of the entire system can
occur. In contrast, the sharing of resources can be much more equitable in a decen-
tralized system. Such systems can process information independently at different
locations and thus they may be more efficient, if properly designed. In addition,
decentralized systems can be robust; the presence of one or more local faults may
cause only a gradual degradation in the system’s overall performance.

Although decentralized systems offer the possibility of a number of such advan-
tages, it is difficult to design a collection of individual components and their inter-
actions such that information processing occurs in a globally coordinated fashion.

This is hardly surprising: it is not well understood how complex global coordination
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emerges from the individual actions of the simple components in natural systems.
In most cases, the individual components display nonlinear behavior in their inter-
nal dvnamics in addition to having nonlinear local interactions with other nearby
components. Thus, these kinds of spatially-extended systems—that is, multicom-
ponent nonlinear systems in one or more spatial dimensions with many degrees of
freedom—are very difficult to analyze.

Given the widespread appearance of collective behavior in decentralized and
spatially extended systems in nature. evidently natural evolution has successfully
overcome the problem of designing global coordination in distributed systems In
the examples discussed earlier. evolution has effectively taken advantage of spatially
local nonlinear dyvnamics to produce entities which, on the one hand. consist of po-
tentially independent subsystems. but whose behavior and survival. on the other
hand. rely on emergent coordination. These observations leave us with unanswered,
but significant questions: by what mechanisms does evolution discover the methods
of emergent coordination? More specifically, how does evolution take advantage
of nature’s inherent dynamics to engender collective behavior in decentralized dis-
tributed systems? Furthermore. with an in-depth understanding of these issues,
might it be possible to mimic evolution and employ it in a directed fashion to de-

sign decentralized and distributed computer systems?
How does natural systems perform computation?

As indicated in the preceding discussions, the survival of many natural multi-
component systems depend on their ability to display sophisticated forms of coordi-
nated global information processing. But what are the basic computational elements
that allow such systems to process information? Our current notions of “compu-
tation” and how a physical device can be used to realize computation are affected
by our familiarity with contemporary digital computer technology. However, most
natural systems are continuous, stochastic, and spatially-extended; thus it is very

hard to relate their behavior to the functioning of a digital computer.
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Nevertheless. in some situations, the observations of the behavior of a natural
decentralized, multicomponent system might suggest that some form of computation
is taking place. Insect colonies, economic systems, the immune system, and the brain
have all been cited as examples of systems in which “emergent computation” occurs
(e.g.. see [For90. LTFR92]). However, discovering, detecting and understanding the
underlyving logic by which the computation is performed is typically very difficult.

In this work “emergent computation” refers to the appearance in a system’s
temporal behavior of information-processing capabilities that are neither explicitly
represented in the system’s elementary components or their couplings nor in the
system’s equation of motion or its initial and boundary conditions. More precisely,
emergent computation signifies that the global information processing can be in-
terpreted as implementing (or approximating) a computation [DMC94]. In this
dissertation. the interest is in phenomena in which many locally-interacting pro-
cessors, unguided by a central control, result in globally-coordinated information
processing that is more powerful than that implemented by individual components
or linear combinations of components.

Although information is processed in parallel in the above systems. the mech-
anisms of computation can be contrasted with the current parallel computation
techniques that are better-understood. In a typical approach to parallel computa-
tion, a problem is subdivided into parts which are then sent to different processors.
These processors solve the subproblems in parallel and return the partial solutions
to a central unit which combines them to produce a coherent result. Even in the
popular “parallel distributed processing” approach [MRHS86], there is some degree
of centralization. The system’s overall information processing capability is crucially
dependent on the “hidden units”. However, because the hidden units are typically
connected to all the input and output units, they have direct access to system-wide
information. In contrast, in a truly decentralized distributed system, components

have access to a limited portion of the entire system’s state, and no component
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is computationally more powerful than any other component. In order to design
many-processor systems manifesting globally-coordinated parallel information pro-
cessing, methods are required which enable the processing, transmission and storage
of information to be distributed throughout the system. More specifically, a design
methodology should allow spatially distant components to communicate with each
other without pre-designed direct communication channels. or through the media-
tion of a central information-processing entity. In essence. all of the components
should facilitate the control. storage. and transmission of information. and should
be able to switch from one subtask to another with ease.

How can a natural distributed system satisfy these criteria? The answer to this
question hinges mainly on how information processing mechanisms is represented in
natural systems. More specifically. given the spatio-temporal dynamics of a system,
we must discover the locus of the basic computational elements and analyze how

they facilitate the processing of information.

Overview of Approach: Evolving Cellular Automata with a Genetic Al-
gorithm

To study the two questions posed in the preceding discussion, this work adopts
a simplified framework: a population of idealized but behaviorally-rich distributed
dyvnamical systems—one-dimensional cellular automata (CAs)—is coupled to an
idealized evolutionary process—a genetic algorithm (GA). An individual cellular
automaton consists of a large number of processing entities with their own local dy-
namics. In this scheme, survival of an individual cellular automaton is determined by
its ability to perform a given computational task that requires global coordination.

Once the genetic algorithm has evolved high-performance cellular automata
for a task, one can study their spatio-temporal behavior to determine how global
information-processing capabilities arise from local interactions of the cellular pro-
cessors. However, until recently, there was no formal method to relate the spatio-

temporal behavior of a CA to its information processing capability. Recent progress
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in understanding the “intrinsic” information processing in spatially-extended sys-
tems such as cellular automata has provided a new set of tools for the analysis of
computation in similar spatially-extended systems [CH93. H(j92]. Crutchfield and
Hanson use these tools to analvze the spatio-temporal dynamics of a number of CAs.
many of which had been studied by other researchers using different techniques. By
underscoring the feasibility of applying the framework formalized by Crutchfield and
Hanson to the CAs discovered by the GA. this work opens new avenues to study
computation in evolved systems. In particular. our study provides a detailed anal-
vsis of the basic computational elements embedded in the behavior of an individual
cellular automaton which are ultimately responsible for increased fitness. This work
extends the earlier work by Crutchfield and Hanson in assigning functionality to
the discovered computational elements in the behavior of a CA and delineating how
the different computational elements and their functionalities allow the CA to per-
form a given task. In addition. these tools also facilitate the investigation of the
interactions between these behavioral mechanisms and the evolutionary processes
which drive a cellular automata population to increasingly sophisticated computa-
tional strategies. Given the success of the GA in finding high-performance CAs for
the given tasks. the results of this research have implications both for understanding
emergent collective behavior in natural systems and for the automatic programming

of decentralized spatially extended multiprocessor systems.

1.1 Summary of the Chapters

The following sections give a brief and informal summary of the subsequent

chapters in this thesis.
Cellular Automata

Cellular Automata (CAs) are arguably the simplest example of decentralized,

spatially extended systems. In spite of their simple definition they exhibit rich
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dvnamics that over the last decade have come to be widely appreciated. The combi-
nation of their simple definition and rich behavior makes them a compelling choice
for the study of how evolution interacts with multi-component pattern-forming sys-

tems.

TIME

Figure 1.1: Two successive configurations of a two state. one-dimensional CA are
shown. Each cell has information about itself, and its immediate neighbors on either
side. The new state at each site is determined by a majority vote among the three
cells in each local neighborhood. The CA’s new configuration is shown in the lower
row in the figure.

A CA consists of a collection of time-dependent discrete variables. called the
local states. arrayed on a lattice of sites (or cells). An example of a one-dimensional
CA. with two possible states per site. is shown in the top row of Figure 1.1. The set
of all local states at a given time-step is called the configuration of a CA. The CA
starts out with an initial configuration (IC), and at each time-step the configuration
is changed as each cell in the CA uses the same rule to update its own local state. A
CA rule can be expressed as a look-up table that lists, for each local neighborhood,
the new local state for that neighborhood’s central cell. For example, in the CA
depicted in Figure 1.1, each cell has information about itself. and its immediate
neighbors on either side. In the figure, the CA follows a majority rule, where the
new state at each site is set to 1 if there are two or more 1s in the cell’s local
neighborhood; otherwise it is set to 0. The CA’s new configuration is shown in
the lower row in Figure 1.1. Such a depiction of CA configurations over successive

time-steps is called a space-time diagram.
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Cellular automata have been studied extensively as mathematical objects, as
models of natural systems, and as architectures for fast, reliable parallel computa-
tion [Gut90, TM87, Wol86]. However. the difficulty of understanding the emergent
behavior of CAs or of designing CAs to have desired behavior has up to now severely
limited their applications in science and engineering, and their use in general com-
putation.

The ability of a CA to directly process and store information is controlled by
its neighborhood size and the number of states per site. The neighborhood size
not only imposes an upper bound on the speed of information propagation in the
syvstem. but it also limits the amount of information regarding the entire system's

state that is accessible from each cell in one time step.
Computational Tasks

This work focuses on two computational tasks that are simple to define but
nevertheless require spatially global information-processing in CAs. The first task
is a density classification problem. where a CA with two states per site (0 and
1) must categorize bit-strings according to the density of 1s in the string. After
accepting an arbitrary bit-string as an initial configuration, a successful CA for
the density classification task should reach the fixed point configuration containing
all 1s if the fraction of 1s in the IC is more than 1/2. Otherwise. the CA should
permanently settle on the all Os configuration. Since density is a global property of
a configuration, whereas a small-neighborhood CA relies only on local interactions
mediated by the cell neighborhoods. it is not immediately apparent how to design
a CA look-up table for the density classification task.

The second task requiring global coordination is similarly motivated. In this
task, the goal is to find a look-up table for a CA such that, starting from an arbitrary
IC, the CA reaches a final configuration that oscillates between the all-0 and the

all-1 configurations. Without the use of a central controller instructing all the
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components when to change their state, it is not immediately clear how to design a

CA that results in this type of global synchrony starting from random ICs.
Genetic Algorithms

The search for high-performance CAs for the above tasks is difficult for a number
of reasons. First, the number of possible CAs grows very rapidly with increasing
number of states per site and with increasing neighborhood size. Even with two
state per site. exhaustive search is impractical when the neighborhood size of CAs
is more than five. Calculus based methods which require continuity and derivative
information are also not applicable because of the discrete nature of the CA search
space. These observations suggest the need for a different technique which can
search through a large number of possibilities for solutions in an efficient fashion
and which does not require derivative or other auxillary problem-specific knowledge.

In this work. we investigate whether an evolutionary process can discover high-
performance CAs for the computational tasks discussed above. Our choice of an
evolutionary process as the search engine is not accidental. An evolutionary process
can be viewed as a massively parallel method to search among a huge number of
possible “solutions.” Moreover, at an abstract level. the underlying mechanisms
of an evolutionary process can be remarkably simple: natural selection of entities
that reproduce with variation. These features provided us the main inspiration to
employ an evolutionary approach in this work.

As an abstract computational model of an evolutionary process, a genetic algo-
rithm (GA) was used to evolve CAs. GAs [Hol73] are a class of computational models
of evolution which have gained popularity as efficient stochastic search algorithms
[Gol89]. More recently, increasing interest has been shown among evolutionary bi-
ologists in using variations of GAs to study macroevolutionary phenomena such as

the generation of morphological novelty in natural evolution [NP94, EA94, Joh94].
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Figure 1.2: Schematic diagram depicting the experimental setup for GA evolving
CAs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In the experiments to be described here, a GA starts with a randomly generated
population of CA look-up tables, and evaluates the CA rules in the population by
estimating each rule’s success in performing a given task. CAs which are more
successful in performing the task are preferentially selected. and a new population
of CAs is created by applying the genetic operators of crossover and mutation on the
genomic representation of the more successful CAs in the existing population. This
process. when repeated for a number of iterations. often results in the discovery of
high-performance CAs.

The experimental design (Figure 1.2) used in this work for evolving CAs is
interesting for a number of reasons. First. it consists of two nonlinear dynamical
svstems. a GA and a CA. operating at different time scales. which are coupled
to each other. Due to the coupling, the dyvnamics in one system influences the
dvnamics of the other. Thus. a complete delineation of the results obtained from
the experimental setup not only requires an in-depth knowledge of how each of the
components work, but also how they interact with each other.

Although the operators in the GA act on the CA look-up tables (the genotype).
the fitness of a look-up table is determined by the spatio-temporal behavior of the
corresponding CA (its phenotype). Since the mapping from the genotype to the
phenotype is typically nonlinear in a CA, and because the elements in the genotype
often display complex nonlinear interactions, the process through which a GA finds
high-performance CAs is not readily apparent. In addition, since a CA’s behavior
(i.e.. its phenotype) is often very complex and difficult to characterize rigorously,

the above problems are seriously compounded.
Evolved CAs

The results from the experiments to be described here show that for both com-
putational tasks, the GA was able to find high-performance solutions. While the

look-up tables of these CAs were very different from one another, and although they
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exhibited very different spatio-temporal behaviors, there was one striking similarity
among all the high-performance CAs. In each case, the spatio-temporal behavior of
a high-fitness rule was dominated by distinct patterns which interacted with each
other in a seemingly complicated fashion. As indicated earlier. understanding the
behavioral mechanisms that give rise to increased fitness is of crucial importance
in this work. Thus, the fundamental question that needs to be answered is: How
do these patterns and their dvnamics aid the CA in performing the computational
tasks? In other words. what is the emergent logic through which a CA is performing

the desired computation?
Computational Mechanics Analysis of Evolved CAs

In order to understand the computation performed by the successful CAs,
this work adopts the “computational mechanics™ framework for CAs developed by
Crutchfield and Hanson [CH93. HC92]. This framework describes the “intrinsic
computation” embedded in the temporal development of the spatial configurations
in terms of domains. particles. and particle interactions without any functionality
or utility attached to the descriptions. A domain is, roughly, a homogeneous region
of space-time in which the same “pattern™ appears. The notion of a domain can be
formalized by describing the domain’s regularities using the minimal deterministic
finite automaton (DFA) that accepts all and only those spatial configurations that
are consistent with the regularity.

Once the domains have been detected in the spatio-temporal behavior of a
high-fitness CA. nonlinear transducers can be constructed to filter the domains out
of the configuration, leaving just the deviations from those regularities. In each
of the high-performance CAs, the resulting filtered space-time diagram reveals the
propagation of domain boundaries. These boundaries are called particles when they
remain spatially localized over time. These “embedded” particles are one of the

main mechanisms for carrying information over long space-time distances. This
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information might indicate, for example, the partial result of some local processing
which has occurred elsewhere at an earlier time. Operations on the information
carried by the particles are performed when the particles interact. The collection of
domains, domain boundaries, particles. and particle interactions for a CA represents
the basic information-processing elements embedded in the CA’s behavior—the CA’s
“intrinsic” computation.

The identification of the computational structures embedded in a CA’s behavior
makes it possible to delineate the particle-level emergent logic or “strategy’ which
allows the successful CAs to perform the computational tasks. Since a high-fitness
CA for a given computational task is performing some “useful” computation. i.e..
accomplishing a desired mapping from input to output, we can assign specific func-
tionality to each of the discovered computational structures according to the role
they play in performing the computational task. It is in this light that the work
presented here on CAs goes beyond earlier work by Crutchfield and Hanson.

The results from the analysis based on the computational mechanics frame-
work also facilitates a comparison between different CAs at the functional level.
As mentioned earlier, different high-performance CAs use different look-up tables
and exhibit very dissimilar spatio-temporal behavior. However, careful analysis of
space-time behavior shows that, at the particle-level, the different GA-discovered
strategies used by these rules to perform a given computational task are often very
similar.

Once the computational structures and their emergent logic in a high-fitness
CA has been identified one may also ask: How are such computational structures
discovered by the GA in the first place? Computational mechanics analysis of the
behavior of the ancestors of the high-performance CAs gives a detailed picture of
the interplay between the evolutionary dynamics and the computational structures
that are embedded in the CA's behavior. We show that although the existence of

some computational structures in the behavior of a high-fitness CA can be directly
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attributed to the amplification process resulting from the selection pressures in evo-
lution, the discovery of some other computational structure is often due to pure
chance.

The results presented in this work demonstrate how evolution can engender
emergent computation in a spatiallv-extended system. For both computational
tasks, evolution was able to take advantage of the underlying medium’s potential
to form embedded particles and in the end was able to design high-performance
CAs. These discoveries are encouraging, both for using GAs to model the evolution
of emergent computation in nature and for the automatic engineering of emergent

computation in decentralized multicomponent systems.
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Chapter 2

CELLULAR AUTOMATA: AN OVERVIEW

Scientists often use simplifving models to gain insights into physical systems.
Generally, these models involve some form of mathematical apparatus. such as dif-
ferential equations. As an example, fluid dynamics can be modeled with the help
of partial differential equations where space and time are both assumed to be real
and continuous. The physical properties (such as temperature or pressure) being
studied in these models are also considered to be real and continuous and theyv are
described as a function of the two independent variables. space and time.

As models in the continuous domain, partial differential equations have been
strikingly successful in facilitating the analysis of a wide variety of physical systems.
When spatially extended physical svstems are modeled with partial differential equa-
tions, the simplifying assumption is that the system is continuous at a microscopic
level. Although we know that such may not be the case (for example. box of gas,
atoms in a crystal), the assumption often does not compromise the validity of the
overall results. A fundamentally different approach would be to assume a system'’s
configuration to be discrete in all respects. Cellular Automata (CAs) belong to
this diametrically opposite class of models in which a fully discrete representation
is used as the basis for modeling spatially extended systems. In a CA, space, time
and the properties associated with each point in space exhibit only discrete values.
In addition, the equations of motion governing the CA allow for only spatially local
interactions. The rule, which is applied in parallel throughout the system, is also
spatially and temporally invariant. Thus, as an abstract model class, the underlying

assumptions in a CA are simple and easy to describe.
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In spite of their discrete nature. CAs display a wide range of behaviors, many
of which are qualitatively similar to behaviors observed in systems which are in the
continuous domain. Like other abstract models., CAs have been used extensively
to study the relationship between local interaction rules and the resulting global
spatio-temporal behavior. However. because of their discrete nature and due to
the spatially-local governing equations of motion. CAs are ideally suited for fast
simulations on digital computers. Due to the simplicity with which they can be
coded. CAs furnish a natural testing ground for theoretical predictions about spatial
coherence and pattern formation in spatially extended systems. Consequently, CAs
have become a popular choice as models for physical systems in a wide spectrum
of scientific disciplines such as fluid dvnamics, growth processes, spin systems. and
reaction-diffusion systems [FHP86. Vic84. Tof84].

Prior to this. the study of CAs can be traced back to the work of mathemati-
cians John von Neumann and Stanislaw Ulam in which CAs were invented to aid
the study of biological self-reproduction. Subsequent generations of scientists have
analyzed the breadth of phenomena exhibited by CAs. and have not only applied
CAs in scientific modeling, but have also investigated CAs as an abstract mathe-
matical apparatus, and have used CAs to perform sophisticated forms of parallel

computation [TM87. Gut90].

2.1 Definitions

In this work, we focus exclusively on CAs in one spatial dimension. A one-
dimensional cellular automaton consists of a linear array of .V sites or cells indexed
0,...,t.....N — 1. At any given time ¢, each site in the lattice is associated with
a discrete variable si, called the local state, which is chosen from a finite alphabet
A of k discrete symbols: s; € {0,1,...,k— 1} = A. At discrete time intervals, the

same local update rule ¢ operates in parallel (i.e., synchronously) throughout the
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lattice on local regions of a given radius r. This local update rule is denoted by the

mapping
Bsi e sh o 87T) = o(nl) = sy, (2.1)
where the string of local states s{™"..... st,---.57" of 2r + 1 symbols represents

the parent neighborhood n} and s;,, is the resulting child symbol. The local update
rule is usually represented as a rule table. here also denoted &. which is simply an
ordered list of (n. s) pairs. such that ¢(n) = s. In contexts in which the space index
i and the time index ¢ are not relevant, in this report we will simply use n and s
with no sub- or superscripts to refer to a generic neighborhood configuration and a
generic child symbol respectively.

Since a site in a CA can be in any one of k states, the number of possible
parent neighborhoods equals k*"*!'. For each of these parent neighborhoods. the
child svmbol can again attain any one of the possible & states. Thus. for a given
values of k and r. there are k"' possible rule tables .

The collection of all local states at a given time ¢ in a lattice of size .V is called
the configuration: s, = s9s}---s~'. s, € AV is the state of the CA considered as a
dynamical system. where A% is the set of all possible configurations and is the CA’s
state space. sg is called the initial configuration (IC), It is also useful to define A*
as the union of all possible configurations AV for .V > 0.

The global equation of motion ® maps a configuration at one time step to the
next: s;.; = P(s;). where it is understood that the local function ¢ is applied
simultaneously to all lattice sites. Starting from an initial configuration sq, the

configuration at time ¢ is
Ser1 = O(P(--- P(s0) - - ) = ®'(s0)- (2:2)

To complete the description of a CA with finite lattice size .V, it is also neces-
sary to specify the boundary conditions. In this work, we will always use periodic

- . ; i+N) mod ~
boundary conditions, i.e., si = si'*") oL
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In addition to studying how the global mapping & operates on individual con-
figurations in AV, it is also useful to examine how a CA processes entire sets of
spatial configurations. The ensemble operator ® operates on a set of configurations
or substrings of configurations by applying ® separately to each member of the set!
That is.

Lo =BL, = D'L,, (2.3)

where £y C A"V is any set of initial configurations and the ensemble of configurations

are operated on by @ according to
ct-ﬁ»l = {St+1 LS = ‘I)St Vst € ﬁg}. (24)

We allow a single ensemble to contain configurations with many different lattice
sizes. Thus. the above formulation imposes no restrictions on the lattice size.

Most CAs are dissipative systems. i.e.. under the global equation of motion ®.
the fraction of the state space AY that can be reached by starting from a particular

state decreases with time. This can be formally represented as

&L C L. (2.

N
Ut
—

In the algebraic analysis of CAs. a distinction is often made between linear and
nonlinear CAs [Jen90]. A rule o is linear if it satisfies the additivity condition: for

any two parent neighborhoods n; and n;

o(n:) ® o(n;) = o(n: D nj) (2.6)

where @ denotes k-ary modulo addition, i.e., sum modulo &, the alphabet size. As a
direct consequence of the above relationship, linear CAs obey a linear superposition

principle in the global equation of motion. Thus, in a linear CA ¢

®(s%) ® B(s®) = P(s* @ s?) (2.7)

!The notation for CAs presented here and in the rest of this work follows that of Hanson and
Crutchfield [Han93, HC95].
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where s® and s® are any two configurations. Due to this decomposition. the behavior
of linear CAs can be predictable. For example. consider a linear binary CA on a
periodic lattice of length .V following the local update rule o(n*) = s*"'@s'*'. Using
the local rule o. we can determine the dependence of the local state s; on past lattice

configurations.

N 1—1 1+1
S, = 5,195,

— 2
= 53OS, D, D873

t—2 =

= >c—)¢’5;t§
= (5i53 8 5103) ® (s @ 5153
= i1 esii @B sy ® (sisy st @ (171 @ 515)

- a—-1 R
= 5,95,

= 523 @72 where j = 2¥ and & is an integer with 0 < k < log.V..

Thus. in this example, the local state of a site value can be predicted 2/ time-steps
in advance without actually simulating the CA. Since the superposition principle
cannot be applied in nonlinear CAs, they are less predictable and are therefore much
more difficult to analyze.

In some CA studies. a special symbol ¢ € A is designated to be the quiescent
symbol with the following constraint on the rule table: ©(6.6,....6) = &. Here the
sites associated with the quiescent symbol & (usually denoted 0) are interpreted as
“inactive” cells, and all other sites denote cells that are “excited”. Note that only

a restricted set of CAs can have such quiescent states.
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2.2 Elementary Cellular Automata

Wolfram [Wol84c| describes studies of one dimensional CAs with £ = 2 and
r = 1. Wolfram refers to these CAs as elementary cellular automata (ECA)?. In an
ECA, there are 8 possible parent neighborhoods. Since the child symbol for each of
the 8 parent neighborhoods can be either a 0 or a 1. there exists a set of 256 (= 227y
distinct rules defining different ECAs.

Wolfram introduced a canonical ordering of the parent neighborhoods in an
ECA rule table. In the top row, all the 8 parent neighborhoods are given. Below
each parent neighborhood is given the state of the child svmbol (or the output bit)
a; in the next time interval., where q; € 0,1 with : =0.1..... 7. Thus. a CA rule o
can be specified in the following form:

Parent Neighborhood: n, = s; 'sisi*' 000 001 010 011 100 101 110 111
Child Symbol St ao a, a, as ag as ag ar

Wolfram’s labeling scheme assigns the integer R = Y°!Z7 a,2' to each ECA rule
table ¢. The rule number for an ECA is thus an integer value between 0 and 255.
As an example of an ECA, the bottom row in the following table lists the output
bits in the rule table of ECA 232.

Parent Neighborhood: n; = si7!'sisi*' 000 001 010 O0ll 100 101 110 111
Child Symbol in ECA 232 sty 0 o0 0 1 0 1 1 1

Assuming the lexicographic ordering of the parent neighborhoods to be fixed,

ECA 232 can be simply represented as (00010111) 3.

2Wolfram's choice of the word elementary in denoting two state CAs with r = 1 is unfortunate.
CAs with k = 2 and r = 1/2 are even more elementary in their design, and as a result, they are
also more amenable to algebraic analysis [Mo0095].

3We will use the same lexicographic ordering of the parent neighborhoods in the rule table
throughout this work. However, note that Wolfram uses the reverse ordering to represent ECAs
[Wol84c].
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Although there are 256 ECAs, there is some behavioral redundancy. In par-
ticular, ECAs can be grouped under several equivalence relations. For any binary
CA rule o, there exists a rule ¢°. such that o°(n) = C(¢#(Cn)). where the symme-
try operator C flips each value (i.e.. 1s are replaced with Os. and Os with 1s) in a
binary sequence. C is its own inverse. The rules are equivalent in the sense that
the global equation of motion can be easily transformed from one rule to another.
Thus. ®(sq) = C(P(Csq)). As an example. ECA 2 (i.e.. 01000000) and ECA 191
(i.e.. 11111101) fall in the same equivalence class.

Similarly. for any rule o. it is possible to construct another rule o" such that
o(n) = 0" (Rn). where the symmetry operator R reverses the ordering in a binary
sequence. As a result. ®(sg) = R(P"(Rse))- As an example, ECA 2 (i.e.. 01000000)
and ECA 16 (i.e.. 00001000) fall in the same equivalence class. A rule is said to be
svmmetric if ® = o". An example of a symmetric rule is ECA 18 (i.e.. 01001000).

A third equivalence relation can be derived by applying the operators C and R
successively. in either order. on rule 0. In such a rule 0. the following relationship
holds in the global equations of motion: ®(sg) = C o R(®"°(C o Rsp)). As an exam-
ple, ECA 2 (i.e., 01000000). ECA 191 (i.e.. 11111101), ECA 16 (i.e.. 00001000), and
ECA 247 (i.e.. 11101111) fall in the same equivalence class.

Once the ECAs are grouped into the complementation and reflection-symmetric
equivalence relations as described above, 88 unique ECA equivalence classes can be
identified. Thus. the notion of equivalence relations leads to a fundamental simpli-
fication in studying CA behavior. Nevertheless, the number of distinct equivalence

. 2r+1 . .
classes of rules is always more than }(2? ™), where r is the radius of the CAs *.

1Back of the envelope calculation shows that the exact number of equivalence classes for CAs

with radius = r is given by 1(22""") + L@@+ 4 L9277y 4 L(o@* 7 4+277h),
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2.3 Phenomenology

In spite of the apparently simple nature of the ECAs. they exhibit a remarkable
range of behavior. While some ECAs produce behavior that is extremely ordered
or rigidly periodic. others produce behavior that is very disordered.

Wolfram [Wol84c] detailed a survey of all ECAs and in loose analogy with
continuous dynamical systems. he proposed that the behavior of all CA rules can

be categorized into four classes as follows:

Class I Almost all initial configurations relax after a transient period to the same
fixed configuration which is homogeneous (e.g.. all 1s). ECAs such as 0. 16.

and -10 are examples of Class [ CAs.

Class II Almost all initial configurations relax after a transient period to either
(1) some fixed inhomogeneous configurations or (ii) some configurations con-
sisting of temporally periodic structures that are spatially isolated. The final
configuration. which might be temporally periodic. depends on the initial con-

figuration. Examples of Class II CAs are ECAs 4. 35, and 73.

Class III Almost all initial configurations result in “chaotic” and aperiodic (both
temporal and spatial) configurations after an initial transient period. The term
“chaotic” here (and in the rest of this work) refers to apparently unpredictable
spatio-temporal behavior. A change in a single site value in such CAs can affect
the entire lattice in a finite number of time-steps. ECAs such as 18, 45, and

90 are examples of Class [II CAs.

Class IV Some initial configurations produce complex patterns of localized struc-
tures which may persist for long periods of time. Examples of Class IV CAs
include ECA 110. Compared to the other three classes, Class IV rules are

relatively rare. This class was never well-defined.
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In a finite lattice of size .V, there are a finite number (k") of configurations.
Thus, all CAs with a finite lattice must produce periodic behavior after time ¢t > k.
In contrast, the temporal periodicity displayed in a Class IT CA refers to periodic
behavior whose periodicity is much less than &Y. On the other hand. Class III CAs
display temporally “aperiodic™ behavior with periodicity close to V.

The behavior of a one-dimensional CA can be graphically represented in a
space-time diagram. Figures 2.1 (a)-(d) depict typical behavior obtained from the
four different Wolfram classes of CAs. Each space-time diagram plots 100 successive
configurations on a lattice of size .V = 100 with periodic boundary conditions. Time
advances down the page. A site value of 1 is colored black, while sites with 0 values
are colored white. A similar pictorial representation of the space-time histories of
one dimensional CAs will be adopted in the rest of this work.

This kind of two-dimensional space-time representation of one-dimensional pro-
cesses is not uncommon in nature. The intricate patterns observed on the shells of
molluscs is a notable example. In these molluscs. the shell grows along one edge
only. where material is deposited by a row of interacting and pigment-producing
cells. Pigment deposited at the growing edge forms patterns that are never subse-
quently altered. Thus. a pattern on the shell is a space-time history of the activations
of the pigment producing cells [Mei93].

While the diversity in the spatio-temporal behavior displayed by CAs is readily
apparent in Figure 2.1, their behavioral classification is inherently qualitative since it
is based on visual inspection of space-time patterns exhibited over long time scales.
The behaviors of Class [, Class II, Class III, and Class [V cellular automata are
meant to roughly correspond, respectively, to fixed points, limit cycles, deterministic
chaos, and bifurcation points in continuous-state dynamical systems. Class [V CAs
often exhibit a large number of spatially isolated transients that can propagate across

space-time in an irregular fashion. Wolfram and others have hypothesized that Class
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Figure 2.1: Examples of space-time diagrams exhibited by CAs in Wolfram’s four
behavioral classes. Top to bottom, left to right, they are: (a) Class I: ECA 40;
(b) Class II: ECA 55; (c) Class III: ECA 90; (d) Class IV: (k = 2, r = 2) CA
1771476584. The initial configuration has been randomly generated in each case.
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[V automata are capable of supporting computation, even universal computation.
We revisit this issue in Section 2.3.

Despite its popularity, Wolfram’s classification scheme lacks scientific rigor.
Culik et. al. have shown that it is undecidable whether all finite configurations
of a given CA relax to the quiescent configuration [CHY90]. As a corollary. they
also show that the Wolfram class of a given CA is undecidable. More importantly,
the verv idea of classifying the entire behavioral repertoire of a CA into a single
category is questionable. By selecting appropriate ICs. it can be shown that for a
given CA. elements of more than one Wolfram class can simultaneously coexist in
the lattice. How do we classify such CAs? Such issues question the very basis of
Wolfram's classification scheme. For a detailed discussion on this topic, the reader

may refer to [HC92].

2.4 Quantitative Analysis of Finite Cellular Au-
tomata Behavior

As mentioned earlier, in a CA with a finite lattice size the number of possible
global configurations s is necessarily finite. Thus, one approach to the study of
CA behavior involves the enumeration of all possible configurations, where each
configuration is represented as a vertex in a discrete -“state transition diagram”
[Wol84a, WL92|. The directed edges of this graph correspond to the global equation
of motion operator ¢ which acts on s,. Since a CA follows deterministic laws, any
configuration at time ¢ can have one and only one successor configuration sg4; in
the next time-step. The out-degree of each vertex in the graph is thus equal to one.
Most CAs are dissipative in nature, and therefore vertices in the graph typically
have an in-degree of more than one.

Configurations resulting from the iterations of a CA on a finite lattice can
be divided into three groups according to the circumstances under which they are

generated. One class of configurations consists of those that can exist only as initial
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configurations and never reappear in any subsequent iteration. These configurations
are called Garden of Eden states. Formally. ®~!(s) is not defined if s is a Garden of
Eden state. In the second group are those configurations that never appear except in
the first 7 time steps. t = 1.2, ...7 . Such configurations are called transient states.
The third group of configurations are those which are visited repeatedly and appear
in cycles. Once a cellular automata arrives at a configuration of the third type
defined above. all configurations visited thereafter also belong to the same cycle.
Configurations in this group are called recurrent states. Formally, ®'*F(s) = ®!(s)
if s is a state in a cycle of period P.

The state transition diagram for a CA typically consists of a number of discon-
nected directed trees. Under the global equation of motion ¢, a deterministic CA
can never leave one directed tree and enter another directed tree.

The study of CA behavior using the state transition diagram is severely limited
in its scope for several reasons [HC92|. It is readily apparent that the construction
of the state transition diagram for large lattices is impractical since the number of
configurations grows exponentially with the lattice size as k. Thus the analysis of
CA behavior with the help of a state transition diagram is only possible for very
small lattices of the order of .V ~ 10!, which is miniscule compared to the lattices of
the order of .V ~ 10" to 10°% that are regularly used in the study of fluid dynamics.

The state transition diagram of a CA rule can be highly sensitive to the lattice
size. As a result, the state transition diagram for a CA with a given lattice size might
not generalize to other lattice sizes. A classic example is ECA 90, which typically
displays spatially and temporally aperiodic behavior (recall Figure 2.1 (c)), and is
considered to be a Class [II CA exhibiting chaotic behavior. However, for any IC in
a lattice size of size .V, where .V = 2! with i =1,2,..., ECA 90 relaxes to the fixed
point 0¥ in 27! time steps.

In trying to represent a spatial configuration as a single vertex, the state transi-

tion diagram representation ignores information about the internal spatial structures
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that may be present in the configuration. Since a CA is a spatially-extended sys-
tem, configurations often consist of a pattern of symbols. Even under the simplistic
notion of a “pattern”, two configurations containing the same sequence of cell values
(possibly subject to linear translations) contain the same “pattern”. In the state
transition diagram however, two such similar states can be arbitrarily distant from
each another: even lie in different trees. Similarly. two configurations which are
identical to each other except for a single cell value in the lattice can be maximally
distant from each other in the state-transition diagram. Since one of the hallmarks
of spatially extended systems is to spontaneously form spatio-temporal patterns and
local regularities, the notion of a “pattern” seems to be of utmost significance in
the study of such systems. In Chapter 6 we return to this topic and address some

of the issues briefly raised in this section.

2.5 Computation in Cellular Automata

The notion of “computation” in CAs has different interpretations. although
the notions are not necessarily independent of each other. [n the most common
portrayal. the CA is depicted as a mapping device which performs some “useful”
computational task. Here, the “input data” is represented by CA’s initial config-
uration. The IC is iterated for a predetermined number of iterations or until the
CA has relaxed to the “goal pattern”, which may be a time-invariant configuration.
This final configuration represents the “output data”. Thus, the CA rule table.
which governs the input to output mapping, can be interpreted as the “program”.
Algorithms based on CAs have been used for multiplying integers [Atr65], in sorting
binary numbers [Nis75|, for real-time recognition of formal languages [Pec83], for
image processing tasks such as filtering or skeletonization [PD84], and in solving
multidimensional mazes [PD84], to name just a few applications.

A related but distinct notion of CA computation is that a CA is able to per-

form universal computation when given particular initial configurations. Universal
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computation is, by definition, the emulation of a Universal Turing machine (UTM).
A UTM is a Turing machine which can simulate any other Turing machine when
given an initial configuration which includes the description of the Turing machine
to be simulated.

Two different approaches have been adopted to simulate a UTM in a CA. In
one approach. Berlekamp. Conway. and Guy used a two-stage construction proof
to demonstrate that the Game of Life—a well studied two-dimensional CA—can
support universal computation [BCG82|. In the first stage. they show that it is
possible to implement logic gates such as AND. OR. and NOT with the help of
coherent dynamical structures—called gliders—that are supported by the CA. The
information-carrving gliders consist of non-quiescent states and propagate against a
quiescent background. In the second stage of the construction. the logic gates are
used to implement an embedded serial computer in the CA. which might be a UTM
or a general-purpose RAM computer. We should note that. although it is possible
to construct CAs which are universal. in general it is undecidable whether a given
CA is universal.

Although the above method is sound in principle. it has major limitations as
an approach to perform parallel computation in a CA. Here, a CA simulates a
UTM only when given particular initial configurations. Constructing such an initial
configuration is itseif a difficult process, since only a vanishingly small fraction from
the set of all possible initial configurations can realize a UTM simulating a given
TM. As a result, this methodology delineates the computational capability that can
be achieved in principle by a CA, but tells us little about the capacity to perform
computation that can be attained in practice in a CA. Moreover, in Berlekamp et.
al.’s implementation of a UTM in a CA, only a small fraction of the sites in the lattice
actually take part in the computational process to simulate the serial computation in

the UTM. Thus, in this approach, not only are we constraining a massively parallel
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system to simulate a serial computer. but in addition. we are employing only a tiny
fraction of the available parallel architecture for the simulation.

Lindgren and Nordahl have used a different approach to embed a UTM in a
one-dimensional CA [LN90]. In their construction, the CA lattice simulates the one-
dimensional tape and the position of the read-write head of a UT M. This embedding
is made possible by ensuring that the state of each site s' in the lattice is chosen
from a set of finite alphabets A. where A is the union of the set of tape svmbols and
the set of head states of the UTM to be simulated. Unfortunately this approach
suffers from serious limitations similar to those of Berlekamp et. al.’s approach. The
construction scheme assumes a UTM with a single head. and in essence, simulates
a serial computer in a parallel machine. In addition, due to the assumption of a
single head, a large proportion of the CA’s rule table entries are left unspecified.
These entries would have otherwise encoded the local interactions between two or
more heads in a multiple headed Turing machine. Thus. the CA simulates a UTM
only for certain initial configurations where the underlying UTMI has a single head.

In an attempt to relate CA behavior to its computational capability, Wolfram
conjectured that all Class IV CAs possess the capacity for universal computation
[Wol84c]. The space-time diagram of a Class IV CA may consist of interacting
coherent structures which move against a quiescent background. Given suitable ini-
tial configurations, Wolfram claimed that such Class I\' CAs can simulate a UTM.
However. given the informality of the definition of Class IV CAs, and the impos-
sibility in proving that a given rule can or cannot perform universal computation,
this hypothesis is virtually impossible to verify.

Crutchfield, Hanson, and Young have put forth a different notion of com-
putation in a dynamical system, which they refer to as intrinsic computation
[CY89, HCY2]. Intrinsic computation alludes to the computational properties that
are generic or typical in the system’s behavior. This can be contrasted to the “in-

principle” or “best-case” computational capacity of a system. Conway’s proof of
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universal computation in the Game of Life is a notable example where the com-
putational capacity has been engineered into some subset of the CA’s behavioral
repertoire.

When applied to spatially extended systems such as CAs, Crutchfield and Han-
son’s methodology treats the CA as a parallel computer by attempting to address
the parallel computational properties of the system. Intrinsic computation does not
necessarily measure any “useful” computation being performed by a CA. In fact,
it intentionally does not depend on any externally imposed notion of utility of a
computation being accomplished. Instead. intrinsic computation attempts to iden-
tify generic computational structures that exist over long spatial and time scales
in the behavior of a CA. These entities may interact with each other and can play
a significant role in the information processing occurring in the system. [mplicit
in the dvnamics of these computational structures are notions such as information
manipulation, transmission, and storage. In their studies of CAs. Crutchfield and
Hanson attempt to discover the underlying components supporting information pro-
cessing that are embedded in a given CA’s generic behavior without attributing any
functionality to the description of these components.

In this dissertation. we employ a genetic algorithm to evolve cellular automata
to perform computational tasks requiring globally-coordinated information process-
ing. Thus, in our scheme. any evolved CA with superior performance in a given
computational task is also doing some “useful” computation. Useful computation is
our interpretation of a CA mapping input configurations to output configurations
so as to accomplish some task useful to us (and useful to the CA since since it
can be eliminated from the population for performing poorly). The fitness function
imposes the "usefulness” on the CAs.

To understand how a CA is performing a given computational task, we use
the framework of Crutchfield and Hanson to delineate the computational elements

embedded in the space-time behavior. Since the CA is accomplishing some useful
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computation, we can study the role of each of the discovered computational elements
in performing the overall computational task; i.e.. we can assign specific functionality
to the computational structures. In this way, a semantics of utility—in terms of
survival and the performance of a computational task—is introduced out of CA’s
intrinsic computational abilities.

ECA 57 (11101100) provides a context for the preceding discussion in drawing
the distinction between intrinsic computation and useful computation. Space-time
diagrams of ECA 37 starting with two different randomly generated ICs are illus-
trated in Figure 2.2. The figure shows that a checkerboard pattern occurs in ECA
57's spatio-temporal behavior. Also. the presence of back and white “gliders™ that
move with a constant velocity against a checkerboard background can be noticed.
Another important observation here is that, starting from any initial condition. the
configuration after .V steps consists of either only black gliders or only white gliders
that move against a checkerboard background (where .V is the size of the lattice).
Thus any final configuration falls in one of the two regular languages (11)™ U (01)*
or (00)* U (01)*.

In delineating the intrinsic computation occurring in this CA, Crutchfield and
Hanson’s approach would identify and formally characterize the properties of the
checkerboard pattern. the gliders, and the interactions between the gliders. The
identification of the computational structures is made with the help of formal lan-
guages by detecting the regularities in the space-time behavior (such as the checker-
board background) and the deviations from the regularity (such as the black and
the white gliders). However no attempt is made to associate any semantics with
these information-processing structures and their interactions.

In this particular example, the computational structures are visually obvious
from the CA’s space-time diagram, but in general this may not be the case. These
computational structures are generic properties of ECA 57’s behavior since they ap-

pear in the space-time diagram irrespective of the choice of the initial configuration.
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By focusing on these computational elements this approach identifies the locus of
information processing in the CA’s behavior (for example, when a back glider col-
lides with a white glider leading to mutual annihilation) and shows how information

processing may occur in parallel in the system.

Ti

148 B
0 148 0 Site 148

(b)

Figure 2.2: Space-time diagram of ECA 37 starting with two different randomly
generated ICs. The final configurations in (a) and (b) consist of black glider and
white glider respectively.

[t turns out however, that from a computation theoretic standpoint, it is pos-
sible to ascribe some computation in ECA 57's space-time behavior. Investigations
of ECA 57's behavior discloses that a final configuration has one or more black
(or white) gliders if and only if in the initial condition there are more (or fewer)
1-blocks of even length than 0-blocks of even length. Since a finite automata will
require a counter to determine the excess of 1-blocks of even length over 0-blocks
of even length (or vice versa), the computational task can be defined in terms of a
particular context-free grammar. Thus ECA 57 performs a mapping from a context
free language to one of the two regular languages (11)* U (01)* or (00)* U (01)™ and

consequently does some non-trivial classification. Once Crutchfield and Hanson's
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approach is used to discover and quantify the computational structures in ECA
537's behavior. the role of the different computational elements in accomplishing
this classification can be ascertained, and the functionality of the gliders and the
checkerboard can be delineated.

The preceding discussion presents an example of a CA whose global behavior
can be interpreted as implementing a specific computation. But what if we wanted
to design a CA that performs some other specific computation that is useful to
us? Our work uses genetic algorithm to design CAs whose usefulness is measured in
terms of how well the CAs perform a given task. To understand the behavior of high-
performance CAs discovered by evolution we adopts the computational mechanics

framework.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3

THE COMPUTATIONAL TASKS

Two different computational tasks for cellular automata will be considered in
this dissertation: a density classification task and a synchronization task. The choice
of these two tasks was influenced by several factors. Although the two tasks are easy
to define. it is not apparent how to design one-dimensional. small radius (r <« .V),
two-state CAs To perform them. As detailed in Chapter 2. each site in a CA has
access only to spatially local information and can only influence the behavior of
its neighbors. The tasks are fundamentally difficult for a CA to perform because
each task involves complete global coordination requiring long-range information

processing and transmission.

3.1 Density Classification

In this task. the density p(s) refers to the fraction of 1s in a configuration s.
For an IC s, the shorthand notation py will be used for the density p(sp).

The particular density classification problem studied in this work is defined as
follows. If the initial density pg in a given IC sy is more than a critical density p,,
then within W time steps, a successful CA for this task should relax to a fixed-point
configuration 1V; otherwise, the CA should relax to a fixed-point configuration o~V.
M is a parameter of the task that depends on the lattice size V. On a spatially

periodic lattice of length V, this task can be formally defined as

, OM+i(se) = 1V if py > pe N
Tpc(so,z\/,.f\«[)z{ <I>A"+i§82§=ON ” I;2<gc }VSQG{O,I}V&VLE{0,1,...,00}.

(3.1)
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By choosing appropriate lattice size :V, the behavior of the CA for py = p. need not
be defined.

For the density classification task T2, the critical density p. is fixed at 1/2
and the lattice size .V is restricted to odd values. A successful CA for the T/, task
can be thought of as a mapping device which accepts an IC as an input and classifies
it according to its density pp into one of the two “goal” fixed-point configurations,
0~ or 1V. From this perspective. the global equation of motion ® of the CA over
M time-steps can be interpreted as the program which governs the mapping from
an input to an appropriate output configuration.

For the T, task. the performance, P (), of a given CA. o. on a lattice of
size .V is defined to be the fraction of A" randomly chosen initial configurations
on which ¢ produces the correct final configuration within .\ time steps. All per-
formance measurements given hereafter are made with A' = 10*. M =~ 2.V, and
.V € {149,599.999}. In general, the performance of a CA on these three values of
.V gives a good idea how the performance scales with lattice size.

The T,,, task is interesting because it is closely related to image processing
tasks such as filtering or logical convolutions [PD84]. In these tasks. a “kernel”
function is used to define a two-dimensional local neighborhood around each point
in an image. To process an entire image, a logical transform, such as thresholding,
is simultaneously applied to the neighborhood of each point in the image. Often,
a series of different kernels and logical transforms are successively applied on an
image for finer processing. In a simpler context, our study of one-dimensional CAs
to perform simple tasks such as T/, is a preliminary step in the understanding and
design of CAs which can perform image processing tasks in two or more dimensions.

The density classification task is also of interest in studies of reliable computa-
tion. Issues related to the avoidance of accumulation of errors in arbitrarily large
computations using unreliable components are of fundamental importance in com-

puter science. One of the goals in such studies is to design a spatially-homogeneous
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distributed medium that can store information even though each element in the
medium makes an error with some constant probability at each time step. In the
model analyzed in [GKLT78|, a single bit of information—a zero or a one—was en-
coded in the state of a CA configuration consisting of 0¥ or 1V respectively. The
aim was to design a CA rule such that any perturbation in the 0 (1) configuration
will die out. with the CA returning to the 0 (1V) configuration. Under such a rule.
the CA would reliably store information in spite of random error in rule update. In
the absence of new errors in rule update, a CA which is maximally reliable would
restore any configuration which is less than .V/2 in Hamming distance from 0V (1)
back to the fixed-point configuration of 0V (1V). Such a CA would therefore also
exhibit high performance for the T, task.

Although the T,/ task is simple to define. it is nontrivial for a small-radius
(r < V) CA. Since density is a global property of a configuration, whereas a small-
radius CA relies only on local interactions mediated by the cell neighborhoods. it is
not apparent how to design a CA for the T, task. The task is difficult because it
requires the implementation of a prespecified global mapping in terms of the local
mapping in a CA rule table. Moreover, since 1s (say) can be distributed throughout
the lattice. the CA must transfer information over large space-time distances (= .V).
As an example, consider an IC with py < 1/2 such that the addition of a single
1 in the configuration increases the value of py to more than 1/2. As a result
of this infinitesimal modification—which could occur anywhere in the lattice—the
desired fixed-point configuration is changed from 0¥ to 1V. Therefore, as a necessary
precondition to the change in the fixed-point configuration, information about the
new site value has to be propagated throughout the lattice and affect each site value
in the final configuration.

For a Turing machine that accepts the IC as the input tape, the minimum
amount of memory required for the T/, task is proportional to log(iV), since the

equivalent of a counter register is required to track the excess of 1s in a serial scan
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of the IC. In other words, the task requires computation which corresponds to the
recognition of a non-regular language [MCH94b]. In fact. it can be shown that no
finite radius CA can perform this task perfectly across all lattice sizes (see Appendix
A). For a fixed lattice size, even performing this task well (with. say, P¥ (¢) > 0.5)
requires more powerful computation than can be performed by a single cell or any
linear combination of cells.

A study of the T, task [MCH94b] shows that any CA o that performs T »

perfectly, must possess two symmetries:

1. If an IC sq is spatially reversed on the lattice. then there is no change
in the classification obtained by o. Thus the global equation of motion

engendered by o must meet the condition
PMFi(sg) = ®M T (Rsg) Vsp€ {0.1}Y & Vie {0.1..... x}. (3.2)

where the operator R reverses the order of the bits in a configuration s.

2. If all the bits in an IC sq are flipped (i.e.. ls are replaced with Os.
and 0Os with 1s), then ¢ must give the opposite classification. Thus the

global equation of motion engendered by © must meet the condition
PV +i(sg) = COMF(Csg) Vsp € {0.1}Y & Vie{0.1,...,x}. (3.3)
where the operator C flips the bits in a configuration s.

A CA can satisfv the two symmetry constraints either in its local interactions
(i.e., in the individual neighborhood mappings in the rule table ¢) or in its global
mapping (defined by the global equation of motion &), or both.

A successful CA that performs the T/, task must obey some additional con-

straints on its global equation of motion &.

If p(s) < p., then p(®'(s)) <p. Vie{0,1,...,00} (3.4)

If p(s) > p., then p(®*(s)) >p. Vie {0,1,...,0} (3.5)
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The validity of the above constraints can be proven by contradiction. Suppose there
exists a rule ¢, which correctly classifies all ICs. For a given configuration s, if
p(s) < pe, then by definition, under ¢,’s global equation of motion, p(®*(s)) = 0.0.
Now, also suppose that ¢, violates the first constraint, and thus, p(®'(s)) > p. for
some t > 1. Then. by definition p(®*/ (®*(s))) = 1.0. This leads to a contradiction,
since o, classifies the configuration s with p(s) < p. into the fixed-point configuration
of 1¥. Thus. a perfect rule for the T/, task must satisfy the first constraint. Using

similar logic, the validity of the second constraint can be shown.

0 0
= =
148 : 148
Site 148 0 Site 148
(a) (b)

Figure 3.1: Two space-time diagrams for the majority rule CA, @m,;- In (a), po =
0.45. and in (b). pp = 0.55. It should be noted that both in (a) and (b). the CA has
failed to reach the correct goal configuration of 09 and 19 respectively.

As a starting benchmark, consider a naive candidate solution @p,; for T2
task. @me; uses majority voting among the site values in the parent neighborhood
to determine the corresponding output bit. For an r = 3 CA, ¢ng;'s look-up table

is defined as follows

i 3 s e Tei=3 i=2 ji-l i il i+2 i+3
Ste1 = Omajority (M) = majority(s,™>, s7" sy, s, 5t L8 L5 (3.6)

In words, this rule says that for each neighborhood 7' of seven adjacent cells, the

new state of the central cell is decided by a majority vote among itself and its
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six neighbors. From equation 3.6. it can be determined that the candidate rule
®ma; satisfies the two symmetry constraints (equations 3.2 and 3.3) in its parent
neighborhood mappings. Typically, 0,4, also obeys the two constraints on its global
equation of motion as defined in equations 3.4 and 3.5.

In spite of the above arguments in its favor. ¢,,; fails to perform the T,/
task. The performance 'Pi‘é4(oma]m,,y) was measured to be 0.000 for each of the
three lattice sizes .V = 149. 599. and 999.

Figure 3.1 helps to illustrate why 0,4, is not successful. The figure depicts its
space-time behavior. starting from two ICs with different py. In each case, the CA
fails to relax to the correct goal configuration. After a very brief transient period,
the CA configuration is frozen in a temporally invariant but spatially inhomogeneous
configuration consisting of blocks of 0s or 1s. Under @.,;, any block of 1s (or 0s) of
length greater than r cannot decrease in length. Among all possible ICs in {0.1}",
the fraction of ICs without blocks of 1s and Os of length greater than 3 tends to 0
with increasing .V. Thus. for almost all ICs the application of ©,,,; rule results in
unclassified final configurations consisting of blocks of both 1s and O0s.

Interestingly. there exist trivial rules whose performance P;Y (o) = 0.5 for any
odd lattice size .V. In other words. these trivial rules have superior performance
than o©pn,,. Consider a rule op, in which all neighborhoods are mapped to the
output symbol 0. As a result. starting from any IC, ¢y relaxes to the fixed-point
configuration of 0%V in a single time step. Since ICs are randomly sampled to measure
the performance a rule, ¢g correctly classifies half of the ICs. Similarly, rule ¢,—
in which all neighborhoods are mapped to the output symbol 1-—has performance
Pi (¢1) = 0.5.

As mentioned earlier, it is already known that there is no finite radius CA that
performs T, perfectly. But are there CA rules that can perform significantly better
than @ or ¢, on T,/ ? If there are such rules, to what extent do they satisfy the

constraints inherent in the task? More importantly, what are the mechanisms of
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information processing and information transmission in such CAs? The subsequent

chapters address these issues in detail.

3.2 Synchronization

The goal in this task is to find a CA look-up table ¢ that. given any initial
configuration Sg. within M time steps reaches a final configuration that oscillates
between the 0~ and 1V configurations on successive time steps. The synchronization
task R is formally defined as

dY(sp) =1V and ®(1V) =0V
R(sq..V. M) =< or Vso € {0.1}V (3.7)
®M(sg) =0V and ®(0V) =1V

M, the desired upper bound on the synchronization time. is a parameter of the
task that depends on the lattice size .N. This is perhaps the simplest nontrivial
svnchronization task for a CA.

[mplicit in the definition of a CA is a globally synchronous update clock. That
is. a CA's local states are updated at the same time across the lattice. But. since each
site has a “processor™ o which determines local behavior and site-to-site interactions.
the effect of the underlyving global update need not be manifested directly in globally
synchronous configurations (e.g., ECA rule 90’s behavior is “chaotic”).

One of the earliest mathematical articulations of a similar nontrivial spatial
svnchronization problem in a distributed system—the firing-squad synchronization
problem (FSSP)—uses a globally synchronous update clock. As in the R task, in
spite of the global update mechanism, it is the site-to-site interactions among the
individual processors that makes the FSSP interesting and difficult. Although FSSP
was first proposed by Myhill in 1957, it is still being actively studied [Yun94].

In the FSSP one considers a finite, but arbitrarily long ordered line of identical
cells, numbered from 1 to N. The state of a cell at time ¢ + 1 depends on its

own state and the state of its immediate neighbors at time t. All the cells are
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updated synchronously. Given an IC in which all cells, except the leftmost cell (the
“General”), are in the quiescent state, the task in the FSSP is to design a CA rule
such that all the cells will enter a special state (“fire”) for the first time at the same
time step. By constraining the rule table. it is guaranteed that the General remains
in the leftmost cell, and the number of Generals remains constant at one. Thus
the resulting CA is spatially inhomogeneous. [t is easy to show that the minimal-
time solution to the FSSP requires at least 2.V — 2 time steps. Among the various
solutions to the FSSP, Mazoyer’s approach requires the least number (6) of states
per cell [Maz87]. Various generalizations of the FSSP have been proposed in the
literature. including multi-dimensional versions of the problem [Cul93].

Although the FSSP and the R task are similarly motivated. there are three

important differences.

1. In the solution to the FSSP proposed by Mazoyer. the number of states
per cell k is 6, and the number of possible neighborhood configurations
is 6371 = 216 for r = 1. The R task deals with two-state CAs. and
thus the number of possible neighborhood configurations is 23 +!) = 8
for r = 1. In this work, we mainly focus on CAs with r = 3. which allow

128 different neighborhood configurations.

2. The FSSP considers only those ICs in which all cells. except the
general, are in the quiescent state. There is no such restriction on the
[Cs for the R task. A successsful CA for the R task must attain global

svnchronization starting from all possible ICs.

3. In the FSSP, all the cells enter the firing state for the first time at the
same time step. Thus local information is sufficient to determine whether
the system has attained synchronization or not. In other words, if a cell
is in the fire state, it “knows” that the whole system is in synchrony.

In the R task, there is no special fire state, As a result, the cells in
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the system have no way of “knowing” whether or not the whole system
has attained synchrony. Instead, information about synchronization is a

property of the system’s global configuration.

For the R task. the performance Py (®) of a given CA o on a lattice of size .V
is defined to be the fraction of A" randomly chosen initial configurations on which
o produces the correct final sequence of configurations after at most M/ time steps.
As in the case of the density classification task Ty,;. all performance measurements
given for R are made with .V € {149.599.999}. A" = 10*. and M = 2.V.

Like Ty,2, R is nontrivial since synchronous oscillation is a global property of
a configuration. whereas a small-radius (e.g.. r = 3) CA employs only local interac-
tions mediated by the sites’ neighborhoods. Thus. while the locality of interaction
can directly lead to regions of local synchrony, it is substantially more difficult to
design a CA that will guarantee that spatially distant regions are in phase. Since
regions that are not in phase can be distributed throughout the lattice. a successful
CA must transfer information over large space-time distances (= V). In order to
produce a globally synchronous configuration a CA must to remove phase defects—
borders separating regions that are locally synchronous.

For reference, we consider a naive candidate solution @,, a r = 3 CA whose

look-up table is defined by:

(3.8)

, 1 if p = 0000000
@osc(n) = { 7

0 otherwise
The output-bit settings in @,y ensure that ®(1¥) = 0¥ and ®(0Y) = 1V. The
performance ’P{\&((f)osc) was measured to be 0.54, 0.09, and 0.02, for .V = 149, 599,
and 999, respectively. This shows that although ¢, is able to reach the globally
synchronous state for roughly half the ICs in a lattice with V = 149, its performance
decreases dramatically for larger lattice sizes.

®osc 1s an unsuccessful synchronizer precisely because it is unable to remove

phase defects. This is readily apparent in Figure 3.2, a space-time diagram from
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Time

1483 Site 148

Figure 3.2: Typical space-time diagram produced by ©,s.. It should be noted that
®ose 1s unable to remove the two phase defects—borders separating regions that are
locally svnchronous.

Onsc- In the figure, there are two phase defects which separate regions that are locally
synchronous but out of phase with respect to each other. Such phase defects occur
when the [C has at least one block of Os of length greater than the neighborhood
size (2r + 1). Among all possible ICs in {0, 1}, the fraction of ICs without blocks
of Os of length greater than or equal to 7 tends to 0 with increasing .V. Thus, the
performance of @, drops sharply with increase in the lattice size.

The inferior performance of both @me; and ¢, for their respective tasks are
a result of similar limitations in their spatio-temporal behavior. In each case, the
global equations of motion result in noninteracting sub-regions within the lattice.
Since these sub-regions persist indefinitely over time, there is no information trans-
mission across the system. Thus, for both tasks T2 and R. more sophisticated
CAs must be found which must at least be capable of engendering long-range in-
formation transmission. This information then can be used to produce the desired

global configurations.
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Chapter 4

GENETIC ALGORITHMS: AN OVERVIEW

From the very dawn of the computer age, computer scientists have been deeply
interested in biological systems as guiding metaphors for developing computer sys-
tems with biological properties such as intelligence and self-reproduction. At the
present time. a resurgence of interest is being witnessed in the use of biological
paradigms for the development of computer systems. One such approach has devel-
oped into the field of “neural networks™ [HKP91]. Researchers in this field aim to
build intelligent systems by studving the neurons and the neuronal connections in
the brain as the main inspiring metaphor.

A very different metaphor is adopted in the field of “evolutionary computa-
tion” which derives inspiration from the paradigm of biological evolution. Genetic
algorithms (GAs), which are non-deterministic search strategies based on concepts
abstracted from evolution. provide the most notable example of this evolutionary
computation approach. GAs were first developed by John Holland and his col-
leagues in the 1960s. In Adaptation in Natural and Artificial Systems [Hol75], Hol-
land presented GAs as an abstraction of natural evolution and provided a theoretical
framework to study the mechanisms that guide adaptation in a GA. Since the mid
1980s, G As have garnered wide scientific interest and have been successfully applied
in a large number of complex computational problems in science and engineering

[Gol89, Dav9l, Mit92).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16

4.1 The Evolutionary Paradigm

What are the factors that make it appealing to use evolution as a paradigm to
help in solving difficult computational problems? One of the primary reasons is that
some of the main mechanisms of biological evolution can be easily adapted to find
solutions to complex computational problems. In many such problems, the goal is
to find the optimal (or a near-optimal) solution among a vast number of possible
solutions. For example. consider the problem of turbine blade design. Given that
there are a large number of control parameters which determine the shape. size.
and other physical properties of a turbine blade. how does one search for the set of
parameters that result in the most energy efficient turbine blade? A similar scenario
is encountered in the problem of computational drug design where the aim is to find
a protein. enzyme or a antibody with a set of desired properties. The properties of
such biochemicals are primarily determined by the underlying amino-acid sequence.
Since there exists an enormous number of possible amino-acid sequences. it is not
apparent how to efficiently search through all the possibilities to determine the right
protein.

In addition to the large search space. problems such as the ones described above
are difficult for several other important reasons. In these problems, the fitness of
a candidate solution is determined by a large number of parameters or features,
and it is often difficult to determine which features are responsible for superior
performance. Moreover, the effect of one feature on the overall fitness may depend
strongly upon what other features are present in the candidate solution. As a
result, the fitness measure is often a complicated, nonlinear and high-dimensional
function of the underlying parameters. The presence of local optima and sudden
discontinuities in such functions make them very difficult to search using traditional
gradient-based algorithms. Finally, in some problems, the fitness measure might

be a noisy function and may also vary over time and space. In order to find the
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optimum. such problems require algorithms which are adaptive and responsive to
the continual changes occurring in the search space.

In trying to understand these difficulties and obtain a wider perspective, one
notices that biological evolution encounters strikingly similar impediments. And
vet. evolution is able to produce increasingly fit organisms in uncertain and com-
plex environments which may vary over time and space. Biological evolution (also
referred to as Darwinian evolution or natural evolution) works on a population of or-
ganisms in which the fittest survive and are able leave behind offspring into the next
generation. The fitness of an organism depend on its phenotype. i.e.. the set of char-
acteristics or attributes that help an organism to survive in an environment. These
characteristics are in turn determined by the genes residing in the chromosome of
the organism. Each gene can attain several different forms or alternatives—called
alleles—resulting in differences in the set of phenotypic characteristics associated
with that gene. The entire genetic makeup of an organism is called the genotype of
that organism. Since higher order organisms contain on the order of 2!%9%° genes,
the number of possible genotypes is indeed astronomical. This gives an idea of
the enormous size of the space through which natural evolution has to perform its
search. Moreover, since the effects of genes are in general not additive, the search
for fitter organisms becomes considerably more difficult. Due to the interactions
and the interdependence among the genes—a phenomenon known as epistasis—the
mapping from a genotype to its phenotypic characteristics is very complicated. As
a result, it is difficult to apportion credit to the individual alleles that are actually
responsible for superior fitness. In the presence of all these impediments, how does
natural evolution discovers fitter organisms?

In his book Adaptation in Natural and Artificial Systems, Holland argued that
natural evolution is able to overcome these problems by primarily searching for
“coadapted” sets of interdependent alleles which together result in improved perfor-

mance of the corresponding phenotype. Thus instead of searching for a single highly
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fit genotype by testing candidate solution one at a time, biological evolution searches
for coadapted sets of alleles among the individuals in a population. The presence
of a large population allows the search to proceed in parallel along many different
paths. At the same time, genetic recombination and mutation help in discovering
new sets of coadapted alleles. Holland formalized the concept of a coadapted set of
alleles under the term schema and used it to provide a theoretical framework for his

genetic algorithm.

4.2 A Simple Genetic Algorithm

A GA maintains a population of chromosomes, and employs a set of genetics-
inspired operators to create a new population from the existing one. Each chromo-
some in a population represents a candidate solution and is encoded in a string of
bits. Under a binary representation scheme. each position (locus) in a string has
two possible values (alleles), 0 and 1. Borrowing vocabulary from biology. the chro-
mosome of a particular candidate solution defines the genotype of that individual.
Each individual in the population is also associated with a fitness. i.e.. a measure of
how well the individual solves the problem at hand. The fitness of an individual is
determined by its features or characteristics, i.e.. its phenotype.

As an example, consider the problem of maximizing the function F(r) = z3 —
5x? +13. where r is an integer € [0, 31]. Under a binary encoding scheme. the entire
domain of the solution space can be represented with unsigned binary integers of
length five, since there are 2° candidate solutions. Thus a candidate solution £ = 15
can be represented with the binary string 01111. In this problem, the fitness of the
chromosome 01111 is F(01111) = 225.

A simple GA uses three type of operators which operate on chromosomes in a

population:
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Selection: The individuals in the population undergo a fitness based selection pro-
cess. where strings encoding fitter solutions are allowed to reproduce prefer-
entially into the next generation. Thus, fitter strings on average send more

offspring into the next generation than less fit ones.

Crossover: The crossover operator. which loosely mimics biological recombination,
proceeds with a pair of parent chromosomes. A crossover locus within the chro-
mosome is chosen at random. and the subsequences on either side of the locus
are exchanged between the two parents. For example. consider the following

two parent chromosomes P; and P, undergoing the crossover operation.

P, = 11011]1101
P, = 00000]0000

When the crossover site falls after the fifth locus (represented with the sepa-

rator symbol |). the crossover operation results in the two child chromosomes

C[ and C_)Z

C, = 110110000

¢, = 000001101

Tvpically, the crossover operation is performed with a certain probability p.

for every pair of mated parent chromosomes.

Mutation: In the case of binary strings the mutation operator flips the bits in
the strings with a very low probability p,,. For example, when the chromo-
some 110110000 undergoes a mutation at the third locus, it results in the

chromosome 111110000.
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For a given problem, a simple GA works by sequentially following the steps

given below. (Although a bit-string representation for candidate solutions has been

adopted here, an extension to a larger alphabet size is relatively straightforward.)

L.

o

The initial population consists of P chromosomes. Each chromosome is made
up of a string of L bits and it represents a candidate solution r in the search
space. Each allele value in a chromosome is randomly generated. i.e.. the
allele value can be a 0 or a 1 with equal probability. The generation counter

is initially set to zero.
The fitness F(r) of each chromosome r in the population is evaluated.

Steps (i)-(iii) are repeated until the total number of offspring produced is equal

to the population size P:

(i) A pair of parent chromosomes are selected from the current population.
The probability of selecting a chromosome is directly proportional to its
fitness. Since the chromosomes are selected with replacement. a chromo-
some with above average fitness can be selected as a parent on more than

one occasion.

(ii) The crossover operator is applied to the two parent chromosomes with a

probability p.. It results in two new offspring.

(iii) The mutation operator is applied to each locus in both child chromosomes
with a very small probability p,,. The resulting child chromosomes are

placed in the new population.

The current population is replaced by the new population. The generation

counter is simultaneously incremented by one.

. The process is stopped if the number of generations has exceeded a predeter-

mined limit; else the evolutionary cycle continues by returning to step 2.
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[n practice, when applying a GA to solve a real world problem. researchers
typically use more complicated versions of the genetic algorithm than the simple
algorithm presented here. Nevertheless. most genetic algorithms follow the same
basic steps outlined above. In the recent past. GAs have been used in a wide range
of engineering problems requiring numerical as well as combinatorial optimization.
[For93. BBI1. Sch89. Gol89. Dav91]. GAs have also been used as models of biological
evolution to study immune systems, economic models. and ecological systems [For90.
HM91. Mit92].

The apparent success of GAs in these diverse fields raises the question: What
features in a GA are responsible for its apparent success” Although the basic steps
in a GA are simple to describe. the behavior of a GA is often very complicated. As
a result, there is considerable debate regarding the underlying mechanisms which
lead to the discovery of high performance solutions in a GA.

The earliest effort to explain the behavior of a GA is due to Holland in which
he emphasized the notion of a schema or a building block. One of Holland’s main
assumptions is that the genotype of a high performance solution is made of good
building blocks, i.e., sets of alleles which together confer higher fitness on the chro-
mosome in which they are present. Holland proposed that the success of a GA
in discovering good solutions lies in the GA’'s ability to efficiently search for good
building blocks or schemata. A schema represents a set of bit-strings that share
some common feature. A schema can be denoted as a bit string consisting of the
symbols 0, 1, and #. where # is the wild card symbol. As an example, the schema
s = 11### represents all bit strings of length five which begin with a pair of ls.
The number of defined bits (i.e., locii with a non-# symbol) in a schema defines
the order of the schema. The defining length of a schema is the distance between
the outermost defined bits. Holland focused on these two properties in his schema

analysis.
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[t is easy to show that any given bit string of length L is an instance of 2
distinct schemata. For example, the string 01 is an instance of the following four
schemata: 01, O#, #1, and ##. Thus. a GA with a population of P L bit-strings can
contain up to P x 2F schemata. More importantly. when a GA evaluates the fitness
of the P chromosomes, it implicitly estimates the average fitness of a much larger
number of schemata at the same time. The selection process allows fitter schemata
from one generation to send more copies of themselves into the next generation. It
is important to note that while the selection operator is only applied at the chromo-
some level. selection at the schema level occurs automatically. By recombining the
existing high-performance schemata in a population. the crossover operator provides
the primary vehicle through which new schemata with even better performances are
discovered in a GA. In his GA. Holland envisioned that the main role of the muta-
tion operator was to guarantee genotypic diversity in a finite population. While the
mutation operator certainly plays this role. research shows that this operator can
also aid in the discovery process by making a sequence of small adjustments to the
chromosome where each step in the sequence leads to an improvement in the fitness
[SCEDB89]. In other words. the mutation operator may often allow a GA to “hill
climb” to the optimum.

Taking into account the effects of the various operators in a GA, Holland pro-
vided a theoretical framework—known as the Schema Theorem—to delineate how
a GA biases the number of instances of a schema in a population from one gener-
ation to the next. Given a schema, its current fitness in the population, and the
number of instances of the schema in the current population, the theorem provides
a lower bound on the number of copies that can be expected to be found in the next
generation. In essence, the Schema Theorem says that the GA will allocate an expo-
nentially increasing number of samples to low-order short-defining length schemata

with above average fitness. This allows the crossover operator to recombine short
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low-order schemata and discover new high-fitness schemata which subsequently un-
dergo the selection process themselves.

The Schema Theorem has been the focus of much research in the GA commu-
nity over the past decade. However, several researchers have criticized the schema
theorem for its simplistic assumptions which are rarely true in realistic problems.
Others have studied GAs using different techniques such as Markov models [Vos93]
and statistical mechanics approaches [PBS94]. Nevertheless. Holland's schema theo-
rem remains the most well-studied framework to analyze the mechanisms that drive

a GA [FM93b. FM93a. MHF).

4.3 Using GAs to Study Natural Evolution

In this dissertation. we use a GA to design CAs that can perform a given com-
putational task. [t needs to be reemphasized that the GA is provided information
about what is to be done rather than how to perform the tasks. In addition to em-
phasizing the use of a GA in automatically discovering CAs, this work also focuses
on the evolutionary dynamics in a GA that lead to the discovery of high-performance
CAs. Thus. we are also interested in GAs as computational models to understand
biological evolutionary processes.

Among the problems which have historically been of the greatest interest in
the study of evolutionary theories, the origin and nature of morphological novelty in
organisms undergoing biological evolution occupies an important place. An example
of morphological novelty in evolution is the development of fins for locomotion in
early vertebrates. There are several schools of thought on the guiding mechanisms
in evolution that are responsible for the origin of novel biological structures and
the subsequent adaptation of those structures [Wil93, Boc95, Cru94]. The neo-
Darwinist school [Boc95] maintains that the order and form observed in biological
organisms is a result of (i) fitness-based selection of individuals, and (ii) genetic

variations that lead to diversification. Proponents of this school suggest that the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

above two processes are sufficient to gradually alter one form of structure into a
different form.

A rival school of thought, mainly lead by Stephen J. Gould and Nigel Eldredge,
asserts that while the processes of selection and genetic variation are important,
major changes in structure are often solely due to historical accidents [GE93]. It is
argued that although an existing structure may play a major role in an organism’s
ability to survive. at the time when the structure appeared it might have conferred
no survival benefits. In their theorv of punctuated equilibria. Gould and Eldredge
have claimed that biological evolution is not gradual. but episodic. with long periods
of stasis interrupted by bursts of evolutionary activity.

More recently. a different perspective has been offered by a third hypothesis
of thought which seeks to delineate the “principles of organization™ in biological
evolution {Goo92, FB94. HW93|. This school maintains that despite the extreme
genetic diversity of organisms, the interactions between the genes are constrained
such that the range of possible biological forms is fundamentally limited to a rel-
atively small set of structural prototypes. In the course of evolution. the different
structural prototypes act as “attractors” waiting to be filled. Which structural pro-
totype is finally achieved through the course of evolution is primarily determined
by selection. historical accidents or both.

With these different viewpoints in mind, this work attempts to gain deeper
insights into the origin of structural and functional novelty in systems undergoing
evolution. In particular, we seek to understand the origin and nature of computa-
tional elements in a CA which are selected by a GA to perform the computational
tasks. Also, our goal is to understand the evolutionary pathway through which a
GA manipulates the discovered computational elements to achieve improved perfor-

mance.
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Chapter 5

EVOLVING CELLULAR AUTOMATA WITH A GENETIC
ALGORITHM

Our approach in using GAs to evolve CAs to perform a computation task
can also be viewed as an automatic programming technique. Similar automatic
techniques have been used in the past to design classifier systems and neural net-
works in machine learning {WS92, Gru92, MTH89. WDD91], and to construct high-
performance sorting networks [Hil90]. A study of these works shows that while the
GA is often successful in designing the above complex systems. much remains to be
discovered and learned. In particular. further research is necessary in determining
the features in these problems that either help or impede the GA in discovering and
adapting high-performance solutions. In this work, we attempt to understand these

issues in the context of a GA evolving CAs.

5.1 Previous Work

A part of the work described in this dissertation is the extension of earlier work
by Mitchell, Crutchfield, and Hraber [MHC93. MCH94a, MCH94b] on evolving CAs.
Mitchell et al. were initially interested in this problem to verify earlier experiments
by Packard where the latter used a GA to evolve one-dimensional CAs. Packard
designed his experiment to test the “edge of chaos” hypothesis which claimed that a
GA evolving CA rules to perform a nontrivial computational task will tend to select
rules near conjectured phase transitions in rule space. Behavior that was between
ordered and chaotic was expected from the high-performance rules. In these exper-

iments, the fitness of a CA was determined by its ability to perform the density
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classification task T,/». In [Pac88]. Packard claimed that in his experiments the GA
indeed found rules near this phase transition and offered these results to support the
edge of chaos hypothesis. However. Mitchell. Crutchfield. and Hraber re-examined
Packard’s claims. and provided both theoretical arguments and experimental evi-
dence which did not support the edge of chaos hypothesis [NHC93]. Mitchell, et
al.. claimed that Packard’s results were an artifact of the particular GA he used
in his experiments. In addition. Mitchell. et al.. found no evidence that rules near
the conjectured phase transition are computationally more capable in solving the

density classification task.

5.2 Details of the Experimental Setup

The GA used in these experiments was modeled after earlier work on density
classification by Mitchell. Crutchfield. and Hraber [CM94. MHC93]. The GA begins
with a population of P randomly generated “chromosomes” —bit strings encoding
CAs by listing each CA’s output bits in lexicographic order of neighborhood con-
figuration. For binary r = 3 CAs. the chromosomes are of length 128 (= 2%"*!).
The size of the space the GA searches is thus 2'**—far too large for any kind of
exhaustive search.

Like the performance measure Pj (o). the fitness of a chromosome o is esti-
mated by fixing the lattice size, selecting a random sample of initial configurations,
interpreting the chromosome as a CA look-up table, and iterating this look-up ta-
ble on each IC in the sample until the desired behavior is reached or the CA has
iterated for a maximum of M time steps. The fitness value F(¢), is the fraction
of I ICs on which the CA produces the correct final configuration or sequence of
configurations. In the case of the density classification task T2, the correct final
configuration is 0V if py < 1/2; otherwise the final configuration is 1. The initial
density po is never exactly 1/2, since NV is chosen to be odd. No partial credit is

given for a partially correct final configuration. In the synchronization task R, the
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desired dynamics in final configurations must consist of oscillations between 0% and
1V. No partial credit is given for incompletely synchronized final configurations.

Our fitness measure. Figo(9), differs from P{Y,(o) in the following ways: (1) For
computational tractability, Flgo(@) was always computed on a lattice with .V = 149,
and only I = 100 ICs were chosen rather than 10*; (2) Rather than selecting the ICs
from an unbiased distribution (i.e.. equal probability across the entire search space as
for PY.(9)) the ICs were chosen from a special distribution over p. where p denotes
the fraction of 1s in a configuration. In this biased distribution. the probability
of choosing an IC with density p was equal for all p € [0.0,1.0]. This uniform
distribution over p is highly skewed with respect to the unbiased distribution over
the search space. which is binomially distributed over p € [0.0.1.0] and thus very
strongly peaked at p = 1/2. Preliminary experiments indicated that the GA was
able to quickly find CAs with P;j.(¢) > 0.5 only when the ICs were chosen over
from a uniform distribution over p.

In each generation the GA goes through the following steps. (i) A new set of
100 [Cs is generated from the uniform distribution over p. (ii) Figo(0) is calculated
for each o in the population. (iii) The E highest fitness (“elite”) CAs are copied
without modification to the next generation. (iv) The remaining (P — E£) CAs
for the next generation are formed by single-point crossovers between pairs of elite
CAs chosen randomly with replacement. The offspring from each crossover are each
mutated m times, where a mutation consists of flipping a randomly chosen bit in a
chromosome. This defines one generation of the G4; it is repeated G times for one
GA run.

Fio0(®) is a random variable since its value depends on the particular set of 100
ICs selected to evaluate ¢. Thus, a CA’s fitness varies stochastically from generation
to generation. For this reason, we choose a new set of 100 ICs at each generation.
The entire population, including the set of elite CAs, is re-evaluated on a new IC

set.
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Also, because Flgo(¢) is only a rough estimate of performance. we more strin-
gently measured the quality of the GA’s solutions by calculating Pji«(¢) with
NV e {149,599,999} for the best CAs in the final generation of each run.

For our initial experiment. we chose a population size P = 100, the number
of elite chromosomes in the population £ = 20. and the number of mutations per
chromosome m = 2. A smaller population size often leads to premature convergence
and loss of genotypic diversity. On the other hand. running a GA with a much larger
population is computationally expensive. M was chosen from a Poisson distribution
with mean 320 (slightly greater than 2.V). Varving )M prevents selecting CAs that
are adapted to a particular M.

For each of the two computational tasks, we performed 50 GA runs of 100
generations each. These runs were followed by number of other experiments. each
consisting of 50 GA runs. in which some parameters were modified. In the next two
sections. we present the phenomenological details of the results obtained from these

experiments.

5.3 Density Classification

The GA uses operators such as crossover and mutation which act on the local
mappings comprising a CA look-up table (the “genotype”). Selection is performed
according to the dynamical behavior of CAs over a sample of ICs (the “phenotype”).
As is typical in real-world evolution, it is very difficult to understand or predict the
phenotype from studying the genotype. So. once the GA has constructed successful
complex systems for the task, we are faced with problems familiar to evolution-
ary biologists: how and why did the GA evolve such systems? What underlying
mechanisms gave rise high fitness in the successful systems?

In beginning to answer these questions, we must first address the following

issues:
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1. How well did the evolved rules perform the density classification task T;/;?

What “strategy” allowed the rules to attain superior performance?

2. How efficient was the GA in finding high-performance rules for this task?

Why was the GA successful or unsuccessful in finding such rules?

To investigate these issues. we studied the behavior of the evolved CAs as
well the behavior of the GAs used to discover high-performance rules from several

different perspectives.

5.3.1 Performance of the Evolved CAs

Table 5.1 shows the performances PJjs of the some of the rules evolved by the
GA. measured over three different lattice sizes NV = 149, .V = 599 and .V = 999.
For comparison purposes, the performances of the majority rule CA ¢p,,;. and ogx 1
are also presented in this table. ogs was hand-designed by Gacs, Kurdyumov and
Levin to study reliable computation in one-dimensional spatially-extended systems
[Gac85].

In a majority of the experiments, the GA discovered CAs with behavior and
performances similar to @ezp(1) OF @erp2)- Lhese rules displayed fitness Figo(@) be-
tween 0.9 and 1.00. Such CAs use one of two strategies: (1) Relax to the fixed point
of all Os unless there is a sufficiently large (~ 2r + 1) block of adjacent (or almost ad-
jacent) 1s in the IC. If so, expand that block till the fixed point of 1¥ configuration is
reached. (2) Relax to the fixed point of all 1s unless there is a sufficiently large block
of adjacent (or almost adjacent) Os in the [C. If so, expand that block till the fixed
point of 0V configuration is reached. A CA exhibiting either one of these strategies
is referred to as a “block-expanding rule”. The block-expanding rules evolved by the
GA do not count as sophisticated examples of computation in CAs: all the compu-
tation is done locally in identifying and then expanding a “sufficiently large” block.

Table 5.1 also indicates that the performance of the block-expanding rules like @ezp(1)
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Il CA name Symbol | Rule Table (Hexidecimal) | P13 | Pogs | Poes |

Majority rule Omay 000101170117177F 0.000 | 0.000 | 0.000
0117177F177F7FFF

Block-expanding rule (1) | ©.rp1) 0505408305C90101 0.652 | 0.315 | 0.503
200BOEFB94C7CFF7

Block-expanding rule (2) | @, p2) 10101300150E086D 0.669 | 0.333 | 0.505
79DFFFFF7FFFFBFF

Particle-based rule (1) Opar(1) 0504058605000F77 0.776 | 0.740 | 0.722
037755877BFFB77F

Particle-based rule (2) Opar(2) 1000022441170231 0.745 | 0.723 | 0.709
155F57DD734BFFFF

Particle-based rule (1a) | opur(1a) 0500171700005567 0.818 | 0.770 { 0.738
073135777FFFF77F

GKL rule DCKL OO05F00SFO0Q0SFOOSF 0.816 | 0.771 | 0.757
OOSFFFSFOOSFFFSF

Table 5.1: Measured values of Pji; for different r = 3 rules: the majority rule
(Pmaj), five rules discovered by the GA in different runs, and the GKL rule (¢gxL)
with ¥V = 149. .V = 599, and V = 999. The standard deviation of Pjs, when
calculated 100 times for the same rule, is approximately 0.005. Each hexadecimal
digit can be expanded (left to right, top row followed by bottom row) to recover
the 128-bit string giving the CA look-up table outputs bits. In the resulting binary
string, the outputs bits are arranged in lexicographic order of neighborhood, with the
leftmost bit of the 128-bit string giving the output bit for neighborhood 00000000,
and so on. Space-time diagrams of dezp(1) and @ezp(2), are illustrated in Figure 5.1.
Similarly, Figure 5.4 illustrates the CAs ¢par1(1) and @pari(2). Dpar(1a) Was obtained
by continuing the run which discovered ¢pq-(1) for 50 more generations with PJj, as
the fitness measure.
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and @.rp(2) decreased dramatically for larger .V since the size of block to expand was
tuned by the GA for V = 149. Among all possible ICs in {0,1}". the fraction of
ICs without blocks of Os (or 1s) of length greater than ~ 2r + 1 tends to 0 with
increasing .V. Thus. the performance of such block-expanding strategies asymptotes
to 0.5 with increasing lattice size since they are able to correctly classify exactly half
the [Cs. The highest measured P/} (o) and P;5i (o) for a block-expanding rule was
0.685 and 0.560 respectively.

In contrast to the less sophisticated block-expanding rules evolved on most runs.
in a small but significant fraction of the runs. the GA discovered rules similar in
behavior and performance to CAs like Opar(1) OF @par(z)- While the fitness Figo of
these rules was between 0.95 and 1.0. as shown in Table 5.1, these rules displayed
significantly higher performance than the block-expanding rules. More over. the
performance of these rules decreased gradually as a function of the lattice size V.
indicating a marked improvement in generalization. For reasons which will become
clear later on. we describe such high-performance rules as “particle-based” rules.

Among all the GA discovered rules the highest measured Py obtained from
Opar(1a) Which exhibits performance nearly identical to that of dcwr. ®@par(1a) Was
obtained by continuing the run which discovered 0,,,(1) for 50 more generations with
P{%- as the fitness measure.

In the following two sections, we present the results of several phenomenological

studies of the block-expanding rules and the particle-based rules.
Block-expanding rules

Sample space-time diagrams from CAs implementing block-expanding strate-
gies are illustrated in Fiigure 5.1. In both Figures 5.1 (a) and (b), the the space-time
diagrams on the left have py < 1/2 while the diagrams on the right have py > 1/2.
In all the four instances, the correct final configuration has been reached. In Fig-

ure 5.1 (a), the rule ¢. 1) quickly goes to the 0V configuration unless there is a
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Figure 5.1: A Typical space-time behavior observed in block-expanding rules start-
ing with random initial conditions. (a) ¢ezp(1) following strategy 1: the CA relaxes
to the 0V configuration (diagram on the left), unless there is a large 1-block of
length six in the IC. In the latter case, the CA reverts to the all 1s configuration
(diagram on the right). (b) @ezp(2) following strategy 2: the CA relaxes to the 1Ny
configuration (diagram on the right), unless there is a large 0-block of length eight
in the IC. In the latter case, the CA reverts to the all Os configuration (diagram on
the left).
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1-block of length six or more. The situation in Figure 3.1 (b) is exactly the reverse.
Here the rule 0., relaxes to the 1 configuration only when there is no 0-block
of length eight.

The block-expanding strategy can be analyzed in terms of how a rule reaches
the fixed point configurations. Figure 5.2 (a) and (b) shows configuration density
vs. time plots (i.e., p(s,) vs. t) obtained from @.;p1) and @ezp2) respectively. In
each case. ten randomly generated ICs with different py values have been used.
In Figure 5.2 (a) it can be seen that there is a fundamental asvmmetry in how
@erp(1) OpPerates on the set of ICs with py < 1/2 as opposed to the set of ICs with
po > 1/2. The figure shows that unless pg is close to 1.0, the application of such a
rule immediately results in a sharp drop in p(s). (This is possible because most of
the look-up-table entries in such rules are fixed to 0.) However. for configurations
with a sufficiently large block of Is, the CA is able to arrest this sharp drop in
density, and revert the trend to eventually reach the all-1s configuration. ICs with
no such 1-blocks result in the CA quickly reaching the all-Os configuration. As
shown in Figure 5.2 (b), the reverse situation is true in @.zp2). Such plots not only
help in explicating the strategy of the underlying rules, but they also highlight the
symmetries inherent in the T/, task.

Block-expanding strategies 1 and 2 rely on the appearance or absence of blocks
of 1s or Os in the IC to be good predictors of py. For example, high-p ICs are more
likely to have blocks of adjacent 1s than low-p [Cs. The size of blocks that are
expanded was tuned by the GA to be a good predictor of high or low density for
-V = 149 given the distribution of ICs on which the rules were tested. The limitations
of this approach is further detailed in Figure 5.3 which shows the performance of
block-expanding rules ¢ p(1) and @erp2) as a function of pg for T/, task. Figure
5.3 indicates that most misclassifications occur for pgg = p.. More importantly, the
performance of a rule on ICs with py > 0.5 and ICs with pg < 0.5 is not symmetric,

and this asymmetry increases with increasing lattice size. From the three different
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Figure 5.2: p(s,) vs. t plots from block-expanding rules: (a) ¢ezp(1) following strategy
1, (b) @ezp1) following strategy 2. Ten randomly generated ICs with different po

values have been used generate the graphs in each figure.
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Figure 5.3: Performance of a typical block-expanding rule using (a) @ezp(1) and (b)
Pezp(2), as a function of py for T/, task. Performance plots are presented for two
different lattice sizes: NV = 149, and 599. 20 equally spaced bins of py values, with
10% ICs per bin, were used to generate the plots.
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phenomenological perspectives presented here. it is clear that the failure of the
block-expanding strategy can be attributed to its approach which fails to respect

the underlying symmetries of the T/, task.
Particle-based rules

As indicated in Table 3.1, the particle-based rules like @p4,(1) and @par(2) exhibits
superior performance compared to the block-expanding rules. Typical space-time
diagrams from four such rules (each from a different GA run) are illustrated in
Figure 5.4 (a-b) and in Figure 5.5 (a-b). Even a casual comparison of behavior of
Ppar(1) and Oper(2y With those of the block-expanding rules in Figure 5.1 suggests a
clear difference. In all high-performance CAs for the density classification task it can
be seen that although the configurations eventually converge to fixed points, there
is a transient phase during which local regions are formed that display coherent and
periodic spatio-temporal dynamics. The regions exhibiting these “patterns” may
interact with each other. But how are we to understand the “strategy” employved by
such rules in reaching the correct final configuration? Also, what is the role of the
“patterns” in helping the CAs to achieve high performance? We attempt to answer
these questions in our analysis in the subsequent chapters.

The p(s;) vs. t plots for the particle-based CA ®p,r(1), illustrated in Figure 5.6,
highlights the fact that the CA’s behavior is very different from typical block-
expanding rules (for comparison, see Figure 5.2). In general, if the density of a
configuration is less (more) than 1/2, then the density of subsequent configurations
either remains the same or decreases towards 0.0 (increases towards 1.0).

Figure 5.7, which presents the performance of ¢p4-1) (and for comparison,
ocki) as a function of pg, further highlights the difference between a high-
performance particle-based rules and the block-expanding rules (for comparison,
see Figure 5.3). Although most misclassifications in this case also occur for ICs

with po & pc, dpar(1) appears to respect the underlying symmetries of this task since
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Figure 5.4: (a-b) Space-time behavior observed in two high-performance CAs,
phiper(1) and phipe, () discovered for the T/, task. Randomly generated ICs have
been used. The space-time diagrams on the left have py < 1/2 while the space-time
diagrams on the right have py > 1/2. It should be noted that the correct final
configuration has been reached in all cases.
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Figure 5.5: (a-b) Space-time behavior observed in two high-performance CAs dis-
covered for the T, task. Randomly generated ICs have been used. The space-time
diagrams on the left have py < 1/2 while the space-time diagrams on the right have
po > 1/2. It should be noted that the correct final configuration has been reached
in all cases.
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Figure 5.6: p(s;) vs. ¢ plots for the high-performance rule @,4.(1). Ten randomly
generated [Cs with different pp values have been used to generate the graphs.

the performance of the rule for ICs with gy > 0.5 and ICs with go > 0.5 is symmetric.
More over, this symmetry is maintained as the lattice size is increased. Interestingly,
the performance of ©p(1) as function of py mirrors that of the hand-designed rule
dcrr- Although the rules tables of ¢per(1) and ogk are different (see Table 5.1), we
would like to understand if these rules are nevertheless applying the same strategy

to perform the T/, task.
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Figure 5.7: Performance of (a) ®per(1), and (b) the GKL rule ¢gxr as a function
of po for T2 task. Performance plots are presented for two different lattice sizes:
N = 149, and 599. 20 equally spaced bins of py values, with 10® ICs per bin, were
used to generate the plots.
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5.3.2 Efficiency of the GA in Finding High-performance
CAs

Case I[: With Unbiased Initial Population

1 T T T T T T T T
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Figure 5.8: Best and average fitness versus generations for a typical run starting with
a randomly generated initial population. The onset of the five epochs of innovation
are depicted.

In our preliminary experiments, the initial population was produced randomly
where each bit in the chromosome was set to 1 with a probability of 1/2. Figure 5.8
shows the best and average fitness of the population in each generation for a typical
run starting with such an initial population. In most runs, one immediately notices
that the best fitness (and the average fitness) of the population increases in sharp
jumps between periods of relative stasis. The rise in fitness can be divided into
“epochs” where a significantly better rule for the T/, task is discovered by the GA
at the start of a new epoch. In Figure 5.8, the initial generations of these epochs

are labeled. At the start of each epoch, the average fitness Figo(¢) of a typical rule
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GA GA (no crossover.
(unbiased init. pop.) | unbiased init. pop.)
Runs reaching Epoch 3 38/50 41/50
Runs used in average 38/50 41/50
T1 4.7 (3.7) 4.3 (4.8)
T2 21.7 (24.5) 34.7 (21.4)
T3-T2 9.6 (5.0) 10.4 (4.9)
Runs finding PB rules 0/50 0/50

Table 5.2: Results of evolving CA rules for T, task under two different experimen-
tal setups: (i) GA with randomly generated initial population: (ii) GA randomly
generated initial population but without crossover. and The table shows the fraction
of runs reaching Epoch 3. fraction of runs used to compute averages. mean gener-
ations to onset of Epoch 1 (T'1). mean generations to onset of Epoch 2 (T2), and
mean length of Epoch 2 in generations (7’3 —T2) for those runs reaching Epoch 3 by
generation 99. Standard deviations are shown in parentheses. The last row shows
the none of the runs found particle-based rules.

was measured to be 0.00 for Epoch 0, 0.50 for Epoch 1. 0.54 for Epoch 2, and 0.85
for Epoch 3, and 0.92 for Epoch 4. The beginning of the last epoch, i.e., Epoch 4.
was defined to be the the generation bevond which no substantial and sustained rise
in the best or average fitness of the population was witnessed.

[t is easy to explain why rules at the start of Epoch 0 has zero fitness. Since
the initial population is randomly generated, it is likely that none of the CAs in the
initial population is able to correctly classify even a single IC. and thus the fitness
of a rule is zero. As shown in Figure 5.8, the fitness quickly rises to 0.50 in a few
generations to start Epoch 1. Why is the fitness exactly 0.50 in Epoch 1?7 The rules
in Epoch 1 always arrives at the fixed point configuration of 1V (or 0V) irrespective
of the py value of ICs: thus. they are able to correctly classify half the ICs. In this
particular experimental setup, all the rules discovered in the subsequent Epochs
exhibited block-expanding strategy.

The second column in Table 5.2 summarizes the results of evolving CAs from 50
different runs under this experimental setup. The table shows the fraction of runs

reaching Epoch 3, fraction of runs used to compute averages, mean generations to

onset of Epoch 1 (T'1), mean generations to onset of Epoch 2 (T2), and mean length
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of Epoch 2 in generations (T3 ~ T2) for those runs reaching Epoch 3 by generation
99. Standard deviations are shown in parentheses.

While 38 of the 50 runs under this experimental setup were able to reach Epoch
3 with rules having F\go(9) = 0.83, nevertheless, as shown in the bottom row of the
Table 5.2. the GA was unable to find high-performance particle-based rules with
P33 (0) > 0.57 in any of the 50 runs.

The third column of Table 5.2 shows the results obtained from an identical
experimental setup where all the parameters remained unchanged except for the
crossover operator which was completely turned off. There exists a remarkable
degree of similarity between the second and third column of Table 5.2. This suggests
that in this experimental setup. the crossover operator is not playing a major role
in discovering fitter rules, and therefore. it is the mutation operator which is driving

the search process.
Case II: With Biased Initial Population

In an attempt to improve the efficiency of the GA, all subsequent runs started
with a biased initial population where the probability of choosing a chromosome
with a proportion of A 1s. was equal for all A € [0.0,1.0]. In this new experimental
setup, the initial population was expected to contain rules with A values equal (or
very close) to 0.0 and 1.0. Such rules reach the fixed point configuration of 0V (or
1V) irrespective of the py value of ICs, and thus, they have a fitness of 0.5. In short,
this modification was aimed to allow the GA to skip over Epoch 0 and to begin
searching for rules with Fige(¢) > 0.5.

Figure 5.9 shows the best and average fitness in each generation for two typical
runs starting with a biased initial population. As expected, the best fitness in the
initial population was equal to 0.5, and so the mean generations to onset of Epoch
1 (= T1) was always zero. In some atypical runs, the onset of Epoch 2 was delayed

as illustrated in Figure 5.10(a). However, after the onset of Epoch 2, the onset of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.8
* 0.6
(a) § Epoch 1-+]
E 0.4
0.2 ,'_ Best fitness ——
Average fithess ——-
0 ] 1 ] L 1 | . L L A
0O 10 20 30 40 50 60 70 80 90 100
generation
1
0-8 = ' 4 . . \ -
\ \\I, \A\—' , ‘l/\/\v\"v\/\/\/"""\,\v\f\,l‘;y\'
o 06 H | ]
b4 .
(b) £ Epoch 1+ , Epoch 4
0.4 M Epoch 3 N
0.2 L Epoch2 Best fitness — |
“r Average fitness ——-
o 1 1 1 1 L L 1 j 1
0 10 20 30 40 50 60 70 80 90 100
generation

Figure 5.9: Best and average fitness versus generations for two typical runs starting
with a uniform initial population. The onset of the four epochs of innovation are

depicted. In figure (b) Epoch 1 lasts for zero generations.
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Figure 5.10: Best and average fitness versus generations for two runs starting with a
uniform initial population. The onset of the four epochs of innovation are depicted.
These runs are atypical in terms of the duration of Epoch 1. However, when the
crossover operator is not used, then the typical run displays similar characteristics.
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GA GA (no mutation, | GA (no crossover.
(biased init. pop.) | biased init. pop.) | biased init. pop.)
Runs reaching Epoch 3 46/30 16/50 16/50
Runs used in average 45/50 16/50 16/50
T1 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
T2 3.8 (4.3) 2.0 (1.3) 574 (22.4)
T3 - 12 11 (2.9 2.7 (1.5) 14.2 (9.1)
Runs finding PB rules 1/50 0/50 0/350

Table 5.3: Results of evolving CA rules for T/, task under three different exper-
imental setups: (i) GA. (ii) GA without mutation. (iii) GA without crossover. In
all these three cases. a biased initial population was used. The table shows the
fraction of runs reaching Epoch 3, fraction of runs used to compute averages, mean
generations to onset of Epoch 1 (T'1), mean generations to onset of Epoch 2 (T2),
and mean length of Epoch 2 in generations (T3 — T2) for those runs reaching Epoch
3 by generation 99. Standard deviations are shown in parentheses.

subsequent epochs proceeded normally. In an even more atypical run, no rule with
Floo(®) > 0.54 was found in any generation. and thus the GA was stuck in Epoch 1
for the entire duration of the run (Figure 5.10(b)).

The second column in Table 5.3 summarizes the results of evolving CAs from
30 different runs with this experimental setup. Compared to the previous experi-
mental setup with unbiased initial population. in this situation a higher proportion
of the runs reach Epoch 3. Not only is T'1 reduced to zero. but T2, the number of
generations to the onset of Epoch 2, and T3 — T2. the duration of Epoch 2 are both
significantly reduced. However, only one of the runs is able to find high-performance
particle-based rules.

Interestingly. when only the mutation operator is switched off, both T2 and T3
are further reduced (third column in Table 5.3), although the proportion of runs
reaching Epoch 3 drops sharply. On the other hand. when the crossover operator is
switched off in place of the mutation operator, both T2 and T3 increases, while pro-
portion of runs reaching Epoch 3 again drops sharply (fourth column in Table 5.3).
This suggests that, in the initial stages of the search during the discovery of Epoch

2 and Epoch 3 rules, the crossover operator is playing a more important role than

the mutation operator. How do we explain these observations?
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The answer lies in the manner in which block-expanding rules can be imple-
mented in a chromosome. Consider a rule from the initial population (Epoch 1) with
a A value equal to zero, such that it rule always reaches the fixed-point configuration
of 0¥. The fitness Fygo of such a rule increases bevond 0.5 when it is initially able
to classify some high-density [Cs. This occurs when the all 1s neighborhood and all
the seven neighborhoods with six 1s are mapped to the output bit of 1. This ensures
that the 1V is a fixed point configuration, and isolated Os in a region of all 1s are
eliminated. It needs to be underscored here that the entire constellation of these
output bits has to set concurrently to obtain an increase in fitness. The fitness of
such a rule further increases as more neighborhoods consisting of a majority of 1s
are mapped to the output bit of 1.

As an example. let us construct a block-expanding rule starting with a rule with
A value equal to zero. As described in the preceding paragraph. we first set the out-
put bits of the neighborhoods { (0111111), (1011111), (1101111), (1110111),
(1111011), (1111101), (1111110), (1111111) } to 1 to guarantee the stability
of any all-1s region. (Under the lexicographic ordering these neighborhoods are
numbered. respectively. 63. 95. 111. 119. 123, 125. 126. and 127.) To expand a
block of Is. it is necessary for the boundaries between the all-Os region and the
all-1s region at each end of the block move away from each other. For example,

block-expanding rule may transform a configuration in the following way:

Configuration at time ¢: ...00000000111111110000000. . ..

Configuration at time ¢ + 1: ...00000000111111111000000. .. ..

Here the block of 1s increases in size by one site every time step. The right moving
boundary between the all-1s region and the all-Os region can be implemented by set-
ting the output bits of the neighborhoods { (1111100), (1111000), (1110000) }

(numbered 124, 120, and 122, respectively) to 1 , while the fixed boundary on the
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left is constructed by mapping the output bits of the neighborhoods { (0001111),
(0011111) } (numbered 15 and 31, respectively) to 1. In order to guarantee that
a block of s ultimately reaches the 1V configuration, it is necessary to set two
additional neighborhoods { (1100011), (1110001) } (numbered 99 and 113. re-
spectively) to 1. The resulting CA implements a block-expanding strategy which
relaxes to all 0s. unless the IC has a block of 1s of length equal to six or more.

The preceding discussions show that under the lexicographic ordering we have
used in our experiments. most of the neighborhoods with a majority of ls. which are
necessary for implementing a block-expanding rule. are clustered around both ends
of the chromosome representing the rule-table. Thus, starting from a biased initial
population. which is likely to contain some chromosomes with A = 0.0 and some
chromosomes with A = 1.0, it is possible for the crossover operator to combine such
rules to create better rules implementing the block-expanding strategy. Once such
block-expanding rules are found. the GA can fine-tune such block-expanding rules,
mostly through hill-climbing with the help of the mutation operator. to expand
blocks of length ~ 2r + 1 = 7. This explains why the crossover operator plays a
more significant role than the mutation operator in discovering Epoch 2 and Epoch
3 rules.

This situation can be contrasted with the experimental setup where the initial
population was generated randomly without any bias, and as a result there was no
structure in the chromosomes in the initial population which the crossover operator
could exploit. Thus, as shown in Table 5.2, the effects of crossover is negligible when
the initial population is unbiased.

For comparison purposes, Table 5.4 presents the performance of Monte Carlo
search technique for the T/, task. The table indicates that the effectiveness of the
Monte Carlo search is even more limited than the GA in terms of finding Epoch 3

or Epoch 4 block-expanding rules.
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GA Monte Carlo
(biased init. pop.)
Runs reaching Epoch 3 46/50 18/50
Runs used in average 145/50 18/50
T1 0.0 (0.0) 0.0 (0.0)
T2 3.8 (4.3) 44.1 (19.8)
T3 -T2 4.1 (2.9) 5.1 (5.0)
Runs finding PB rules 1/50 0/50

Table 5.4: Results evolving CA rules for T/, task under two different experimental
setups: (i) GA, (ii) Monte Carlo. The table shows the fraction of runs reaching
Epoch 3. fraction of runs used to compute averages. mean generations to onset of
Epoch 1 (T'1), mean generations to onset of Epoch 2 (T2), and mean length of
Epoch 2 in generations (T3 — T2) for those runs reaching Epoch 3 by generation 99.
Standard deviations are shown in parentheses.

Case II1I: With Reordered Rule-table and a New Fitness Function

The observation that most of the output bits necessary to implement the block-
expanding strategy are loosely clustered near either ends of the rule-table under the
lexicographic ordering. and that the crossover operator can exploit such structures
in the chromosome. suggests a possible reordering of the look-up table. In this
new experimental setup. the rule table was reordered so that the output bits of
neighborhoods with the same number of 1s were clustered together. As shown in
the third column of Table 3.5. this new ordering scheme succeeded in reducing the
time the GA spent in Epoch 1. T1. to only one generation. Thus in all the runs. the
GA reached found Epoch 2 rules rules with Flgo(®) > 0.54 in generation 1. This can
be contrasted with Table 5.2, where the GA on an average took 21.7 generations to
reach Epoch 2.

Despite this success, the reordering of the rule-table did not improve the GA’s
chances of finding high-performance particle-based rules. The main impediment in
finding such rules was that it was easy for the GA to find block-expanding rules
which represent local optima in the rule space. And the primary reason why block-
expanding rules have low performance is because the sirategy does not respect the

inherent properties of the T/, task which is symmetric with respect to Os and 1s.
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GA GA with GA with
reordered LUT | reordered LUT new F
Runs reaching Epoch 3 16/50 50/350 50/50
Runs used in average 45/50 50/50 50/50
T1 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
T2 3.8 (4.3) 0.96 (0.19) 0.98 (0.14)
T3 -T2 4.1 (2.9) 3.18 (1.72) 5.70 (1.87)
Runs finding PB rules 1/50 1/50 10/50

Table 5.5: Results of evolving CA rules for T/, task under three different experi-
mental setups: (i) GA (ii) GA with reordered chromosome, (iii) GA with reordered
chromosome and the new fitness function (see text for details). In all these three
cases, a biased initial population was used. The table shows the fraction of runs
reaching Epoch 3. fraction of runs used to compute averages. mean generations to
onset of Epoch 1 (T'1), mean generations to onset of Epoch 2 (T2), and mean length
of Epoch 2 in generations (T'3 — T?2) for those runs reaching Epoch 3 by generation
99. Standard deviations are shown in parentheses.

To encourage this symmetry, a new fitness measure Fj;, was defined. The new
fitness measure gives credit only when a CA reaches the correct final configuration
with the constraint that p(s,) is less (more) than the critical density p, if the initial
density pq is less (more) than p., for t = 1... M. In effect. F],, penalizes CAs which
cross the p. threshold to reach the correct final configuration. The new fitness
measure “induces” the CA to avoid block-expanding strategies which fail to meet
this new constraint. As indicated in Table 5.5, with the new fitness measure F),,
the GA is able to find high-performance particle-based rules in 20

The results presented in this section emphasizes that a detailed understand-
ing of the underlying search space, its inherent symmetries, and the strengths and

weaknesses of the genetic operators. can lead to the design of GAs which are more

efficient in finding high-performance solutions.

5.4 Global Synchronization

5.4.1 Performance of the Evolved CAs

Table 5.6 presents the performance of some of the rules evolved by the GA,

measured over three different lattice sizes NV = 149, NV = 599 and N = 999. For
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(| CA name [ Symbol | Rule Table (Hexidecimal) | Pl33 | Poss | Pooe |

Hand-designed Dosc 8000000000000000 0.000 | 0.000 | 0.000
0000000000000000

Epoch 0 rule OE=0 B81D41F839EADCO8 0.000 | 0.000 | 0.000
C985ADC398508D06

Epoch 1 rule OE=1 F8A19CE6B65848EA 0.327 | 0.073 | 0.029
D26CB24AEBS51C44A0

Epoch 2 rule DE=2 F8A1AE2FCE6BC1E2 0.563 | 0.327 | 0.274
C26CB24E3C226CA0

Particle-based rule (1) | @par(1) FEB1C6EABSEQC4DA 1.000 | 1.000 | 1.000
6484A5AAF410C8A0

Particle-based rule (2) | @par(2) EFDFF7DFCS7BEB6D 1.000 | 1.000 | 1.000
D790F166C600C000

Table 5.6: Measured values of Pf; for different r = 3 rules: @,s) and five rules
discovered by the GA in different runs with vV = 149, vV = 599, and N = 999.
The standard deviation of Pjs, when calculated 100 times for the same rule, is
approximately 0.005. Space-time diagrams of ¢g, is illustrated in Figure 5.11 (a).
Similarly, Figure 5.12 (a-b) illustrates the CAs @pqri(1) and @peri(2)-
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comparison purposes. the performances of the hand-designed rule, 0,4, is also pre-
sented in this table.

In a majority of the runs for the R task. the best CAs in the final generation
had performance P}, between 0.65 and 0.99. Space-time diagrams from two such
rules are illustrated in Figure 5.11. Starting from the ICs shown in the figures, these
CAs are able to reach global synchronization. However. the space-time diagrams
contain stable phase-defects—borders separating regions that are out of phase with
respect to each other. We will show later on in Chapter 8 that the presence of stable
phase defects prohibit these CAs from achieving maximal performance. Moreover,
when such a CA is tested on larger lattice sizes, the presence of phase defects leads

to drastically inferior performance.

Time

149 e
0 Site 149

(b)

Figure 5.11: Typical space-time diagrams from two different rules with P}3 = 0.9.
Several different types of phase defects can be observed. Randomly generated ICs
have been used.
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In some of the runs however. the GA discovered successful CAs (Fygo = 1.0 and
Pl = 1.0)'. The performances of the more sophisticated CAs remained fixed at
1.0 even when tested on larger lattices of size 399 and 999. These results provide
an interesting contrast with those found in the the density-classification task in
which perfectly-performing CAs were not discovered by the GA (and are in fact
impossible— see Appendix A).

Typical space-time diagrams from four sophisticated rules (each from a different
run) are illustrated in Figure 5.12 (a)-(d). Unlike the space-time diagrams of the less
sophisticated rules, we do not notice any stable phase defects occurring between re-
gions that are locally synchronous. Instead, we observe an abundance of “organized
patterns” in the space-time which grow and shrink over time until the CA reaches
global synchronization The behavioral similarities between the high-performance
rules for the T/, task and the R task are indeed striking. So in this case too. we
face a similar set of questions: How do understand the emergent computation these

more successful CAs are performing? How does the GA find such high-performance

rules?

5.4.2 Efficiency of the GA in Finding High-performance
CAs

Case I: With Unbiased Initial Population

In our preliminary experiments, the initial population was generated randomly
where each bit in the chromosome was set to 1 with a probability of 1/2. The other
GA parameters were set as described in Secton 5.2. In the initial population, all rules

had fitness equal to 0.00. Table 5.7 shows that a large majority of the runs found

Interestingly, when the GA was restricted to evolve CAs with r = 1 and r = 2, all the evolved
CAs had P[Y, ~ 0.0 for N € {149,599,999}. (Better performing CAs with r = 2 can be designed
by hand.) Thus r = 3 appears to be the minimal radius for which the GA can successfully perform
the task.
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( [ GA ™ ] GA, with mutation only | GA, with crossover only ||

Runs with Fieo(9) > 09 || 47/50 39/50 0/50
Runs used in average 17/50 39/50 43/50
T1 1.9 (6.3) 12.5 (14.8) 3.6 (3.6)
T2 - T1 10.3 (3.7) 12.2 (9.6) -

Table 5.7: Results of evolving CA rules for T/, task under three different exper-
imental setups: (i) GA, (ii) GA without mutation, (iii) GA without crossover. In
all these three cases, a randomly generated initial population was used. The table
shows the fraction of runs evolving rules with Figo(¢) > 0.9, fraction of runs used
to compute averages. mean generations to onset of Epoch 2 (T'1), and mean length
of Epoch 1 in generations (T2 — T'1) for those runs reaching Epoch 2 by generation
99. Standard deviations are shown in parentheses.

relatively high-performance rules with fitness Figg(®) > 0.9. Under the actions of the
evolutionary operators. the best fitness (and the average fitness) of the population
rose sharply in between periods of relative stasis. As in the case of the T/, task.
the rise in fitness could be divided into epochs, where a rule with significantly higher
fitness is found at the beginning of each epoch. The performances of typical rules
in each epoch are presented in Table 5.6.

The role of the mutation operator and the crossover operator in discovering
these rules was investigated by disabling each operator. The third column of Ta-
ble 5.7 presents the results obtained from an identical experimental setup where
all the parameters remained unchanged except for the crossover operator which
was completely turned off. The results show that the mutation only GA not only
takes a longer time to find Epoch 1 and Epoch 2 rules, but it also finds rules with
Floo(@) > 0.9 less frequently. On the other hand, a GA with no mutation never finds

high-fitness rules, although it is able to reach Epoch 1 rules much faster (fourth col-

umn in Table 5.7).
Case II: With Biased Initial Population

When the GA used a biased initial population, several significant differences
were observed (Table 5.8). First, all the runs were able to find rules with Fyg(¢) >

0.9. Moreover, the time to reach Epoch 1 and Epoch 2 rules decreased dramatically.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



86

GA GA, no mutation, GA
biased I. Pop. biased I. Pop. Random I. Pop.
Runs with Figo(®) > 0.9 50/50 47/50 17/50
Runs used in average 50/50 17/50 17/50
T1 0.2 (0.5) 01 (1.1) 19 (6.3
T2 - Tl 3.7 (1.8) 6.7 (2.6) 10.5 (3.7)

Table 5.8: Results of evolving CA rules for task R under three different experimental
setups: (i) GA with uniformly distributed initial population; (ii) GA with uniformly
distributed but without crossover. and (iii) GA with randomly generated initial
population. The table shows the fraction of runs evolving rules with Fig () > 0.9.
fraction of runs used to compute averages. mean generations to onset of Epoch 1
(T'1). mean length of Epoch 1 in generations (T2 — T'1) for those runs reaching
Epoch 2 by generation 99. Standard deviations are shown in parentheses.

Interestingly, when the mutation operator was disabled, the GA with the crossover
operator was still able to find high-fitness rules quickly and efficiently. These results
suggest that the constellation of bits responsible for increased fitness in an Epoch 1
(or an Epoch 2 rule) can be easily assembled by the crossover operator.

To explain these observations. we note that the fitness of a Epoch 0 rule in-
creases to a value more than 0.00 only when all the eight neighborhoods with six
or more Os (1s) are mapped to to 1 (0), and seven out of eight neighborhoods with
six or more 1s (0s) are mapped to 0 (1). These mapping ensure that the 1V config-
uration and the 0V configuration are mapped to each other under the global map
of the CA. and small perturbations from these configurations are quickly removed
from the lattice. Under the lexicographic ordering, most of these bits necessary
for implementing an Epoch 1 rule are clustered at the left and right ends of the
chromosomes. Thus it is relatively easy for the crossover operator to bring them

together from two separate CAs to create an Epoch 1 rule.

5.5 How do we Analyze the Particle-based Rules?

The preceding two sections provide some understanding of how and when the
GA is able to evolve high-fitness rules efficiently. However, most of the discussion

has been limited to rules implementing simple strategies like block-expanding for
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the Ty/» task. As mentioned earlier, on a small number of runs. the GA found
particle-based rules with even higher performance. Why do such rules have higher
performance? Why is it more difficult for the GA to find such particle-based rules?

In beginning to answer these questions, we first have to identify the underlying
mechanisms in the CA’s dvnamics which are responsible for superior performance.
To understand how computation is performed by the more sophisticated CAs. we
adopt the “computational mechanics™ framework for CAs developed by Crutchfield
and Hanson [CH93, HC92|. This framework describes the “intrinsic computation”
embedded in the temporal development of the spatial configurations in a CA. Since
intrinsic computation attempts to identifv generic computational structures that
play a governing role in the “raw” information processing occurring in the system,
this framework is well suited for studying the behavior of the more successful CAs
from our experiments. Before proceeding with this analysis, we first describe the
computational mechanics framework in detail in Chapter 6. Once we have famil-
iarized ourselves with the techniques and tools in this framework, we use them to
explain the emergent computation in the high-performance CAs. We present these

discussions in Chapter 7 and 8.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissi&;



Chapter 6

COMPUTATIONAL MECHANICS FOR SPATTAL
SYSTEMS

6.1 Computational Mechanics

The term computational mechanics. introduced by Crutchfield in [Cru9l.
Cru92|. refers to the study of computational structures in dynamical systems.

The framework uses apparati developed in theoretical computer science. such as
formal languages and autormata. to discover. characterize. and quantify the intrinsic
computation capabilities in a dynamical system. In other words. the computational
mechanics approach attempts to identify regularities or structural features that are
embedded in the generic behavior of a system. but can nevertheless play a keyv role
in the information processing, storage and transmission within the system. The
framework provides a new perspective for studying dvnamical systems and has the
potential to discover novel forms of computation which may be embedded in the
behavior of natural or artificial spatially-extended systems.

When the computational mechanics apparatus is applied to spatially-extended
systems such as CAs, the intrinsic parallel computational properties of the system
are identified. The framework essentially describes the spatio-temporal behavior of
the system as the internal dynamics of a parallel computer.

To use the computational mechanics framework, a system’s spatial configura-
tion is first converted into a sequence of discrete symbols. Since any measuring

device has a finite level of resolution, in practice this conversion is inevitable in any
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measurement. I[n principle. however, techniques from symbolic dynamics can be
used to make the conversion. One of the benefits of studying a CA as an idealized
spatially-extended system is that in a CA the system’s state variables are already
discrete. and hence the discretization process is unnecessary.

Once the sequence of discrete symbols representing the spatial configurations
of a system are available. tools from the computational mechanics apparatus can be
applied. First. the formal languages or automata representing the pattern bases are
inferred from the discrete svmbols sequences. For a given pattern basis, a transducer
is constructed that performs pattern recognition for that particular basis. The
transducer identifies the patterns in the configurations that conform to the pattern
basis. Such regions— “domains” —form the basic units of computational structures
in the system’s behavior. The system can then be studied from the standpoint of
these domains. i.e.. in terms of the interactions between the different computational
structures inherent in the dynamics of the system.

The following discussion provides an informal introduction to the main tool in
computational mechanics, namely machine reconstruction for pattern discovery. It
also shows how to use the discovered pattern bases to study computation in one
dimensional CAs. For a more comprehensive introduction. the reader may refer to

[Cru91, CY89. CY90, HC92, CHI3]

6.2 Machine Reconstruction

Machine reconstruction is an inductive technique which accepts sample data
produced by a dynamical system and infers a finite state machine representing the
computational structures embedded in the system’s behavior. This procedure dis-
regards the statistical properties of the data, and instead focuses on the topological
properties inherent in the data. Although this section deals with the machine re-

construction from the data generated by a deterministic dynamical system, the
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extension of the framework to the reconstruction of stochastic systems is straight-

forward.

6.2.1 The Reconstruction Procedure

The machine reconstruction process is achieved in three steps: (i) gathering the
data, (ii) building a tree from the data, and (iii) building a machine from the tree.
Although it was mentioned earlier. it is worth re-emphasizing that the above three
steps can be applied hierarchically to build increasingly sophisticated models of the

system [Cru91].

Gathering the Data

D

- >
-+« 0101011111011 10101011 ««-

Figure 6.1: Gathering the Data: A sample data sequence is scanned by a moving
window of length D.

To gather the data, a measuring device is used to map the states of a dynamical
system onto symbols in some finite alphabet A. For continuous dynamical systems,
a measuring distortion is necessarily introduced since the measuring device parti-
tions the state space into discrete cells of size € according to the precision of the
measurement. The machine reconstructed from such data is called an e-machine
[CY89]. However, in the research described here, discrete dynamical systems have
been employed; thus there is no measurement distortion. We restrict our attention
to binary alphabets (i.e., A =/, oc) in this work.

In a spatially-extended system, the measuring device can gather data in a va-
riety of ways. When it is fixed at a given spatial location, the device can gather
temporal data by measuring the time series of a particular characteristic associated
with the location. On the other hand, the device can gather spatial data, by sam-

pling a characteristic associated with every site in the system at a given instant in
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time. Since all parts of the system are equally important to us, we choose the latter
approach.

A given data sequence of length .V is scanned with a moving window of size
D—with D <« N—to create a series of subwords of length D. In each iteration, the
window is moved one symbol to the right to produce a new subword. For example,
scanning the sample data stream in Figure 6.1 with a moving window of size D = 5
results in subwords 01010. 10101. 01011. and so on.

D is an upper bound on the size of the structural features that can be detected
in the data stream by the machine reconstruction technique. Usually, D is set to a
large value to extract the maximum amount of structure in the data. On the other
hand. reconstruction with a large D is susceptible to statistical fluctuations in the

data due to the limited sample size.

Constructing the Tree

O
0 l
® O
l 0 i
Ol ® o
1 0 1
Q. Q, ® Q ®
0 1 1 0 1
o 0 Q Q ® ®
0 4l 0y Yl 1 l 0 &l 1o 1
oJeo eoJeo O Q 00 OO0O0

Figure 6.2: Constructing the tree: The tree with depth D = 5 constructed from the
data sequence in Figure 6.1.

In this step, the set of subwords produced from the data sequence is used to

construct a tree of depth D. First, the subwords are aligned such that the first
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svmbol in the subword corresponds to the top level of the tree, the second symbol
corresponds to the second level and so on. At any given level. if a symbol in the
subword is a 0, then the left branch is followed, else if the svmbol is a 1, then the
right branch is followed. This process is repeated for each subword in the data
sequence (Figure 6.2). For machine reconstruction, the number of times a node is
visited is disregarded. although such a measurement is of fundamental importance

in the reconstruction of stochastic systems.

Building the Machine

S

Figure 6.3: The three distinct morphs of depth L = 2 identified from the tree in
Figure 6.2.

Given the tree constructed from a data sequence. building the machine involves
identifving the nodes in the tree which are future equivalent. Two nodes are said to
be future equivalent if the branching structure of the subtree rooted at each of the
nodes is identical. In order to characterize subtrees, the idea of a morph is used. A
morph is a tree of depth L, where L < D. A morph defines an equivalence class
of subtrees which have the same branching structure expressed in the morph. The
tradeoff in choosing the morph depth L is that a small value of L increases the
occurrences of each morph in a tree whereas a large value of L increases the number

of possible morphs. A reasonable compromise is to choose a morph depth

L=LD;1J (6.1)
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where || is the largest integer smaller than or equal to r [Cru9l]. In Figure 6.2
the tree depth D is 5, and hence the morph depth L is set to 2.

Once L is chosen. the tree is analyzed to determine the distinct morphs of depth
L, and each morph is assigned a unique index. For example, the three distinct

morphs with L = 2 identified in Figure 6.2 are shown in Figure 6.3: they are labeled

A. B. and C.
(A)
0 1
(B) (A)
1 0 1
(C) (B) A

0 ! 1 0 i

&, B, ® @ o
0 | 1 0 |

@ ) ) )
o g1 o \! i 1 o %1 Loyl
) O) O @ () () ) (OO

Figure 6.4: The tree in Figure 6.2, with nodes labeled by matching morph indices
from Figure 6.3.

Once the morphs have been identified and indexed, the nodes in the tree are
labeled by the index of the corresponding morph. However, the nodes in the bottom
L levels of the tree are left unlabeled since the subtree rooted at those nodes are of
depth less than L. An example of this labeling scheme is shown in Figure 6.4.

Since the nodes representing the root of the subtrees characterized by a unique
morph are future equivalent, the morphs themselves define the states of the recon-
structed machine. The states of the reconstructed machine are assigned the same
index of the matching morph, and the transitions between the states are determined

from the constructed tree. In the machine, a directed edge from state u to state
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v with label o is added when there is at least one branch in the tree which leads
from morph u to morph v and is labeled as 0. Following the above steps, the

reconstructed machine from Figure 6.4 is shown in Figure 6.5.

Figure 6.5: The machine: Reconstructed machine from the tree in Figure 6.4. In
this figure ¥ represents either symbol 0 or 1.

This concludes the informal introduction to machine reconstruction. However.
there are a variety of theoretical and practical issues related to machine reconstruc-
tion. which have not been broached in this section, but are discussed in detail in

[Cru9l}.

6.3 Computation in One-Dimensional CAs

Hanson and Crutchfield have made detailed investigations of several one-
dimensional CAs using the computational mechanics framework [HC92, Han93,
CH93, HC95]. The following discussion gives an informal introduction to their
approach.

Hanson and Crutchfield’s approach is based on the idea that a CA can be viewed

as a regular-language processor. The key notion here is that any configurations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



95

(or subconfigurations) of local states in a one-dimensional CA lattice is viewed as
words in some regular language [Hur87. Wol84b]. Since a given word can belong
to an infinite number of regular languages, the aim is to determine the finite state
machine that best describes the properties of the configurations produced by a CA.

However. a given finite state machine is not only able to characterize a single
configuration (or subconfiguration): it is also a functional description of the struc-
tural properties shared by a set of configurations. Thus. a finite state machine is
actually a specification of a particular pattern. and all symbol sequences generated
by the machine are examples of that pattern. It is this viewpoint that sets the stage
for understanding the pattern dynamics in a CA. Instead of simply asking how a
CA maps cne configuration into another (i.e.. ®(s;) = s,41). it is now possible to
investigate how a CA maps an ensemble of configurations: L, = £,,,, where L,
is a regular language describing the CA configurations at time {. It is important
to keep in mind that £ is independent of the CA lattice size. which considerably
facilitates the analysis of the behavior of a CA.

Using the above framework it is possible to identify different tvpes of mappings
on L. When £ is mapped onto itself—®L = L—then it is defined to be an invari-
ant language with respect to ®. On the other hand, when ®,£ = £ for some finite
integer p. then L is defined to be a periodic language. Temporal invariance or peri-
odicity in £ does not necessarily imply that the configurations in £ are themselves

temporally invariant or periodic.

6.3.1 Regular Domains

A central feature in the analysis of computation in CAs is the notion of the
regular domain [HC92|. A regular domain is a region in space-time which is “com-
putationally homogeneous”. Formally, a regular domain A = {£,, L,,...} is a set
of regular languages representing spatial configurations (or sub-configurations) in a

CA with the following two properties:
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(i) Temporal invariance: ®.\ = .\, i.e.. .\ is mapped onto itself; and

(ii) Spatial homogeneity: The process graph of .\ is strongly connected.

A process graph is a directed graph representing a deterministic finite automata
(DFA) with one or more start states. A process graph is said to be strongly connected
if it consists of a set of recurrent states such that it is possible to reach any state from
any other state in the directed graph. If a process graph is strongly connected. it
ensures that spatial translations of words in the language are also words in the same
language. However, spatial homogeneity does not imply that the configurations in
the domain are spatially uniform or periodic.

The computational homogeneity in a domain can be expressed in the CA config-
urations in several different ways. Since CAs are deterministic systems. spatial uni-
formity or periodicity in the configurations necessarily implies temporal uniformity
or periodicity in the configurations. However. temporal uniformity or periodicity
in the configurations can still result in configurations that are spatially disordered
(e.g.. the ECA rule 204. which implements the identity map ®(s) = s for all s. has
A = A*). With this in mind, it is possible to distinguish a number of different types
of domains for which the configurations in a CA have the following properties:

(i) Spatial and temporal uniformity.
(ii) Spatial periodicity and temporal uniformity or periodicity.
(iii) Spatial disorder and temporal uniformity or periodicity.

(iv) Spatial and temporal disorder. Such domains are called “chaotic domains”.

6.3.2 Domain Discovery

So far in this section, the existence of regular domains in CAs have been as-
sumed. But how can one discover and identify the domains from the spatio-temporal
behavior of a given CA? It is at this juncture where machine reconstruction is used
on CA configurations to automatically discover regular domains. For the process of

machine reconstruction, data is gathered at a single time-step from a subregion in a
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large lattice. with the CA starting from a random initial configuration. By choosing
different subregions in the configuration, multiple regular domains in the space-time
diagram can be identified. Once machine reconstruction has been used to discover
candidate languages, the candidates can be tested to ensure that they satisfv the

regular domain conditions of temporal invariance and spatial homogeneity.

6.3.3 Domain Filtering

After the regular domains have been identified. the next step in the analysis of
pattern dynamics in a CA involves the design of a domain transducer. A domain
transducer T is an automaton that serves the function of a pattern filter. Since
domains are computationally homogeneous. they represent regularities in the com-
putational behavior that are completely understood. Regions in space-time behavior
that are deviations from the regularities represent features of the CA behavior whose
computational roles are vet to be delineated. A domain transducer filters out all
the known regularities in the space-time plot in order to highlight the embedded
irregularities. The underlving goal here is to iteratively apply the computational
mechanics tools on the deviations from the regularities to discover more sophisti-
cated forms of regularities in the data.

A domain transducer is a finite state machine which accepts words in the do-
main languages {\°..\!....} that occur in the space-time plots of a given CA. For
each spatial configuration in a given space-time plot, the transducer scans the con-
figuration in a particular direction and assigns the same symbol i to any site that
belongs to words in domain .\;. The resulting filtered space-time diagram depicts
behavior of the domain boundaries or walls. A wall which separates two domains of
the same language is called a defect. Defects with zero thickness are called disloca-
tions.

Although a transducer can scan a configuration in either direction, in order to
simplify the discussion, in all subsequent sections it is assumed that the transducer

under consideration is moving from left to right.
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Given the process graphs for the domains {A% \!....}, the design process of
the transducer can be fully automated. The construction of a transducer involves
three steps which deal with three different aspects of the filtering operation: (i)
svnchronization, (ii) arriving at a wall, and (iii) re-synchronization.

Initially, before reading the first cell in a configuration, a transducer is in the
start state which represents its total ignorance of the current context. In order
to determine if a cell is a wall or a domain (and also to specify the domain), the
transducer has to read a finite number of cells to synchronize itself. During this
svnchronization process. the transducer reads in new symbols and emits the nuil
symbol A. The set of svnchronizing states in the transducer can be generated by
converting a nondeterministic finite automata (NFA) which consists of all the process
graphs {\\% \'....}. to a deterministic finite automata (DFA). The resulting DFA
allows the transducer to begin parsing a configuration, and to arrive at one of the
states in the original process graphs within a finite number of steps.

As long as a region in a configuration is in a domain .\, a transducer is in one
of the recurrent states in the process graph of .\'. A wall is encountered when a
transducer reads a symbol for which there is no corresponding edge in the process
graph. Walls are dealt with as follows. For every disallowed transition in the
original process graphs, a new edge is placed between the process graphs such that
the resulting machine can read in and then classify any word in A*. But how is
the destination node for a new edge determined? A naive solution is to try to re-
synchronize by forcing the new edge to return to the start state of the transducer.
However, the fact that the transducer was in a particular process graph before
encountering the wall does provide some contextual information and it can be used
to re-synchronize in an optimal fashion. Suppose the transducer is in state V; of
the process graph of domain A! when it reads a symbol a for which there is no legal
transition edge. From the set of legal words allowed in domain A* which end in V;,

a minimal length suffix w is found such that the word wa is in one of the domain
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languages {.\°. \!,...}. The destination of the new edge from V; is the node in the
U, where wa is a minimal length legal word allowed in .\’ which ends in U;. To
uniquely identify the transition made on encountering a wall, the transducer emits a
symbol which is a function of the origin and destination states of the new edge. For
a detailed analysis of the re-synchronizing process, the reader may refer to [CH93].

In a periodic lattice, the cells which are initially assigned the null symbol A
during the synchronization process are reassigned new symbols during the second
pass of the transducer. [t can be shown that the transducer needs at most two

complete passes over a configuration to assign new symbols to each site.

6.4 Domains in Elementary CAs

Using the computational mechanics tools discussed earlier, this section gives

some examples of domain analysis in one-dimensional ECAs.

6.4.1 ECA Rule 40

Figure 6.6 shows a typical space-time diagram from ECA rule 40. After the
initial transients have died down, the configurations are spatially and temporally
uniform, and the single regular domain consists of all sequences of contiguous Os.
i.e.. A9y = 0". This is verified by first showing that the domain is temporally invari-
ant (®(0°) = 0°), and then determining that the process graph for 0* is strongly
connected. As depicted in Figure 6.7(a), there is a single recurrent state in the pro-
cess graph, which trivially satisfies the homogeneity condition. The transducer for
ECA rule 40, Tyo,, is shown in Figure 6.7(b). In this and in all subsequent figures,
thick directed edges represent state transitions within regular domains and thin lines
depict the transitions due to synchronization, walls, and re-synchronizations. Here
and in later figures, the transducer maps all domains to the symbol 0, and all walls

to the symbol 1.
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Figure 6.6: (a)Space-time diagram of ECA rule 10 starting with a random initial
configuration (After [Han93].)

6.4.2 ECA Rule 55

A typical space-time diagram from ECA rule 535 is shown in Figure 6.8(a). In
this case the domain that is visually most apparent consists of contiguous blocks
of cells of a single value which oscillates between 0 and 1 in alternate time steps.
Thus the domain has a temporal periodicity of two. The process graph for this
domain is denoted as \2; and it is shown in Figure 6.9(a)'. Being a regular domain,
A2, is temporally invariant. and at any instant in time, its process graph is strongly
connected, albeit trivially. The corresponding transducer Tyo_is presented in Figure
6.9(b). When Ty, is applied to the space-time diagram in Figure 6.8(a), it produces

the filtered diagram as depicted in Figure 6.8(b). A comparison of the two figures

A less obvious domain in ECA rule 55 is Als = (00)0*(11)1°. Unlike A2, this domain has a
temporal periodicity of one, and is also temporally invariant, and, spatially homogeneous. Indeed,
the two domains are nested, with A2, C Al,.
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Figure 6.7: A minimal DFA representing .\}; = 0. (b) Domain transducer Tyo,.
(After [Han93].)
clearly indicates that the domain walls identified by Tyo_in Figure 6.8(b) match with
the visually apparent domain walls in Figure 6.8(a). In essence. starting from any
random initial configuration. ECA rule 35 forms noninteracting subregions which
are in the domain A2 and which are out of phase with the adjacent domains.
Given the filtered space-time diagram in Figure 6.8(b) with the prominent walls
and domains. can the framework of computational mechanics be reapplied to further
understand the space-time behavior of ECA rule 557 The answer is indeed yes.
Figure 6.10(a) depicts the process graph for the domain characterizing the space-
time diagram in Figure 6.8(b). It shows that when the domains and walls are
represented with the symbols 0 and 1 respectively. the resulting filtered space-time
diagram from ECA rule 55 can be described by another domain .\9,-.\55 = (0*100)".
The transducer constructed from this process graph is shown in Figure 6.10(b).
When the transducer is applied to the space-time diagram in Figure 6.11(a), the
plot shown in Figure 6.11(b) is produced. The key point here is that there are no
walls in Figure 6.11(b), signifving that a complete computational characterization
of ECA rule 55’s behavior—i.e., a complete delineation of the regularities in terms

of intrinsic computational structures—has been achieved.
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Figure 6.8: (a) Space-time diagram of ECA rule 55 starting with a random initial
configuration. (b) The same space-time diagram as in (a), but after filtering with
the spatial transducer Tyo . All domains have been mapped to 0 (white) and all
walls to 1 (black). (After fHan93].)
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Figure 6.9: (a) The process graph representing \%. (b) Domain transducer Ty,
(After [Han93].)

6.4.3 ECA Rule 54

Compared to ECA rule 40 or 55, the space-time diagram generated by ECA
rule 54 is considerably more complicated (Figure 6.14(a)). However, it is possible
to visually identify regions within the space-time configuration that seem to have
some form of regularity. In particular, regions in the configuration obeying the
regularity display spatial and temporal periodicity of four. However, the regular
domain A2, which precisely characterizes this regularity has a temporal periodicity
of two and a spatial periodicity of four, with ®(1000)* = (0111)* and $(0111)* =
(1000)*. The process graph for AJ, is presented in Figure 6.12, and the corresponding
transducer Tyo is portrayed in Figure 6.13. After filtering the space-time diagram

in Figure 6.14(a) using Tyo , the diagram in Figure 6.14(b) is obtained.
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Figure 6.10: (a) The process graph representing .\9,1\55 = 0°100. (b) Domain trans-
ducer for the process graph in (a). (After [Han93].)

The most interesting feature in the filtered diagram in Figure 6.14(b) is the rich
dvnamics displayed by the walls. Moreover, some of the walls exhibit a structure
that is not only spatially coherent but also temporally periodic. Such walls which
travel with a constant speed across space-time are labeled as particles. A careful
inspection of the figure shows that it is possible to classify the particles into four
different types. An example of each type of particle is shown in detail in Figure 6.15
and its characteristics are given in Table 6.1. The temporal periodicity of a particle
is determined by the time interval between occurrences of the same spatial structure
in the particle.

While the counterparts of the particles @ and 8 in the original space-time

diagram (Figure 6.14(a)) are visually recognizable, the particles v and § are harder to
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Figure 6.11: (a) The same filtered space-time diagram of ECA 55 as shown in
Figure 6.8 (b). (b) The same space-time diagram as in (a), but after the domains
A‘}\o = (0*10)* have been identified. All domains have been mapped to 0 (white)

and all walls to 1 (black). (After [Han93].)
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Figure 6.12: The process graph representing .\2,. (After [Han93].)

visually identify in the unfiltered diagram. This is primarily because these two latter
particles are walls with zero thickness—i.e.. they are dislocations that introduce a
small phase shift in the domain \2,.
In addition to the different kinds of particles observed in Figure 6.14 (b). several
different types of interactions among the particles are recognizable:
(i) v+ 3 =9,
(ii) 3+d — 7,
(iii) v+ 0 = I,
(iv)v+3+6 -0,
(V)7+a—=v+a+d,
(vija+dé o> v+ a+d,

@ indicates a domain with no particles.
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Figure 6.13: Domain transducer for the process graph \2,. (After [Han93].)
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Figure 6.14: (a) Space-time diagram of ECA rule 54 starting with a random initial
configuration. (b) The same space-time diagram as in (a), but after filtering with
the transducer Tyo . All domains have been mapped to 0 (white) and all walls to 1
(black). (After [Han93].)
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Figure 6.15: Details of the four kinds of walls (or particles) which occur in the
space-time diagram produced by ECA rule 54. (After (Han93].)

It is interesting to note the different types of interactions. While reaction
(iv) represents a three particle annihilation, the number of particles increase in the
reactive reactions (v) and (vi). but decrease in the reactions (i), (ii), and (iii). Also.
there are obvious symmetries in the behavior displayed by particles v and 4. A more
in-depth investigation of ECA rule 34’s behavior should include a study of these
particle interactions. Indeed, Boccara et al. have performed such a particle-level

analysis and have characterized the long time behavior of ECA rule 54 [BNR91].

6.4.4 ECA Rule 18

So far, in all the examples of space-time diagram in this section, the underlying
regular domains were visually identifiable. This is always because there was some

form of spatial and temporal uniformity or periodicity in the domains. In contrast,
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Particle | Temporal Spatial Velocity
Periodicity | Displacement
a 4 0 0
3 4 0 0
~ I 1 1
) 1 -1 -1

Table 6.1: The characteristics of the four particles embedded in the space-time
behavior of ECA rule 54. By convention, a displacement to the left is assigned
a negative value. The velocity of a particle is determined by dividing its spatial
displacement by its temporal periodicity.
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(a) (b)

Figure 6.16: (a) The process graph representing .\J;. (b) Domain transducer T~\‘1’s'
The symbol T denotes either of the symbols 0 or 1. (After [Han93].)

the regular domain present in the space-time diagram of ECA rule 18 has configura-
tions which are spatially disordered (Figure 6.17 (a)). Thus not only the domains,
but also the domain boundaries are difficult to identify by casual inspection.

Using machine reconstruction techniques Crutchfield and Hanson have shown
that the regular domain in ECA rule 18 can be characterized as A% = (0(1 U 0))*
[CH93]. Thus, configurations in this domain have every other site set to 0, while the
rest of the sites can be set to either a 1 or a 0. This is shown in the process graph of

A% in Figure 6.16 (2). The domain boundaries between adjacent domains represent
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Figure 6.17: (a) Space-time diagram of ECA rule 18 starting with a random initial
configuration. (b) The same space-time diagram as in (a) after it has been filtered
with the transducer Tyo . All domains have been mapped to 0 (white) and all walls
to 1 (black). (After [Han93].)
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Figure 6.18: The same space-time diagram as in Figure 6.17 (a), but after it has been
filtered with a “symmetrized” transducer which recognizes strings in the language
1(00)*1 as defects. All domains have been mapped to 0 (white) and all walls to 1
(black). (After [Han93].)

dislocations that are spatial phase slips. Dislocation occurs whenever there is an
even number of Os between two 1s in a sequence. The dislocations move as if they
are performing random walk in space-time. When they meet in pairs they annihilate
each other.

Figure 6.16 (b) shows the domain transducer Tyo constructed from the process
graph \Y%. The filtered plot of the original space-time diagram is presented in
Figure 6.17 (b). In the figure, the domain boundaries between adjacent domains
represent dislocations that are spatial phase slips in AJ;. The dislocations, which
occur whenever there is an even number of Os between two ls in a sequence, move
as if they are performing random walk in space-time and when they meet in pairs,
they annihilate each other.

Since the transducer Tyo, scans each configuration from the left to the right, it

introduces a spatial asymmetry in the filtered plot shown in Figure 6.16 (b). More
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Figure 6.19: Machine reconstructed from the dynamics of a single dislocation in .\{g.
The symbols L and R denote motion to the left and the right respectively. (After
[Han93].)

specifically, the dislocations seem to be discontinuous as they occasionally “jump”
to the right. To overcome this problem. a “symmetrized” transducer can be built

that recognizes strings in the language 1(00)*1 as defects. The output from a such

a transducer is shown in Figure 6.18.

6.5 Computation with Particles

One of the important conclusions to draw from the previous sections is that be-
cause the regular domains are computationally homogeneous, there is no nontrivial
information processing or information transmission occurring within the domains.
Additionally. the amount of information stored in a domain is proportional to the
number of recurrent states in its process graph. Thus the regions within the domains
are severely restricted in terms of their information processing capability.

On the other hand. walls which maintain their spatial and temporal coherency
can be the main mechanisms through which information is processed in the spatio-
temporal behavior of a CA. It is readily apparent that a particle can carry informa-
tion across long space-time distances. This information might indicate the result of
some local processing that has occurred elsewhere at an earlier time. As a simple ex-
ample, a particle might help to propagate information about a phase slip introduced

due to local interactions elsewhere in an earlier time step.
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An interesting question to ask at this juncture is, can an individual particle pro-
cess information all by itself ? Clearly, the individual particles in ECA rule 54 that
display periodic behavior in their spatial structures and that move with a constant
velocity are limited by their very nature in terms of their computational capability.
In contrast, particles in ECA rule 18 display apparently irregular behavior. Fig-
ure 6.17 (b), shows that each move to the left shifts the position of the particle by
a single cell. whereas moves to the right may be of any odd-valued distance. To
make a quantitative estimate of the computational capability of the particle. the
framework of computational mechanics can again be used. After a dislocation has
been detected with the transducer To . the motion of the particle is recoded as a
symbol string, where a move to the left (right) is interpreted as the symbol L (R).
The machine reconstruction technique can be applied to this symbol sequence; and
the resulting machine is shown in Figure 6.19. The machine makes it clear that the
dislocation in ECA rule 18 can move to the left any number of times, but a move
to the right must be followed by a move to the left. This severely constrains the
computational capability of a particle in ECA rule 18. A similar approach using
machine reconstruction techniques can be adopted to determine the computational
capability of arbitrary particles.

The collection of domains and particles represents the basic computational
structures in the spatio-temporal behavior of a CA. Such structures can interact
with one another and give rise to information processing in the system. In general,
logical operations on the information carried by the particles is performed when
the particles meet. This is readily observed in ECA rule 18 where particles pair-
wise annihilate, and in ECA rule 54 where a small number of particles exhibit rich
interaction dynamics.

[t is important to note that the computational structures discovered in a CA
by the computational mechanics framework is independent of any “useful” compu-

tation the CA may or may not be performing. In the following two chapters, an
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attempt will be made to use the computational mechanics framework to study the
spatio-temporal behavior of the high-performance CA rules discovered by a GA.
The goal is to characterize and quantify the basic elements of computation in the
CA’s behavior. and to determine how these computational structures are used by

the CA in achieving superior performance in tasks requiring global coordination.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 7

DENSITY CLASSIFICATION TASK

The main goal in this chapter is to understand the spatio-temporal behavior of
the high-performance CAs for the density classification task T,,, using the frame-
work of computational mechanics. In contrast to that of the less fit block-expanding
rules described in Chapter 5. the space-time behaviors of the high-performance rules
are dominated by visually identifiable patterns. The aim here is to characterize the
pattern dynamics in these CAs in terms of domains. particles and particle inter-
actions. and delineate how they aid the CAs in achieving high-performance. In
addition. the particle-level analysis is emploved to portray the evolutionary path-
way through which the GA discovered the high-performance CAs. The goal is to
study the ancestors of the high-performance CAs and then delineate the evolution
of the computational structures that are embedded in the dynamics of the CAs.

This chapter also investigates a related issue. The range of the spatial and
temporal regularities in the patterns displayed by different high-performance rules
is indeed remarkable, but the particle-level analysis indicates higher-level similarities
among all the high-performance rules that the GA discovered. Another goal in this
chapter is to elucidate such similarities.

For these investigations, several representative high-performance rules with dif-
ferent look-up tables have been selected and a detailed analysis of their behavior is
performed. The three rules are:

(i) ¢4 = 0x 05040587 05000F77 03775583 7TBFFBT77F,
(ii) ¢p = Ox 10564424 0140149D 1F7746F7 EF5B3F7F, and
(iii) ¢ = 0x 01000131 0D60052F 1F7BD7B5 F5FFFD7F.
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Each CA o is given as a hexadecimal string which, when translated to a binary
string, gives the output bits of ¢ in lexicographic order (n = 07 on the left). Al-
though the analysis presented here deals with these rules, the main conclusions
drawn from the analysis are sufficiently general in their scope. and can be easily ex-
tended to understand the behavior of other high-performance rules for the density

classification task.

7.1 Analysis of ¢4

Time
Time

149 149
0 Site 149 0 Site 149

(a) (b)

Figure 7.1: (a) Space-time diagram of ¢4 starting with a random initial condition
with pg = 0.4765. (b) The same space-time diagram after filtering with the trans-
ducer T, which maps all domains to white and all defects to black. Greek letters
label particles described in the text.

Figure 7.1(a) gives a space-time diagram for ¢,, the highest performing CA
discovered by the GA in the experiments. The unbiased performance measure
'P{\64(¢A) = 0.769, 0.766, and 0.757 for N = 149,599, and 999 respectively. The
figure shows that the space-time behavior of ¢4 is dominated by three types of pat-
terns: regions with the all-1s pattern, regions with the all-Os pattern, and regions

with the checkerboard pattern. These three patterns can be characterized as regular
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Figure 7.2: The spatial transducer T, which accepts words in all three domains A%,
AL, and \%. The same transducer can be used to filter space-time plots generated
by o¢gx L (described in the text).

domains since each satisfies the temporal invariance and spatial homogeneity condi-
tions. The domains, denoted here as \%, .\, and .\%, consists of the languages 007
11*, and (01)* respectively. In this chapter, A%, A}, and A% will also be denoted
by svmbols W, B, and # respectively.

Figure 7.2 shows the spatial transducer T, which accepts words in all the three
domains, and, when applied to the space-time diagram in Figure 7.1(a), produces
the plot in Figure 7.1(b). In Figure 7.1(b), the filtering helps in determining the
location as well as the spatial and temporal features of the particles in the space-time
diagram. In addition, various types of particle interactions can be distinguished in
the figure. The domains, particles and particle interactions observed in the filtered

space-time plots of ¢, are presented in Table 7.1.
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Symbol | Domain Temporal Spatial Velocity
Boundary | Periodicity | Displacement

a BW 1 0 0
3 WB - - -
7 B# 1 3 3
4 #B 1 1 1
" W# 1 - -1
v #W 1 -3 -3
l Particle Interactions Ji

Decay I u+d

Annijhilative | p+v 30 | v+ >0

Reactive d+a-ovia+p—a>v (i v+rv—=a

Table 7.1: The domains, particles. and particle interactions which dominate the
spatio-temporal behavior of ¢4. The domains. particles. and particle interactions
embedded in the behavior of ogx are identical to those presented in the above
table.

Why does ¢, perform relatively well on the p. = 1/2 task? In Figure 7.1(a) it
can be seen that. although the patterns eventually converge to fixed points, there
is a transient phase during which a spatial and temporal transfer of information
about the density in local regions takes place. This local information interacts with
other local information to produce the desired final state. Roughly, o4 successively
classifies “local” densities with a locality range that increases with time. In regions
where there is some ambiguity. a “signal” is propagated. This is seen either as a
checkerboard pattern propagated in both spatial directions or as a vertical black-
to-white boundary. These signals indicate that the classification is to be made at a
larger scale.

The following section elucidates the above intuitive reasoning in detail. More-
over, in the following, the computational mechanics approach to CAs is used to
analyze the strategy of ¢,—the rule with highest P}, found by the GA—and de-

scribe the generational progression by which ¢4 was evolved under the GA.
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7.2 The Evolution of Computation

best fithess

0

l { I l
0O 10 20 30 40 50
generations

Figure 7.3: Plot of the fitness of the most fit rule in the population versus generation
in the run producing @4. The arrows in the plot indicate the generations in which
the GA discovered each new significantly improved strategy.

Figure 7.3 plots best fitness (Fjgo) in the population versus generation for the
first 50 generations of the run in which ¢4 was discovered. It can be seen that,
before the GA discovers high fitness rules, the fitness of the best CA rule increases
in rapid jumps after periods of relative stasis. Qualitatively, the rise in performance
can be divided into several “epochs”, each beginning with the discovery of a new,
significantly improved strategy for performing the p. = 1/2 task. In Figure 7.3, the
initial generations of these epochs are labeled with the name of the best rule found
at that generation.

Epoch 0: Trivial solutions

For the first seven generations, the highest Fg value equal to 0.5 is achieved

by a number of rules that map almost all neighborhoods to the same symbol. Rules
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in which almost all neighborhoods map to 1 (0) quickly settle to the all-1s (all-Os)
configuration irrespective of pg. Since the ICs are divided evenly between p < % and
p > %, such rules are able to correctly classify exactly half of the ICs and thus have
a fitness of 0.3.

Epoch 1: Discovery of block-expanding rule: expansion of 1-blocks.

Time

149
0 Site 149

¢ (gen.8)

Figure 7.4: Evolutionary history of ¢.4: A space-time diagram illustrating the be-
havior of the best rule in generation 8, ¢;. Randomly generated ICs have been used
in Figures 7.4 through 7.8.

In generation 8. a rule (@,) is discovered that has significantly improved per-
formance (Flgo = 0.61). Its strategy is illustrated by the space-time diagram in
Figure 7.4. ¢, was created by a crossover between a rule that maps most neighbor-
hoods to 0 and a rule that maps most neighborhoods to 1. A closer inspection of the
behavior of this rule reveals that it always relaxes to the all-1s configuration except
when py is close to zero, in which case it relaxes to the all-Os configuration, yielding

Figo > 0.5. An analysis of particle interactions explains ¢,'s behavior. After a
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Particle | Wall Type | Velocity (Gen. = 8) | Velocity (Gen. = 18)
a WwnB 1 0
3 BW 2 0
5 B# 3 3
s #B 1 1
n W# -1 -1
v #W -1 -3

Table 7.2: The velocities of the six particles generated by the best rule in generation
8 (cf. Figure 7.3(b)) and in generation 18 (cf. Figure 7.3(f)).

very short transient phase. @, essentially creates three regular domains, B = 117.
W = 00%*. and # = (10)*. This behavior can be understood readily from o,’s rule
table: out of the 28 neighborhood patterns with five or more 1s (0s), 27 (22) result in
an output bit of 1 (0). Therefore. in any IC, small “islands” of length 1, 2 or 3 con-
taining only 1s or Os in are quickly eliminated, resulting in locally uniform domains.
To maintain a # domain, the neighborhood patterns (1010101) and (0101010) must
produce a 1 and 0 respectively, as is done in @;.

After the B, 11", and # domains are created, the subsequent behavior of @,
is primarily determined by the interaction of the particles representing the domain
walls. ¢, has three domains V1", B, and #, and six particles, one for each domain
wall type: BW o, WB : 3. B# : v, #B : . W# : u, and #W : v. The
velocities of these partfcles (i.e., the slope of the domain wall corresponding to
the particle) are 2, 1, 3. 1. —1. and —1 respectively. There are two annihilative
interactions: o + 3 — @ and v + § — 0. Two interactions are reactive: a + & — ~
and v + v — «. All these interactions can be seen in Figure 7.4. Several particle
interactions never occur; they are prevented due to the direction and magnitude
of the particle velocities. For example, the particles v and p, which are associated
with boundary between the W and # domains, have the same velocity and never
interact. Similarly, although 4 moves in the same direction as «, the former has only
half the speed of the latter, and the two particles never have the chance to interact.

For similar reasons, the # domain and its four associated particles (v, 8, 4, and v)

play no appreciable role in the determination of the CA’s final configuration. This
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is easily verified by complementing the output bit of one of the two neighborhood
patterns necessary to maintain the # domain (i.e., the neighborhoods (1010101)
and (0101010)) and observing that very little change occurs in the rule’s fitness.

Thus for this epoch we can focus exclusively on the boundaries between the B
and the I}V regions. Because 3’s velocity is less than that of «, a soon catches up
with J. The interaction of these two walls results in domain B. eliminating domain
11" between them. Therefore when an island of I} is surrounded by B domains, the
size of the former shrinks until it vanishes from the lattice. Conversely, when an
island of B is surrounded by 1" domains. the B domain grows until it occupies the
whole lattice. However, an island of B must occupy at least five adjacent cells in
order to expand. Thus if an initial configuration contains a block of five 1s or results
in the creation of such a block when the rule is applied over subsequent time steps.
then the CA inevitably relaxes to the all-1s configuration. Otherwise it relaxes to
the all-Os configuration.

The explanation of 0;'s behavior in terms of particles and particle interactions
may seem a complicated way to describe simple behavior. But the usefulness of the
computational mechanics framework for explicating computation will become clearer
as the space-time behavior becomes more complex. In the succeeding generations.
it will become clear how the velocity of the particles and their interactions play the
most crucial role in determining the computational behavior (and thus the fitness)
of a CA rule.

Epoch 2: Refinement of block-expanding strategy

The next four generations produce no new epochs (i.e., no significantly new
strategies) but a modest improvement in the best fitness. During this period three
changes in behavior were observed, all of which appear in the generation 12 rule
@2 (see Figure 7.5). First, for an island of B to expand and take over the whole
lattice, it now must contain at least seven cells. Since a seven-cell island of B is

less likely than a five-cell island in low-p ICs, more low-p ICs are correctly classified.
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Figure 7.5: Evolutionary history of ¢4: A space-time diagram illustrating the be-
havior of the best rule in generation 12, ¢-.

Second. the velocity of the #IV boundary, v. is modified from -1 to -3. allowing
the annihilative reaction: g + v — . Thus. unlike in ¢,. an island of # domain
when surrounded by the 1V domain cannot persist indefinitely. Third, the velocity
of « is decreased to % Since the velocity of the 1¥"B boundary, 3 remains constant
at 1. it now takes longer to eliminate 'V domains. (This last modification does
not result in a significant change in fitness.) Unlike the innovation that resulted in
®1, where crossover played the major role, these modifications (and the ones that
follow) are primarily due to the mutation operator. This is because most of above
modifications can be attributed to small and isolated changes in the look-up table
occurring independently of each other.

Epoch 3: Expansion of 0-blocks

In generation 13, a new epoch begins with the discovery of ¢3, with a sharp

jump in Fyg to 0.82 corresponding to a significant innovation. ¢3’s behavior is
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Figure 7.6: Evolutionary history of @¢.4: A space-time diagram illustrating the be-
havior of the best rule in generation 13, ¢;.

illustrated in Figure 7.6 (Here # is used to refer to a more complicated variation
of the checkerboard domain #). While the velocity of .3 is held constant at 1, «
now moves with velocity % in the same direction. Since the velocity of 3 is more
than that of a. an island of " can now expand when surrounded by B, with the
condition that IV has to be at least six cells in length.

This means that the rule still defaults to the all-1s configuration, but if there
is a sufficiently large island of W in a low-p IC (a fairly likely event), the W island
expands and the IC is correctly classified. However, misclassification is now possible
for pg > 0.5 due to the (less likely) chance formation of an island of W of length
six. This aspect of the strategy is again similar to the block-expanding strategy.

In addition to the above changes, a new interaction is allowed to take place for

the first time. The decrease in velocity of the particle a to % not only results in the
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removal of small islands of B but it also allows 4 to interact with a. The interaction
results in the particle v with a velocity of -3, creating the necessary symmetry with
~, which has velocity +3 (see Table 7.2).. From this juncture the # domain and its
four associated particles play a major role in determining the fitnesses of the fittest
CA rules.

Epoch 4: The Fundamental Innovation

0
Q
=

149 :

0 Site 149
¢ (gen. 16)
4
Figure 7.7: Evolutionary history of ¢,: A space-time diagram illustrating the be-

havior of the best rule in generation 16, ¢y.

After a brief stasis over three generations, a fundamentally new development
results in the improved performance seen in @y, the best rule in generation 16 (Figo =
0.89). In Figure 7.7, the following behavior can be seen. Particle 3, which exists at
W B boundary, now spontaneously decays to create a # domain with two boundaries,
one on each side: u moving to the left with a velocity of -1, and § moving to the

right with a velocity of 1. Since u is moving to the left and can interact with right
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moving a to create 7, the rule will stop the growth of W islands even if their length
is greater than neighborhood size. This prevents the error of expanding W blocks
when pp > 0.5. In other words. whenever a B island exists with a I} island situated
to its left. the two domains compete for space in the lattice according to their relative
size, with the # domain acting as the mediator. This is a fundamental innovation
over the previous epochs in using particles to effect non-local computation.

Also. the velocity of a is further reduced from % to ;. However, an asymmetry
still remains: because the BV domain boundary, . is moving to the right with
a positive velocity, the magnitude of the velocity difference between the domain
boundaries BW (a) and WW# (i) is more than the velocity difference between BW
(a) and #B (6). As a result of this asymmetry, it takes longer to remove islands
of B than to remove islands of 11" of the same size, a feature which often leads to
misclassifications.

Epoch 5: Final Refinement

The above asymmetry is rectified by the discovery of @5 in generation 18, in
which the velocity of « is set to zero (Figure 7.8), vielding Figo = 0.98. From
generation 19 till the end of the GA run, little change is seen in either the fitness of
the best rule in the population or its behavior. ¢5’s behavior is very similar to that
of 04 which was discovered later in this run.

Interestingly, ¢.4’s behavior is very similar to the behavior of the well-known
Gacs-Kurdyumov-Levin (GKL) CA (denoted here as ¢¢ck ), which was invented to

study reliable computation in one-dimensional spatially-extended systems [Gac85].

The look-up-table of GKL CA in hexadecimal is:
ockr = 050005FF 050005FF 05FFOSFF O5FFOSFFE

and its performance P{(dckr) was measured to be 0.816, 0.766, and 0.757 for
N = 149, 599, and 999, respectively. As detailed in Chapter 3, there is a strong

similarity between the reliable computation problem as posed by Gacs et al. and
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Figure 7.8: Evolutionary history of 04: A space-time diagram illustrating the be-
havior of the best rule in generation 20. os.

the T/, task. An example of the space-time behavior displayed by ogx L is shown
in Figure 7.9(a). Analysis shows that the three regular domains which govern the
the behavior of ogxr have a one-to-one correspondence with the domains in ¢4
(i.e.. A%, AL, and \%). As a result, the transducer for 04, T4, can be used to
study the particle dynamics in ¢¢gg . Figure 7.9(b) depicts the space-time pattern
in Figure 7.9(a) after filtering the latter with T4. Particle-level study shows that
the particles and particle interactions in ogg, are indeed very similar to those in ¢ 4.
However, the look-up-tables ¢4 and ¢gxr are not identical to each other and the
distance between them in Hamming space is 31. In essence, the “particle logic” that
makes ¢grr a superior reliable computing medium is very similar to the strategy
which allows ¢4 to achieve high-performance in the T/, task.

What are the details of this particle logic? The strategy used by ¢gkL is

illustrated in Figure 7.10(a). In the figure, the IC consists of a B island and a W
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Figure 7.9: (a) Space-time diagram of ¢ggx starting with a random initial condi-
tion with py = 0.4899. (b) The same space-time diagram after filtering with the
transducer Tgar (= T4) that maps all domains to white and all defects to black.
Greek letters label particles described in the text.

island set next to each other. Initially, the BW boundary represented by particle
occurs at the left (and the right) boundary of the diagram. The size of the B island
is slightly more than that of the 11 island. and thus the overall density of the IC
is slightly more than 1/2. The behavior of ¢grr CA starting from this simple IC
helps to explicate the basic steps in ¢gg’s particle logic.

The first reaction occurs at the W B boundary 3. The BW boundary is stable
and it remains unchanged. The unstable “particle” 3 produces two particles 4 and
4. The two particles have velocities that are equal in magnitude but opposite in
direction. It should be noted that the above behavior results in the origination and
subsequent growth of the # domain which replaces the IV island and the B island
at the same rate of 1 site per time step. Since we have periodic boundary conditions,
both particles move towards the o particle at the BW boundary. However, because
the IV island is smaller than the B island, particle u is able to interact with a before

d has a chance to do so.
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Figure 7.10: (a) Spacz:z-time diagram of ok starting with a IC consisting of a B
island and a V" island. py > 1/2. (b) Space-time diagram of ¢k starting with a
IC similar as in (a) with an additional small W island. py < 1/2.

The particle interaction « + u results in particle v. The § particle on the other
hand is unaffected and it continues in its previous trajectory. At this juncture, the
I} island has been entirely removed from the lattice, and the configuration consists
of a small B island surrounded by the # domain. Due to the velocities of the
particles v and ¢, the B island now starts to grow at the rate of 2 sites per time
step. In a short time, the B island takes over the entire lattice. and the correct fixed
point configuration is reached.

In more complicated [Cs, the same sequence of particle interactions occur at
different regions in the lattice and result in a correct final configuration. However,
ocrr often fails to correctly classify ICs. Why is @gkr not a perfect rule for the
density classification task? And under what conditions does ¢gg fail? We use
Figure 7.10(b) to answer these questions.

The IC shown in Figure 7.10(b) is identical to the IC in Figure 7.10(a), except
for the presence of a second W island. Due to the presence of this new island, the

density of the IC is now slightly less than 1/2. Nevertheless, as the figure shows,
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ocrr incorrectly classifies the IC by reaching the all-1s configuration as before. In
explaining this error, we note that despite the dissimilarities in the two ICs, the
resulting spatio-temporal behaviors are remarkably similar. The only significant
difference in Figure 7.10(b) is the presence of the extra I}V island. However, the new
W island is removed from the lattice before it has a chance to affect the particles
of the two larger islands. Once this happens. the information about the smaller
IV island is forever lost, and ogk behaves as if the extra WV island never existed.
Thus, the CA arrives at the erroneous answer. In more complicated [Cs, smaller
islands which are hidden inside larger islands are often removed from the lattice
before these islands have had a chance to influence the particle logic of the larger
islands.

This simple scenario presented in Figure 7.10(b) highlights the fundamental
reason that prevents ogx . from achieving 100% performance in the T, task. It
also underscores the T, task’s main dichotomy. In order to achieve superior per-
formmance, a CA must force the density of the configuration to move closer to 1.0
or 0.0. However, by this very act. the CA is forced to loose information about the
current configuration. As we have shown above. this results in inferior performance

(recall the discussions in Appendix A).

7.3 Analysis of ¢p

Figure 7.11(a) gives a space-time diagram for another high-performance CA, ¢g,
for the T/, task. The unbiased performance measure Py (¢g) = 0.729. Analysis
of Figure 7.11(a) shows that the space-time behavior of ¢g is dominated by three
types of domains: The domains, denoted here as A%, AL, and A%, consists of the
languages 000*, 11%, and (001)* respectively. Since the temporal invariance and
spatial homogeneity conditions are satisfied, A%, A}, and A% are indeed regular
domains. As in the previous section, A%, AL, and A% will be denoted here as W,

B, and # respectively.
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Figure 7.11: (a) Space-time diagram of o starting with a random initial condition
with py = 0.4966. (b) The same space-time diagram after filtering with the trans-
ducer Tpg that maps all domains to white and all defects to black. Greek letters
label particles described in the text.

The transducer Tg, which which accepts words in the domain languages \%.
AL. and .\3%, is presented in Figure 7.12. Figure 7.11(b) depicts the space-time plot
after T has been applied to the space-time diagram in Figure 7.11(a). Table 7.3 lists
the domains, particles and particle interactions observed in the filtered space-time
plots of og.

The most interesting feature to note in Table 7.3 is its striking similarity to
Table 7.1 for ¢.4. The table shows that the interactions between the particles in
¢p are identical to those in ¢, (although the particle velocities in ¢ and ¢, are
different from each other). As in ¢4, the particle 3, which exists at V' B boundary,
spontaneously decays to create the # domain with two boundaries, one on each
side: p on the left and 0 on the right (Figure 7.11(b)). Given the similarity in the
number of domains, the number of particles, and their interactions, it is possible
to claim that the strategy used by ¢g to solve the density classification problem is

very similar to the strategy used by ¢4 or ¢gxky.
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and \%.

12: The spatial transducer Tz, which accepts words in domain \%, A},

But why then is ¢5’s performance for the T/, task inferior to the performance
of @4 7 The answer to this question lies in the inherent symmetries of the T/,
task, which requires treating VW or B domains in the same fashion without any
bias. For example, as mentioned in the previous section, W and B islands of the
same size should be removed at the same rate to ensure higher performance. Given
that the particle interactions are identical in ¢ and ¢g, a simple way to check for
such symmetries in the particle dynamics is to analyze the relationships between the
particle velocities. If the W B boundary (3) is unstable, and the B boundary a

has a zero velocity (or vice versa), then symmetry constraints require the following:
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Domains |
| W =000" | B=11% | # = (001)* ||
0 Particles |
Symbol | Domain Temporal Spatial Velocity | Velocity
Boundary | Periodicity | Displacement w.r.t. a
a BW 2 1 13 0
3 WB - - - -
~ B# 1 3 3 22
] #B 3 3 1 :
u W# 0 0 0 -
v #W i -3 -3 -33
[[ Particle Interactions 1
Decay Jopu+d
Annihilative [ p+v =50 [ v+d =0
Reactive d+a—-v|ia+pu—y | vy+rv—a

Table 7.3: The domains, particles. and particle interactions that dominate the
spatio-temporal behavior of ¢g.
(i) The velocity of u (W # boundary) and ¢ (#B boundary) should be
equal in magnitude but opposite in direction.
(i) The velocity of v (#W" boundary) and + (B# boundary) should be

equal in magnitude but opposite in direction.

As shown in Table 7.1. ¢, meets these conditions.

In order to check for the above symmetry constraints, Table 7.3 also gives the
particle velocities with respect to a. (It should be noted that this imposes only a
linear transformation in the CA's space-time behavior and does not fundamentally
affect the particle dvnamics.) As shown in the *“velocity w.r.t. a” column, the
magnitude of the particle velocities in v and 7 are not equal: this is the fundamental

reason behind ¢g’s inferior performance when compared to ¢ 4.

7.4 Analysis of ¢¢

The space-time diagram from another high-performance rule discovered by the
GA, ¢c, is shown in Figure 7.13(a). The unbiased performance measure P (éc)

for the T/, task equals 0.744. Analysis of the figure shows that the space-time
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Figure 7.13: (a) Space-time diagram of ¢ starting with a random initial condition
with pg = 0.4362. (b) The same space-time diagram after filtering with the trans-
ducer T¢ that maps all domains to white and all defects to black. Greek letters
label particles described in the text.

behavior of oc consist of three tvpes of domains. The domains. denoted here as
A%, AL. and \Z%. consists of the languages 00*. 1117, and (110)™* respectively. All
three domains A, \!, and \% are regular domains since each satisfies the temporal
invariance and spatial homogeneity conditions. As before, A%, AL, and A% will be
denoted here as the 11", B, and # domains respectively.

Figure 7.14 shows the spatial transducer T¢, which accepts words in domain
languages \&. AL, and \Z. It should be noted that T¢ is the mirror image of the
transducer T'g given in the previous section. Essentially, each input symbol has been
flipped (i.e., 0 to 1, and 1 to 0) in Tpg to create T¢. This is because the languages
in the three domains in ¢g and in ¢¢ are Boolean complements of each other.

Figure 7.13(b) depicts the space-time plot after T¢ has been applied to the
space-time diagram in Figure 7.13(a). The domains, particles and particle interac-

tions observed in the filtered space-time plots of @¢¢ are presented in Table 7.4.
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Figure 7.14: The spatial transducer T¢ which accepts words in domain A2, .\L. and
A2

[s the strategy used by oc¢ similar to that in ¢, (or ¢g) ? As shown in Ta-
ble 7.4. the number of domains and the number of particles in ¢¢ are identical to
those in ¢4 or ¢p. Nevertheless, one seemingly important difference in @¢ is that
particle v is unstable, while 3 is stable. In addition, the set of particle interactions
apparently bears little resemblance to the particle interactions in ¢,. However, a
closer inspection reveals that the essential particle-based mechanisms used by ¢c¢
for the T/, task are very similar to the strategies discussed in the earlier sections

in this chapter. Indeed, the particle interactions listed in Table 7.4 can be mapped
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I Domains
W=00"] B=1117 | # = (110)"
Il Particles B
Symbol | Domain Temporal Spatial Velocity | Velocity

Boundary | Periodicity | Displacement w.r.t. J
a BW - - - -
3 WB 1 1 1 0
vy B# 1 0 -1
3 #B 1 3 3 1
0 W# 1 3 3 2
v #W 2 4 2 1

il Particle Interactions |l

Decay a—=>y+v

Annihilative | u+v 20 | v+0 5@

Reactive IJ+vopu|lv+dod | pu+d->3

Table 7.4: The domains, particles. and particle interactions that dominate the
spatio-temporal behavior of oc.

to the particle interactions in ¢4 by simply exchanging the particle pairs a and 3.
~ and 4. and p and v.

Table 7.4 also helps in explaining why oc's performance is inferior to that of ¢ 4.
As shown in the table, particles ¢ and d have velocities with different magnitudes.
which in turn inhibits ¢c's performance.

This chapter has detailed the use of the computational mechanics framework
to understand the spatio-temporal behavior in high-performance CAs for the den-
sitv classification task. The above analysis has shown that although the high-
performance CAs typically use different look-up tables, and although the patterns
dominating the behavior of the CAs can be very different, nevertheless, the under-
lying strategies engendered by the particle dynamics can be similar. Moreover, the
GA, while explicitly operating on the look-up tables, can be thought of as implicitly

modulating the particle dynamics to evolve high performance CAs for the T, task.
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Chapter 8

SYNCHRONIZATION TASK

As in the previous chapter. the main aim here is to use the framework of com-
putational mechanics to understand the spatio-temporal behavior of CAs exhibiting
high-performance for the synchronization task R. The major unifying theme among
the high-performance CAs for the synchronization task was the presence of visually
distinct patterns in the space-time diagrams. The aim here is to delineate the pat-
tern dynamics in these CAs in terms of the embedded domains, particles and particle
interactions. and to show how they give rise to high performance in the CAs. Once
the computational structures have been identified, the second gcal in this chapter
is to describe the temporal stages in the evolutionary process which lead to the
discovery of a high-performance CA. Finally the third goal is to determine the com-
mon themes underlying the particle-level strategies used by the high-fitness CAs to
perform the syvnchronization task.

In this chapter. three representative rules with different look-up tables have
been selected from the set of rules with high performance for the R task. These
rules are then analyzed in detail. The three rules are:

(i) 4 = 0x FEB1C6EA BS8EOC{DA 6484A5AA F410C8AOQ,

(ii) o = 0x FE5CEEF4 EDD2EQAA 60F1EE{0 FCB6B280, and

(iii) ¢¢ = Ox BFCD3CC2 ASEFFE8C D9CSFEAE 3CEEFA60.

While the analysis presented here focuses on these three rules, the main conclu-
sions drawn from the analysis are general in their scope: in most cases the analysis
can be easily extended to other high-performance rules without much difficulty or

modification.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



139

8.1 Analysis of ¢4

74

o

Site 74 0 Site 74
(a) Space-time diagram. (b) Filtered space-time diagram.

Figure 8.1: (a) Space-time diagram of ¢, starting with a random initial condition.
(b) The same space-time diagram after filtering with the transducer T, which maps
all domains to white and all defects to black. Greek letters label particles described
in the text.

Figure 8.1(a) gives a space-time diagram for one of the GA-discovered CAs
with 100% performance. here called ¢,. In the example given in the figure. global
synchronization occurs at time step 58. The figure also shows that the space-time
behavior of o4 is dominated by two types of distinct patterns: regions where the
all-1s pattern alternates with the all-Os pattern: and regions of jagged black diagonal
lines alternating with jagged white diagonal lines. Both these patterns can be char-
acterized as regular domains since each satisfies the temporal invariance and spatial
homogeneity conditions. One of the domains, denoted here as .\%, consists of two
languages, 0000* and 11117, such that $(0000%) = 1111* and ®(1111%) = 0000™.
AY is the synchronous domain, characterizing regions in the configurations where
the cells are oscillating in synchrony. A% will also be denoted as S. For the CA to

reach global synchrony, the entire lattice has to be occupied by the S domain. The
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second domain. denoted here as .\, also has a temporal periodicity of two. but has
a spatial periodicity of four. .\}; consists of two languages (0001)™ and (1110)". such
that ®((0001)*) = (1110)* and ®((1110)*) = (0001)*. In subsequent discussions.
AL will also be denoted as D. Unlike the languages in .\';, the configurations in .\};

have a temporal periodicity of four.

0
0l o 11A
1
a L 2
01 1A 01k 112
3 » Q 4 54 a 6
01 11A OIA TiA 0la 11% 014 11

= Start State
@ - A= 0000, 1117
@ =A=(0001),(1110)"

= Synchronizing State

Figure 8.2: The spatial transducer T, which accepts words in domains A% and Al.

Figure 8.2 shows a spatial transducer T, which accepts words in domain Aff,

and AY. When T, is applied to the space-time diagram in Figure 8.1(a), it produces
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the plot shown in Figure 8.1(b). In the figure, the filtering not only determines the
location of the particles in the space-time diagram. but it also helps in readily
identifying the spatial and temporal features of the particles. In addition, various
tvpes of particle interactions can be distinguished. The domains, particles and

particle interactions observed in the filtered space-time plots of ®, are presented in

Table 8.1.
B Domains B

S alternates between 00007 and 11117, i.e. [ D alternates between (0001)* and (1110)7. i.e.
0000+ = @(11117). (0001)* = &((1110)*),
1111+ = $(0000") (1110)* = &((0001)*)

I Particles ]
Symbol | Domain Temporal Spatial Velocity
Boundary | Periodicity | Displacement

a SS - -
3 DS 2 2 1
¥ SD 2 -2 -1
4 DS 4 -12 -3
u SD 2 6 3
v DD 2 -2 -1
b Particle Interactions |
Decay a—y+ 3
Annihilative | v +4 = @ u+3—40
Reactive I+ —v. fdmod4=1|v+d—->J3 p+v—o
Reversible J+v—20+pu fdmodd#1 | pu+d—oa~+3

Table 8.1: The domains. particles, and particle interactions that dominate the
spatio-temporal behavior of 4. SS and DD represent phase defects within the
S and D domains respectively. The reactions between particles 3 and v depend on
the relative distance d between them. where 0 < d < 2r.

How does ¢4 perform the synchronization task? From any random initial con-
figuration, ¢, produces local regions of synchronization, i.e., regions which are in
the S domain. However, in many cases, adjacent S domains are out-of-phase with
respect to each other. Wherever such phase defects occur, ¢, resolves them by prop-
agating particles—the boundaries between the S domains and the D domain—in
opposite directions. Encoded in ¢.4's look-up table are interactions involving these
particles that allow one or the other competing synchronized region to annihilate

the other and to itself expand. Similar sets of interactions continue to take place
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among the remaining synchronized regions until the entire configuration has one

coherent phase.

In the next section this intuitive description is made more rigorous. In partic-

ular. the computational mechanics framework is used to describe the evolutionary

path by which the GA discovered o4.

8.2 The Evolution to Synchronization

o
(0 0]
|
»
<
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L\E/ 0.6 = -
%3
£ 04 .
3
3 ¢1 ¢2

0.2 | -

v
O /. (DO | 1
0 10 20 30

generations

Figure 8.3: Evolutionary history of ¢4: Flgo versus generation for the fittest CA in
each population. The arrows indicate the generations in which the GA discovered

each new significantly improved strategy. In Figures 8.4 through 8.8, the space-
time diagrams illustrating the behavior of the best ¢ at each of the five generations

marked in this plot are shown.

Figure 8.3 plots the best fitness in the population versus generation for the first
30 generations of the run in which ¢, was evolved. The figure shows that, over
time, the best fitness in the population is marked by periods of sharp increases.

Qualitatively, the overall increase in fitness can be divided into five epochs. The
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first epoch starts at generation 0 and each of the following epochs corresponds to
the discovery of a new, significantly improved strategy for performing the synchro-
nization task. Similar epochs were seen in most of the runs resulting in CAs with
100% performance. In Figure 8.3, the beginning of each epoch is labeled with the
fittest CA in the population at that generation.

Epoch 0: Growth of Disordered Regions.
0

: f._*r--:,. o :-_ L;.h_i’:{;'.-_ - %

&
3,

iy

148

Figure 8.4: Evolutionary history of ¢4: A space-time diagram illustrating the be-
havior of a rule in generation 0, ¢g. The IC consists of a single 1 in the center of a
field of 0s. Note that the disordered region grows until it occupies the whole lattice.

To perform the synchronization task, a CA ¢ must have ¢(07) = 1 and ¢(17) =
0. These mappings insure that local regions will have the desired oscillation and
will be in domain S with 0% = ®&(1*), and 1* = ®(0%). Since the existence of the
S domain is guaranteed by fixing just two bits in the chromosome, approximately
1/4 of the CAs in a random initial population have S.

However, S’s stability under small perturbations depends on other output bits.

For example, ¢, is a generation 0 CA with these two bits set correctly, but under ¢,
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a small perturbation in S leads to the creation of a disordered region. This is shown
in Figure 8.4. where the IC contains a single 1 at the center site. In the figure, the
disordered region grows until it occupies the whole lattice. This behavior is typical of
CAs in generation 0 that have the two end bits set correctly. Increasing the number
of perturbation sites in S leads to a simultaneous creation of disordered regions all
over the lattice. which subsequently merge to eliminate synchronous regions. Thus,
CAs like og have zero fitness unless there is at least one test IC with all-Os (or all-1s)
configuration.

Epoch 1: Stabilization of the Synchronous Domain.

0 - ¥ .-'-I,;- S L _«u{; g_f:lq
=1 =R 45
= E'E_——e::
— | ey — ~ ”

= = e =

.g — Al YA }

= Py (=
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— S =%
== e ==
== Zi =
E‘%Ef___‘——:—-—;g
148 == , =2
0 Site 148

q) 1 (gen. 1)

Figure 8.5: Evolutionary history of ¢4: A space-time diagram illustrating the be-
havior of the best rule in generation 1, ¢,. Randomly generated ICs have been used
in Figures 8.5 through 8.8. Note that unlike ¢g, rule ¢; has succeeded in stabilizing
the S domain.

The best CA at generation 1, ¢,, has Figo = 0.04, indicating that it successfully
synchronizes on only a small fraction of the ICs. Although this is only a small
increase in fitness, the space-time behavior of ¢, (Figure 8.5) is very different from

that of ¢g. Unlike ¢g, ¢; eliminates disordered regions by expanding (and thereby
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stabilizing) local synchronous domains. The stability of the synchronous domain
is due to the fact that ¢, maps all the eight neighborhoods with six or more 0s
to 1, and seven out of eight neighborhoods with six or more 1s to 0. Under the
lexicographic ordering, most of these bits are clustered at the left and right ends
of the chromosome. This means it is easy for the crossover operator to bring them
together from two separate CAs to create CAs like 0.

Figure 8.5 shows that under o, the synchronous regions fail to occupy the
entire lattice. A significant number of constant-velocity particles (here. boundaries
between adjacent S domains) persist indefinitely and prevent global synchronization
from being reached. Due to the temporal periodicity of the S domain, the two adja-
cent S domains at any boundary can be either in-phase or out-of-phase with respect
to each other. The in-phase and the out-of-phase defects between two S domains
are denoted as SS and SS respectively. A more detailed analysis of ¢, s space-time
behavior shows that it supports one type of stable SS particle. a, and three different
types of stable SS particle: 3, v, and 4. each with a different velocity. Examples of
these particles are labeled in Figure 8.3. and their properties and interactions are
summarized in Table 8.2. (For notational convenience, the same set of Greek letters
is used to represent different particles in different rules.)

For most ICs, application of @, quickly results in the appearance of these parti-
cles, which then go on to interact, assuming they have distinct velocities. A survey
of their interactions indicates that the « particle dominates: it persists after colli-
sion with any of the SS particles. Interactions among the three SS particles do take
place, resulting in either a single 3 or a pair of a’s. Thus, none of the interactions
are annihilative: particles are produced in all interactions. As a result, once a set
of particles comes into existence in the space-time diagram, it is guaranteed that at
least one particle persists in the final configuration. For almost all values of initial

p, ¢1’s formation of persistent particles ultimately prevents it from attaining global
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synchrony. Only when the initial p is very close to 0.0 or 1.0 does ¢; reach the

correct final configuration. This accounts for its very low fitness.

(l Cellular Automata i Particles and Interactions 1
Chromosome Generation Label | Domain Temporal | Velocity
(PL32. P33 PIO° Boundary | Periodicity

o = 1 a SS 2 -1/2
F8A19CE6 3 SS 4 -1/4
B63848EA (0.00. 5 5SS ) 1/8
D26CB24A 0.00. 4 SS 2 0
EB31C4A0 0.00) J+a—a,vy+a—=a,d+a—>a

O = 3 a SS 2 -1/2
FSAIAE2F 3 5SS 6 0
CF6BCILE2 (0.33.

D26CB24C 0.07, J+a—=0
3C266E20 0.03)

03 = 13 p 55 1 3 /1
FSA1AE2F 3 SS 6 0
CE6BC1E2 (0.57. > 5SS 12 /4
C26CB24E 0.33, 3 SS 2 1/2
3C226CA0 0.27) 3+a—=+0,v+a—>0.0+a—0

Table 8.2: Ancestors of 04: Particles and their dynamics for the best CAs in early
generations of the run that found 4. The table shows only the common particles
and common two-particle interactions that play a significant role in determining
fitness.

Epoch 2: Suppression of In-Phase Defects.

Following the discovery of o, the next sharp increase in fitness is observed in
generation 5, when the best CA in the population, ¢,, has Figo = 0.54. The rise
in fitness can be attributed to @9s ability to suppress in-phase (SS) defects for ICs
with very low or very high p.

In addition to the suppression of SS boundaries, the space-time behavior of ¢,
is dominated by two new and different SS particles, labeled o and 3 (Table 8.2;
examples are labeled in Figure 8.6). Moreover, because a and 3 annihilate each
other, ¢, is able to reach synchronous configurations even on some ICs with inter-
mediate p. However, since the velocity difference between o and 3 is only 1/2, the
two particles might fail to annihilate each other before the maximum of M time

steps have elapsed.
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Figure 8.6: Evolutionary history of ¢4: A space-time diagram illustrating the be-
havior of the best rule in generation 3, @,. Note that SS particles do not occur
under @,.

In spite of these improvements. @, still fails on a large fraction of its fitness
tests. Often the same type of particle occurs more than once in the configuration.
In the absence of particles of a different type. they persist, since particles of the
same type have the same velocity. Global synchrony is achieved (possibly in more
than M time steps) only when the number of o particles and 3 particles in any
configuration are equal. Experiments on o, show that the probability of occurrence
of 3 is about twice that of «, so their numbers are often unequal.

From the standpoint of the genetic operators acting on the CA rules, a small
change in the relevant entries in ¢ is sufficient to significantly modify the properties
of the domain boundaries. As a result, it is the mutation operator that seems to
play the primary role in this and subsequent epochs in discovering high-performance
CAs.

Epoch 3: Refinement of Particle Velocities.
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Figure 8.7: Evolutionary history of 04: A space-time diagram illustrating the be-
havior of the best rule in generation 13. 3. As a result of the refinement of the §S
particle velocities. o3 has attained higher fitness.

A much improved CA. @3, is found in generation 13 with a fitness of 0.79. Its
typical behavior is illustrated in Figure 8.7. ¢3 differs from o, in two respects. both
of which result in improved performance. First, as noted in Table 8.2. the velocity
difference between « and v, the two most commonly occurring particles produced by
¢3, is larger (1 as compared to 1/2 in @;). so their annihilative interaction typically
occurs more quickly. This means ¢3 has a better chance of reaching a synchronized
state within )/ time steps. Second, the probabilities of occurrence of @ and v are
almost equal. meaning that there is a greater likelihood they will pairwise annihilate,
leaving only a single synchronized domain.

In spite of these improvements, it is easy to determine that ¢3’s strategy will
ultimately fail to synchronize on a significant fraction of ICs. As longas SS particles
exist in the space-time diagram, there is a nonzero probability that a pair of SS

defect sites would be occupied by a pair of identical particles moving in parallel.
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In the absence of other particles in the lattice, such a particle pair could exist
indefinitely, preventing global synchrony. Thus a completely new strategy is required
to overcome persistent parallel-traveling particles.

Epoch 4: The Final Innovation.
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Figure 8.8: Evolutionary history of ¢.4: A space-time diagram illustrating the be-
havior of the best rule in generation 20, ¢;. The main innovation here is the creation
of the D domain.

N

8

Fitness increases between generations 13 and 19 reflect only refinement of the
basic strategy used in ¢3; nothing fundamentally new is discovered. However, in
the 20th generation a final dramatic increase in fitness is observed when ¢, is dis-
covered. ¢4 has Figo = 0.99 and displays significantly different space-time behavior
(Figure 8.8). Following the discovery of ¢; and until the end of the run in gener-
ation 100, the best CAs in each generation have Fjgo = 1.00. Also, no significant
variation in the space-time behavior is noticeable among the best CAs in this run.

In particular, ¢,’s strategy is very similar to that of ¢, a perfected version of ¢,
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that appeared 1n the last generation. Here the earlier intuitive description of @4’s
strategy is made more rigorous.

As can be seen in Figure 8.1(a), after the first few time steps the space-time
behavior of ¢, is dominated by two distinct types of domains, S and D, described
in the previous section.

Using a transducer that recognizes the S and D regular languages, Figure 8.1(a)
can be filtered to display the propagation of the particles embedded in the space-
time behavior of 04 (Figure 8.1(b)). As shown in Table 8.1, 04 supports five stable
particles, and one unstable “particle”, a, which occurs at SS boundaries. a “lives”
for only one time step, after which it decays into two other particles. v and 3.
respectively occurring at SD and DS boundaries. 3 moves to the right with velocity

1, while ¥ moves to the left at the same speed.
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Figure 8.9: (a) Space-time diagram of ¢ 4 starting with two S domains which are out
of phase with each other. ¢,’s strategy can be described as a competition between
the two S domains according to their relative size, with the D domain acting as the
mediator. (b) The same space-time diagram in (a) after filtering with the transducer
T. which maps all domains to white and all defects to black.

The following simple scenario illustrates the role of the unstable particle « in

®.’s synchronization strategy. Let ¢4 start from a simple IC consisting of a pair of
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5SS domain boundaries which are at a small distance from one another. An example
of such an initial condition is shown in Figure 8.9(a). Each SS domain boundary
forms the particle a, which exists for only one time step and then decays into a 3-v
pair. with J and « traveling at equal and opposite velocities. In this example, two
such pairs are formed. and the first interaction is between the two interior particles:
the J from the left pair and the v from the right pair. As a result of this interaction,
the two interior particles are replaced by ¢ and p. which have velocities of -3 and 3.
respectively. Due to their greater speed. the new interior particles can intercept the
remaining J and ~ particles. Since the pair of interactions v+4 — @ and p+ 3 — 0
are annihilative, and because the resulting domain is S. the configuration is now
globally synchronized (Figure 8.9(b)). One necessary refinement to this explanation
comes from noticing that the 3-+ interaction depends on the inter-particle distance
d, where 0 < d < 2r. If d mod 4 # 1, then the interaction 3+~ — 4 + u takes
place. But if d mod 4 = 1. then the reaction J + v — v occurs. The particle v is
essentially a defect in the D domain, which regenerates J and v when it reacts with
any other particle.

The fundamental innovation of o4 over o3 is the formation of the D domain,
which allows two globally out-of-phase S domains to compete according to their
relative size and so allows for the resolution of global phase frustration.

The particle interactions in the filtered space-time diagram in Figure 8.1(b)
(starting from a random IC) are somewhat more complicated than in this simple
example, but it is still possible to identify essentially the same set of particle in-
teractions (B + v — 0+, 3+v — v, and v+ — () that effect the global

synchronization in the CA.
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Figure 8.10: (a) Space-time diagram of ¢g starting with a random initial condition.
(b) The same space-time diagram after filtering with the transducer Tg which maps
all domains to white and all defects to black. Greek letters label particles described
in the text.

Figure 8.10(a) gives a space-time diagram for another GA-discovered CA with
100% performance, here called ¢g. Analysis of Figure 8.10(a) shows that two differ-
ent regular domains dominate the space-time behavior of ¢g. One of the domains,
denoted here as A}, is the familiar synchronous domain S described in the previous
section. The second domain, denoted here as .\}, has a temporal periodicity of two
and a spatial periodicity of four. .\, consists of two languages, (0001)* and (0011)*,
such that ®((0001)*) = (0011)* and €((0011)*) = (0001)*. The configurations in
AL however, have a spatial and temporal periodicity of four. Both A% and \j are
regular domains since each satisfies the temporal invariance and spatial homogeneity
conditions. As in the previous section, A} and \} will also be represented as S and
D respectively.

The transducer Tg, which accepts words in domains A% and A}, is presented in

Figure 8.11. After Tp has been applied to the space-time diagram in Figure 8.10(a),
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Figure 8.11: The spatial transducer Tg. which accepts words in domains .\OB and
AL,
the resulting plot is shown in Figure 8.10(b). The domains, particles and particle
interactions observed in the filtered space-time plots of ¢ g are presented in Table 8.3.
The most striking feature to be observed in Table 8.3 is its similarity to the
domain, particle, and particle interaction table for rule ¢4. Indeed the number of
domains, the number of particles, and the number and types of particle interactions
are identical in the two tables. Most important of all, as in ¢,, the out-of-phase
defect SS is unstable in rule ¢g, and the defect spontaneously gives rise to the D

domain along with the particles v and 3. This allows two adjacent out-of-phase
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| Domains |
S alternates between 0000" and 1117, i.e. | D alternates between (0001)* and (0011)¥. i.e.
0000F = ®(1117%), (0001)* = $((0011)™),
111+ = ${0000") (0011)* = $((0001)™)
I Particles 1l
Symbol | Domain Temporal Spatial Velocity
Boundary | Periodicity | Displacement
a SS - - 0
J DS 2 2 1
g SD 4 0 0
) DS 2 -6 -3
U SD 2 6 3
v DD g 0 0
i Particle Interactions 1l
Decay a—v+ 3
Annihilative | v+ = 0 u+3—-9
Reactive J+~v-ov. ifdmod4=3 |v+d—>3 p+v—-
Reversible J+v—od+p fdmodid#3 | u+d—o~v+3

Table 8.3: The domains, particles. and particle interactions that dominate the
spatio-temporal behavior of og. The reactions between particles 3 and v depend
on the relative distance d between them, where 0 < d < 2r.

synchronous domains to compete for space in the lattice with D acting as the me-
diating domain. Because the velocity difference between ~ and 3 is less in ¢og than
that in ¢,. the former takes more time to reach global synchrony. However. for
most random initial configurations. the time required to reach synchrony is much
less than M = 2.V, where M is the maximum number of time steps for which the
CA is allowed to operate, and .V is the lattice size. Thus the performance of ¢p is
not affected and it remains at 100%. In short. the strategy used by ¢p to perform

the synchronization task is very similar to the strategy used by ¢,.

8.4 Analysis of ¢

The space-time diagram from another high-performance rule, ¢¢, is shown in
Figure 8.12(a). Like ¢4 and ¢, ¢¢ also has 100% performance for the synchroniza-
tion task. Analysis shows that two different regular domains dominate its space-time

behavior. One of the domains, denoted here as A (and also as S), is the familiar

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Time
bows
[

]

e
et

e
v
o
o4
Q’{l

149 149

a b
Figure 8.12: (a) Space-time diagram of o¢ starting with a rar(ldz)m initial condition.
(b) The same space-time diagram after filtering with the transducer T¢ which maps
all domains to white and all defects to black. Greek letters label particles described
in the text.

svnchronous domain S described in the previous sections. The second domain. de-
noted here as \} (and also as D), has a temporal periodicity of two and a spatial
periodicity of four. .\l consists of two languages (0001)* and (0011)*. such that
®((1110)*) = (1100)* and ®((1100)7) = (1110)*. The configurations in .\} how-
ever. have a spatial and temporal periodicity of four. Since both domains satisfy
the temporal invariance and spatial homogeneity conditions, they are indeed regular
domains.

Figure 8.13 shows the spatial transducer T¢. which accepts words in domains
A% and AL. It should be noted that T¢ is the mirror image of the transducer Ty
used in the previous section. Essentially, each input symbol in Tg has been flipped
(i.e.,a0toal,and al toa 0) tocreate T¢. This is the case because the languages
in the two domains in ¢ and in ¢¢ are Boolean complements of each other.

Figure 8.12(b) gives the space-time plot after T¢ has been applied to the space-
time diagram in Figure 8.12(a). The domains, particles, and particle interactions

observed in the filtered space-time plot of ¢¢ are presented in Table 8.4.
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Figure 8.13: The spatial transducer T¢, which accepts words in domains .\ and
A

An analysis of the particle logic implemented in ¢¢ makes it clear that although
oc uses a different domain, and even though the particle velocities are different, the
basic strategy is very similar to the particle logic used by ¢4 and ¢g. As in @4, the
out-of-phase defect SS spontaneously decays to v and 3 which then interact with
each other to create a set of particle interactions that result in global synchrony.

As in the density classification task, the GA discovered a variety of rules ex-
hibiting high-performance for the synchronization task. Although the look-up tables

for the high-performance CAs are very different from each other, and in spite of the
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il Domains B
S alternates between 000+ and 1111+, i.e. | [) alternates between (1110)* and (1100)7, i.e.
000+ = ®(1111%). (1110)* = &((1100)%),

1111* = $(000*) _ (1100)* = &((1110)*)

“ Particles l
Symbol | Domain Temporal Spatial Velocity
Boundary | Periodicity | Displacement
a SS - - 0
J DS 2 0 0
v SD 4 -4 -1
3 (9) DS 6 -12 -2
U SD 2 4 2
v DD 2 4 ] 2
L Particle Interactions |
Decay a—->v+3
Annihilative | v +d — @ vy+d—=0 u+3—-0
Reactive 34y ime=0G sy KR aby SN [P PPN LT ol R
S+ s uvr | uro v+ 3 p+o—ov+3
v+3d-3

Table 8.4: The domains, particles, and particle interactions that dominate the
spatio-temporal behavior of oc. The reactions between particles J and + depend
on the relative distance d between them. where 0 < d < 2r.

visually distinct patterns produced by the CAs. this chapter has shown that the
embedded particle logic in these distinct rules are very similar to each other. The
analysis is based on the computational mechanics framework. which facilitates the
discovery and the quantification of the particle dynamics that lead to global syn-

chronization in the system.
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Chapter 9

CONCLUSION

This dissertation addressed two different but related issues regarding emergent
computation in distributed multicomponent systems. Natural evolution has pro-
duced many systems which are composed of relatively simple components limited to
local interactions. Yet. these systems display the capacity for globally coordinated
information processing. Using CAs as abstract models of the class of such systems.
we wanted to understand how information processing is embedded in the dynamical
behavior of the systems. The goal was to discover, detect. and then quantify the
underlying computational structures present in the system’s spatio-temporal behav-
ior. With this aim in mind. this research focused on how an evolutionary process
interacts with a decentralized multicomponent system to produce emergent compu-
tation. Using a GA as an abstract computational model of an evolutionary process.
we evolved CAs to perform two different computational tasks both of which required
some form of global coordination. Since each CA consists of a number of potentially
independent processors. the survival of a CA depended crucially on the amount of
global coordination these processors were able to achieve. The emphasis in our work
was to understand the mechanisms through which evolution may take advantage of
a system’s inherent dynamics to give rise to globally coordinated information pro-
cessing. In other words, we wanted to study the evolutionary mechanisms that lead
to the discovery and subsequent adaptation of the computational structures in the
CAs.

Our results show that the GA is able to find CAs that have high-performance

for the computational tasks. More importantly, analysis using the computational
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mechanics framework helped to discover and analyze the basic elements of compu-
tation embedded in the spatio-temporal behavior of the CAs that lead to improved
performance. These elementary computational structures—namely, the domains
and the particles—facilitated the emergent computation in the CAs. Our results
clearly demonstrate that in all the high-performance CAs, the long-range informa-
tion transmission that lead to global coordination was made possible by the un-
derlying domains and particles in the CA’s spatio-temporal behavior. Moreover,
the results presented here indicate that as an evolutionary process the GA is not
only able to discover particle-based computation in CAs, but it is also capable in
manipulating the discovered computational structures to eventually find CAs with
even better performance.

After having presented our findings in the preceding chapters. in this concluding
note we return to some of the above issues in an attempt to present a context for

the results obtained in this research and to outline the agenda for future research.

9.1 Understanding Information Processing in
Spatially Extended Systems

Most of the analysis of CA behavior presented in this dissertation is based on the
computational framework developed by Crutchfield and Hanson. This framework
uses regular language and their associated finite automata as the mathematical un-
derpinning to analyze the spatio-temporal behavior of CAs. The important notion of
a regular domain is developed to characterize computationally homogeneous space-
time regions. Other computational structures such as domain-boundaries, walls, or
particles are defined as points where the domain pattern breaks down. Such parti-
cles can carry information over large space-time distances and the interaction among
two or more particles may result in zero or more new particles. Logical operations
on the information being carried by the particles occurs when they interact. The

result of the logical operation is encoded in the state of the new particle (if any)
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that is produced by interacting particles. Thus, the domains, particles, and particle
interactions are the key elements facilitating long-range information processing in a
CA.

The preceding chapters have provided a detailed particle-level analysis of the
high-performance CAs. The analysis not only delineated why the CAs exhibit su-
perior performance in their respective tasks, but it also helped in comparing the
particle-level “strategies” in different CAs. Our research indicates that. for a given
task. all the high-performance CAs discovered by the GA emploved similar strate-
gies in their particle dynamics. despite the dissimilarities present in the entries of
their look-up table, and the spatio-temporal details of their domains and particles.
Without the aid of the computational mechanics framework. this fact would not
have been discovered.

The notion of using particle-like structures to perform computation in a CA is
not new. However. our result—a G A discovers particle-based in CAs—does highlight
several salient and unique features in this regard. First. rather than designing a CA
and its associated particles by hand, we use the GA as an automatic discovery
mechanism to design CAs. Note that the GA has information only on what is to
be designed. rather than information on how to design the high-performance CAs.
This is a fundamentally different and new approach when compared to past efforts
which were intrinsically laborious and time-consuming. Second, in using particle-
like entities to perform computation most efforts up to now have designed particles
as a coherent set of non-quiescent states moving against a homogeneous background
of quiescent states. As indicated in Chapter 2, only a restricted set of CAs can have
quiescent states. Thus, by choosing to focus on this restricted set, it is possible
that simpler and more efficient ways of performing particle-based in CAs with no
quiescent states are being ignored. In our work, the particles are defined at domain
boundaries, where the domain themselves may contain non-quiescent and periodic

states. Since the “density” of sites with non-quiescent is higher in such CAs, one of
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the interesting consequences is that these CAs may exhibit a much greater “density
of computation” in its spatio-temporal behavior. Also, under similar circumstances
(i.e.. in the neighborhood size and in the number of states per site), CAs with
no quiescent states may display more sophisticated computation in their particle-
level dynamics than CAs with quiescent states. Since we have not imposed such
restrictions on the CAs that are evolved by a GA. our approach has the potential
to discover new and more efficient CA-solutions to the previously studied problems.

The analysis of information processing in CAs presented in this work is a prelim-
inary step in understanding the behavior of more complicated natural and artificial
svstems. Extensions of this tyvpe of analysis are possible along several directions.
One direction. which is being currently investigated, is the application of the compu-
tational mechanics framework to study the behavior of spatially-extended systems
in more than one dimension. Many of the tools in the computational mechanics
framework used to analvze one-dimensional CAs can be directly applied to study
the behavior of two-dimensional CAs. Naturally, the dyvnamics of domains and
particles in such systems can be expected to be much richer. For example. in a
two-dimensional CA a domain-boundary can be associated with fundamentally new
properties. such as the curvature of the boundary. These properties in turn can
influence and enrich the particle-dvnamics.

Research is also being done on stochastic spatially-extended systems. For ex-
ample, consider one-dimensional probabilistic CAs with two states per site, where
each entry in the look-up table defines the probability of obtaining the output bit
of 1. One question that immediately arises is: Are domains and particles observed
in such CAs? Interestingly, the answer is indeed yes, although new phenomena such
as domain boundaries exhibiting stochastic dynamics may be observed. A similar
setup also makes it feasible to study deterministic systems under the presence of
small noise, i.e., systems where random error in rule update occurs at each site in

the lattice with a small probability. This in turn raises the question: How robust
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are the domains and particles in the presence of noise? When noise is added. is a
CA still able to perform the computation for which it was designed? Further ex-
periments in this work has shown that for each of the two computational tasks. the
high-performance CAs are robust enough to maintain their final configuration(s) in
the presence of small noise (=~ 2% error rate) for a time-period that is much larger
than .V, the lattice size. Indeed. the high-performance CAs for the svnchronization
task can achieve global coordination even for nonzero error rate. In contrast, the
performance of the highly-fit CAs for the density classification task degrade rapidly
with increasing noise. Such phenomena are also being currently investigated.
Finally, another avenue of future research is to extend the computational me-
chanics to study continuous dynamical systems. As a preliminary step in this direc-
tion, work is in progress to apply computational mechanics to coupled map lattices
(CML). Although CMLs use discrete-space and discrete-time representation, the
variable associated with each site is real-valued. However. a symbol sequence can
be generated from the spatial configuration in a CML by using a generating partition
to discretize the value associated with each site. The resulting symbolic dynamics
can be analyzed using the computational mechanics framework described in this

work.
9.2 Evolution of Emergent Computation

The work presented here describes the use of a GA as an evolutionary process
for optimization. This may raise some questions regarding the effectiveness of an
evolutionary process in searching for optimality in phenotypic traits. However, there
is growing evidence that adaptation via natural evolution may result in precise
condition of an individual’s phenotypes that lead to optimality. In particular, it has
been quantitatively demonstrated that evolution can be reach optimality by tuning
precisely and continuously one or more phenotypic traits. Qur experiments show

that the GA is able to adapt the phenotypic traits to obtain CAs that can perform a
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given computational task. These results open up the possibility for using GAs as an
automatic discovery tool to design other spatially-distributed parallel computers.
Success in designing such computers can have significance in the field of parallel
computation.

Our interest in GAs is not limited to its application as an optimization tech-
nique. but also in its use as a computational model for biological evolution. In
particular. we are interested in understanding how a GA succeeds in discovering
high-performance CAs. As an important step in this direction. it is necessary to
explain some of the characteristic features observed in the GA's behavior when it is
used to evolve CAs.

The genetic operators in a GA act on the chromosomes encoding the phenotypic
characteristics of the CAs. As observed in nature. our experiments show that of the
multitude of gene mutations and recombinations that occur in a population in each
generation. many are so minor as to be neutral in their effect on the corresponding
phenotypic traits. Thus. such genotypic changes neither favor nor disfavor survival
of an individual. The vast majority of genetic changes whose effects are significant
enough to be readily detected are also harmful. Such changes are quickly removed
from the population by natural selection. In contrast, when a new mutant or a novel
recombination of preexisting sets of alleles happen to confer higher than average
fitness to a chromosome, the new alleles tend to spread throughout the population
in subsequent generations. In time. most of the chromosomes in the population
contain these alleles, and they become the genetic norm.

This raises the question: Which alleles are responsible for superior performance
in CAs? As our computational mechanics analysis has shown, high-performance in
a CA can be traced back to the domains, particles and particle interactions observed
in the CA’s spatio-temporal behavior. Thus, a key step is to determine which alleles

are responsible for the occurrence of these computational structures. Only then we

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



164

can begin to understand the dynamics in a GA that leads to the discovery of these
alleles.

Our analysis of the genotype in CAs shows that ~“constellations” of bits (or sets
of “coadapted” alleles) in the chromosome are responsible for the stability and oc-
currence of the domains and particles observed in a CA’s spatio-temporal behavior.
For a given computational structure. a small change in its alleles sometimes results
in only a minor change in the computational characteristics associated with that
structure. However. in many cases even the smallest genotypic change in the con-
stellation of bits results in a fundamental modification of the structure and produces
a “new” structure with entirely different computational properties. Finally, in some
situations, the mutation of single bit causes the structure to become unstable, and
completely cease to appear in the CA’s spatio-temporal behavior.

Each computational structure imposes a certain set of constraints on the al-
lele values in the chromosome. To “implement” a set of computational structures,
a number of such constraints on the allele values in the chromosome have to be
satisfied. However, this may result in conflicts when two different structures try
to enforce different allele values at the same locus. Viewed from another angle.
this means that the presence of a given structure might guarantee the simultane-
ous existence or non-existence of another structure in the CA’s behavior. This has
important consequences in evolution. If a GA happens to discover a computational
structure that confers high-fitness in CAs. the alleles responsible for the existence
of the structure may become the genetic norm. and prohibit the presence of other
potential structures in the future. In other words, the discovery may restrict the
range and direction of potential evolutionary pathways.

This observed phenomena in our work bears similarity with the school of
thought that seeks to determine the “principles of organization” in evolution

[Goo92, FB94, HW93]. It claims that potential evolutionary pathways for a given
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phenotypic trait is fundamentally constrained by the genetic and structural con-
straints present in the organism itself. There are two schools of thought on how
evolution discovers new phenotypic traits. Neo-Darwinists maintain that selection
in the presence of genetic variation is sufficient to create new structures by gradually
modifyving the existing ones [Boc95]. On the other hand. the theory of punctuated
equilibrium proposes that evolution is episodic, with periods of stasis and sudden
burst of evolutionary activity. The theory emphasizes the role of happenstance in
evolution [GE93].

In our model. we observe different evolutionary phenomena that also bears
analogy with these different schools of thought. In most runs, the best and average
performance in the population displays episodic behavior. There may exist long
periods of stasis when no improvement is observed in the performance of the CAs
in the population. During such periods. evolution of the population is mainly influ-
enced by random drifts in the gene pool. When a constellation of high-fitness alleles
is discovered, the entire population undergoes a major change with the discovered
alleles becoming the new genetic norm. On other occasions, our GA exhibits gradual
improvement in the performance of the CA’s in the population. In such situations,
the GA is able to incrementally modify the computational structures that result in
incremental improvement in performance. The modifications in the computational
structures are preceded by appropriate changes in the corresponding alleles which
are in turn brought about by the genetic operators.

In this work, we have used the experimental setup of a “GA evolves CAs” to
study how evolution can give rise to collective behavior in a distributed multicom-
ponent system. How does such a research endeavor relate to the study of collective
behavior in the biological world? A study of the literature from topics including
evolutionary biology, molecular genetics, insect sociology, and bacterial pattern for-
mation, shows that many of the issues discussed in this work are of fundamental

importance in these fields. In many situations, the framework of a GA evolves CA
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(or its variations) may be well suited as abstract models to study the biological
phenomena of interest. For example, in trving to explain collective behavior in
ants. Wilson first notes that a small change in the behavioral characteristic of the
individual insects in a colony can radically alter the behavior of the entire colony
[HW93]. Such hypotheses invite analogy with CAs. Wilson goes on to propose a
series of hypothesis regarding how such collective behavior might have appeared

through evolution. These hypothesis are paraphrased below:

a the individual insect being unaware of the most of what is going on in the colony
to which it belongs. responds in an ad hoc manner to stimuli it encounters

moment to moment in its immediate environment:

b the responses and the probabilities of their occurrences are programmed geneti-

cally so that the mass behavior of a colony is efficient:

c the program is repeatedly altered in the course of evolution to produce individual
behavioral patterns that are efficient in meeting the demands of the environ-

ment in which the species exists.

Wilson suggests that the reconstruction of colony behavior from a knowledge of
the behavior of a single colony member is the central problem of insect sociology.
Due to the long evolutionary time scale involved, many of the above hypotheses are
difficult. if not impossible to study and verify in practice. Our suggestion here is
that abtract computational models—such as the one studied here—may provide a

suitable vehicle to study issues related collective phenomena in the biological world.
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Appendix A

PROOF REGARDING THE DENSITY CLASSIFICATION
TASK

Conjecture:

No two-state. finite-radius CA can perform the density classification task T,
perfectly for periodic lattices of all (odd) sizes .V bevond some minimum value .V,.

The task T, is defined over a lattice of size .V where the value of .V is odd.
When the radius of a CA. r. is approximately equal to .V. information about the
state of the global configuration of the system can be stored in the neighborhood
configurations of a CA. Such CAs can solve the T, task. albeit trivially. On the
other hand. for r <« .V, only a verv limited amount of information regarding the
entire system's state is accessible from each cell. This proof focuses exclusively on
the more challenging latter constraint.

In the following proof, p. is assumed to be 1/2. Nevertheless. the generalization

to other values with 0.0 < p. < 1.0 is simple and straightforward !.

Proof by contradiction:
Suppose there exists a perfect CA rule ¢” of radius r, which correctly classifies
all configurations of length .V > .V, > 2r + 1, according to their initial density to 1V

or 0¥. To guarantee the existence of the two fixed points 1V and 0V, ¢ must satisfy

'A number of researchers including Cris Moore, Mats Nordahl, Jonathan Amsterdam (all
through personal communications) and Land & Belew [LB95} have proven this conjecture. While
these proofs are distinct in their details, they all make use of CA’s finite speed of information
propagation to construct configurations that cannot be classified correctly. The proof presented
here chooses the same overall approach.
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the following two conditions in its look-up table: ¢?(0**!) = 0 and ¢?(1**!) = 1.
As discussed in Chapter 3. ¢” also has to meet the following constraints on its global

equation of motion & (for all strings s of length NV > V,):

If p(s) < then p(®;(s)) < = Vie {0.1.....x} (A.1)

If p(s) > =, then p(P;(s))>= Vie{0.1..... <} (A.2)

B | D =
.
N~ D) —

To prove the conjecture, it is sufficient to construct an IC denoted s which the
perfect rule cannot classify correctly and in the process violates Equation A.l or
Equation A.2.

First a new term v(s) is introduced, which refers to the difference between the
number of s and the number of Os in configuration s. It should be remembered that
in any configuration s. when a single 0 is replaced by a 1, then v(s) is incremented
by two.

Now consider an IC s® on a periodic lattice of length [ with p(s®) > 1/2 and
[ > N, > 2r + 1, such that p(®(s*)) > p(s®). As a result v(P(s?)) — v(s?) > 2.

Next consider another IC s® on a periodic lattice of length ml consisting of
m copies of s* concatenated together. where m is a positive integer > 2r + 1.
Obviously, v(s?) = my(s?). and because the boundary conditions for each copy of
s® remain unaffected, v(®(s?)) = muv(®(s®)). Since v(P(s?)) — v(s*) > 2. we find
v(®(sb)) — v(sb) > 2m.

Finally another IC s¢ is created by concatenating s to s, where s is a block
of Os such that s? has exactly one more 0 than 1, that is, v(s?) = —1 and p(s%) <
1/2. For v(s?) = —1, we need s¢ to be a block of 0s of length v(s®) + 1 (that is,
v(s€) = —(v(s®) + 1)). It should be noted here that s¢ has a length > 2r + 1 since
v(s®)+1 = mv(s®)+1. The new configuration s? has a length equal to m{+v(s®)+1.

Given this configuration s? with v(s?) = —1, the main aim is to determine
a lower bound on v(®(s%)) and to compare it with v(s?). As s? consists of two

substrings s® and s, the analysis can be made simpler by first considering how the
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giobal map operates separately on each of the substrings and then making appropri-
ate adjustments for the interactions between the two substrings at their boundaries:

that is.
v(P(s?)) = v(P(s®)) + v(P(s°)) + interactions at the substring boundaries

[gnoring the effects of the interactions between the two substrings it is apparent
that v(®(s)) = v(s°) = —(v(s®) + 1) since (0" *!) = 0.

Given that each site in a radius r CA has information of only r adjacent sites
on each side. in a single time step only the r contiguous sites at the extremity
of a substring can be influenced by an adjacent substring. Consequently. at each
extremity of a substring, the number of Os (or 1s) can increase or decrease at most by
an amount r. Since two adjacent substrings can reciprocally influence one another.
the net change in the number of Os (or 1s) in both the substrings at a single boundary
is therefore 2r. Both substrings s® and s¢ are of length > 2r + 1 and in a periodic
lattice they meet at two boundaries. As the distance between the two boundaries
is more than 2r + 1. in a single time step the interactions at one boundary cannot
influence the dynamics at the other boundary. Thus the net gain in the number
of Os (or 1s) due to interactions between the two substrings is at most 4r, with a
change in v(®(s?)) by as much as 8r. However, in this situation, we want a lower
bound for v(®(s?)). and so we are only interested in bits that flip from 1 to 0 at
the two boundaries. Since at most 2r of the 4r bits at the two boundaries are 1s.
then v(®(s?%)) cannot decrease by more than 4r due to the interactions between the
substring boundaries. (However, it is possible that v(®(s?)) could increase by more
than 4r.)

From the above discussion, a lower bound for v(®(s?)) can be determined.
v(®(s?)) = v(®(s®)) + v(P(s°)) + interactions at the substring boundaries

> u(®(s?)) — (u(s?) + 1) — 4r
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> (L(®(s?)) — v(s®)) = 1 —4r
>2m — (4r + 1)

Since m > 2r + 1. we find v(®(s%)) > 1. and consequently p(®(s?)) > 1/2. But
this is a violation of Equation A.l, contradicting the assumption of a perfect rule.

Since the task T,, is symmetric with respect to Os and 1s. a similar line of
argument proving the nonexistence of a perfect rule can be proposed with p(®(s%)) <
p(s*) < 1/2 and with s consisting of a block of 1s.

What is the minimum lattice size on which this proof is valid? As indicated
earlier. the length of the configuration s is .V = ml + v(s?) + 1 = ml + mu(s®) + 1.
We already know that both m and [ are > 2r + 1. The minimum value of v(s®) for
which this proof holds is 1. Substituting these values. we find that ¥V = (2r +1)* +
(2r + 1) + 1 = 4r®> + 6r + 3. Clearly. this is an upper bound on the smallest possible
lattice size. In the case of a CA rule where there exists a configuration s® of length
2r + 1 such that v(P(s*)) — v(s?) is strictly greater than 2. a smaller value of m can
be chosen to achieve v(®(s?)) > 1. and thus to obtain a smaller lattice size which
is sufficient to satisfy the proof.

As an example of this proof, let r = 1./ = 2r+1 = 3, and s® = 101. The latter
must be transformed by a perfect rule such that ®(s®) = 111. Here v(®(s?)) —
v(s®) = 2. Using the smallest value of m = 2r + 1 = 3 necessary to satisfy the
proof. 3 copies of s® are concatenated together to form s® = 101101101. Obviously,
v(s?) = 3and ®(s®) = 111111111 with v(®(s®)) = 9. Now s€ is created to consist of a
block of four 0s (v(s?) +1 = 4) resulting in s¢ = 1011011010000 with v(s%) = —1 and
p(s?) < 1/2. Note that the length of s? = 4r*> + 6r + 3 = 13. Under the global map
operator ®, the minimum number of 1s in ®(s%) is 7 with ®(s%) = 0111111100000.
Thus v(®(s?)) = 1 and p(s?) > 1/2, and the operation of the assumed perfect CA
violates Equation A.1.

For other values of p., we can choose s° (i.e. a block of 0s) of appropriate length

and then employ an identical line of argument delineated above to prove that the
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density classification task T, . for 0 < p. < 1 cannot be performed perfectly by any

two-state, finite-radius CA on a periodic lattice.
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