
The Role of Prototype Learning in Hierarchical

Models of Vision

Michael D. Thomure

December 2, 2013

1

ABSTRACT: I conduct a study of learning in HMAX-like models, which are

hierarchical models of visual processing in biological vision systems. Such models

compute a new representation for an image based on the similarity of image

sub-parts to a number of specific patterns, called prototypes. Despite being a

central piece of the overall model, the issue of choosing the best prototypes for

a given task is still an open problem. I study this problem, and consider the

best way to increase task performance while decreasing the computational costs

of the model. This work broadens our understanding of HMAX and related

hierarchical models as tools for theoretical neuroscience, while simultaneously

increasing the utility of such models as applied computer vision systems.

Contents

1 Introduction 4

2 Background & Prior Work 8

2.1 Object Recognition . 8

2.2 Alternating Multilayer Architectures 9

2.3 Prototype Learning . 14

2.4 Evaluation . 18

3 Glimpse 28

3.1 Architecture . 29

3.2 Model Parameters . 39

3.3 Comparison to Previous Models 50

4 The Role of Shape Prototypes 61

4.1 Methods . 61

4.2 Role of Invariant Representations 63

4.3 Importance of Shape . 67

4.4 Discussion . 77

5 Feature Selection 81

2

CONTENTS 3

5.1 Background . 81

5.2 Methods . 85

5.3 Results . 86

5.4 Conclusions . 89

6 Learning by Clustering 91

6.1 Background . 92

6.2 Methods . 95

6.3 Results . 96

6.4 Conclusions . 102

7 Clustering with Feedback 105

7.1 Background . 105

7.2 Weighted Clustering . 106

7.3 Methods . 113

7.4 Results . 114

7.5 Conclusions . 119

8 Conclusions 120

9 Future Work 123

Chapter 1

Introduction

Hierarchical models of vision have been suggested repeatedly in the computa-

tional neuroscience literature to describe the functional organization of visual

processing in biological systems. One of the best known of these models is

the HMAX system [1, 2], which has garnered interest both in neuroscience and

computer vision communities. This model can be understood as addressing the

object recognition problem, in which the system takes an image and responds

with the type of object present in that image. As an example of this problem,

an object recognition system may be presented with images of animals, and its

task is then to determine the type of animal present in each image. Models such

as HMAX tackle this problem by first computing a number of abstract features

for the image, and then applying methods from statistical machine learning to

choose the object class that best matches those features.

To compute features for an image, such systems apply a hierarchy of local

pattern detectors at various locations and scales across the image. At the bot-

tom of the hierarchy, each detector looks for a simple oriented edge, while at

higher levels, a given detector looks for a specific pattern—or prototype—in the

4

CHAPTER 1. INTRODUCTION 5

activation of lower-level detectors. The maximum activation for each of these ab-

stract detectors is then used as the value of a single feature, and the combination

of these feature values forms the new image representation. It is the top-level

feature-value representation that is used by a trained classifier to determine the

type of object present.

The choice of prototypes clearly plays an important role in the performance

of the model. However, it is unclear how to best choose these prototypes, given a

particular instance of the object recognition problem. One promising approach is

to learn a useful set of prototypes automatically by finding statistical regularities

in a set of example images. A simple example of this approach—called “imprint-

ing”—has recently resulted in the model achieving competitive (though still far

below human) performance on multiple computer vision benchmarks. This per-

formance has led to the theory [2] that prototypes composed of imprinted shape

are responsible for the model’s success. Given the simplicity of imprinting, it

seems probable that more sophisticated learning methods can achieve even better

performance on these tasks.

The thesis advanced in this dissertation is that hierarchical visual models can

be improved by learning prototypes. An investigation of this topic first requires

knowing what performance the model is able to achieve without learning, in

order to have an effective baseline when evaluating learning methods. Using this

baseline, we can then measure the effect of learning using imprinting as well as

other methods found in the literature. Finally, the benefit of using task-specific

information during learning can be measured by introducing a new method that

uses classifier feedback.

The contributions of this dissertation include the following.

CHAPTER 1. INTRODUCTION 6

• A novel framework is developed that allows the expression of a wide range

of hierarchical visual models. This framework is used to construct a new vi-

sual model called Glimpse, which achieves competitive performance (Chap-

ter 3).

• Common benchmark datasets are analyzed, and many are shown to be

uninformative for object recognition research (Section 4.2).

• The benefit of imprinting is investigated, leading to the conclusion that

imprinted shape is unnecessary to account for the model’s success (Section

4.3). An alternative representation for object recognition based on random

prototypes is introduced.

• A study is conducted on the use of feedback in prototype learning, where

results show a significant increase in performance (Chapter 5).

• A more sophisticated learning technique—one that is commonly used in

similar visual models—is also investigated (Chapter 6), with the discovery

of important limitations.

• A new feedback-driven learning method is introduced in (Chapter 7), which

is computationally efficient. The method is flexible enough to accept many

forms of feedback information.

The rest of the dissertation is organized as follows. Chapter 2 provides back-

ground on the family of HMAX-like models used in this work, and discusses how

they have been used in the literature. Chapter 3 introduces an HMAX-like model

called Glimpse, which I developed for this dissertation. Chapter 4 provides an

analysis of prototype learning, and discusses the role of shape in such prototypes.

CHAPTER 1. INTRODUCTION 7

Chapter 5 investigates a method known as feature selection, and shows how task

information can be used to increase model performance. Chapter 6 analyzes an

existing approach for prototype learning by using a machine learning method

called clustering. Chapter 7 introduces a novel extension to clustering that al-

lows task information to be used when learning prototypes. Finally, I present

my conclusions in Chapter 8, and discuss future work in Chapter 9.

Chapter 2

Background & Prior Work

This chapter provides context for the dissertation, and begins by outlining the

problem domain in Section 2.1. Section 2.2 describes the family of hierarchical

models used in the dissertation. Section 2.3 explains how an important compo-

nent of these models, called prototypes, are learned from image data. Finally,

Section 2.4 describes the methodology that is commonly used to evaluate such

models.

2.1 Object Recognition

This work considers the task of visual object recognition. Given a previously

unseen image containing an unlabeled object, the task of object recognition is to

predict what that object is. This is a difficult prediction task, as the appearance

of an object can change greatly due to lighting conditions and the relationship

between object and observer. Often the goal of object recognition is to recognize

an entire class of objects, rather than to identify a single instance. Inherent

differences between the instances of the same class make the task even more

8

CHAPTER 2. BACKGROUND & PRIOR WORK 9

difficult. Consequently, a successful object recognition system must be robust to

such changes, a property that is called invariance. Of course, the system must

not be too inclusive, or it risks “recognizing” the same object in every image.

This property of being appropriately inclusive is called selectivity.

Advances in object recognition would dramatically affect how devices interact

with their environment, and allow us to interact with those devices in a more

natural way. Such advances could enable applications such as visual search,

gesture-based interfaces, and robotic navigation, while impacting areas such as

national security, transportation, consumer electronics, and medicine. Along the

way, advances in object recognition could easily impact our understanding of the

neuroscience of vision.

2.2 Alternating Multilayer Architectures

The focus of this dissertation is a family of object recognition systems that I call

alternating multilayer architectures, which were popularized by the Neocognitron

[3] and HMAX models [2, 1]. These systems employ artificial neural networks

in a manner inspired by biological vision systems. The network is organized

hierarchically into discrete layers, where the activity of one layer is used as

input to the layer above.

A diagram of the architecture is shown in Figure 2.1. The image is processed

by a layer of S1 units, which detect edges of different orientation and scale.

The result is processed by a layer of C1 units, which provide some tolerance to

changes in the scale or location of those edges. The names S1 and C1 refer to

the so-called simple and complex cells in the brain, as discovered by Hubel &

Wiesel [4].

CHAPTER 2. BACKGROUND & PRIOR WORK 10

Figure 2.1: Diagram of the alternating multilayer architecture. An image is first
processed by units in the S1 layer, each of which is selective for an edge at a
particular orientation and scale. The result is processed by units in the C1 layer,
which provide local invariance by pooling over a small neighborhood of S1 units.
Units in the S2 layer are then applied, which become active when the input
matches a stored shape template called a prototype. The result is passed to the
C2 layer, in which units pool over the all S2 units for a given prototype. Activity
of the C2 units is passed to a classifier, which predicts the class of object in the
image (e.g., “dog”).

CHAPTER 2. BACKGROUND & PRIOR WORK 11

Activity of the C1 layer is processed by a layer of S2 units, which detect

the presence of shape templates called prototypes. The system is connected

hierarchically, with activity for multiple edge orientations fed into each S2 unit.

The result is processed by a layer of C2 units, which provide tolerance to large

changes in the size and location of objects. This alternation between S-units

and C-units is argued to allow the model to balance the conflicting needs of

selectivity and invariance [2]. Finally, the activity of the C2 layer is input to a

classifier, which predicts the class of the object.

In short, the system uses a hierarchy to compute a new representation of

the image, from which an object can be identified more easily than from raw

pixel values. Critically, this representation is invariant to certain changes to the

object’s appearance, such as those caused by certain translations, rotations, and

scalings.

2.2.1 S1 Layer

An S1 unit takes a neighborhood of image pixels as input, and responds to an

edge at a particular orientation and scale. The unit becomes active if the given

edge occurs at that location in the image. A battery of S1 units—corresponding

to a range of edge orientations and scales—is applied at each location in the

image. The same battery is replicated for each location, and the resulting activity

defines a set of “edge maps”. Note that the parameters of the edge detectors are

constants that are specified as part of the model.

CHAPTER 2. BACKGROUND & PRIOR WORK 12

2.2.2 C1 Layer

The input to a C1 unit consists of a small region of S1 activity defined by a

neighborhood of locations and scales. A C1 unit’s activation is equal to its

most active input. Thus, the C1 layer is intended to provide a small degree of

tolerance to changes in the position and scale of the edges detected at S1.

2.2.3 S2 Layer

An S2 unit takes a neighborhood of C1 activity as input, and compares it to

a stored shape template called a prototype. The activity of the S2 unit reflects

the degree of match between the input and the prototype. There is a battery of

S2 units applied at each location, where each unit is associated with a different

prototype. This battery is replicated across all locations and scales at C1. Thus,

the S2 layer provides specificity to particular shapes. Unlike the parameters at

S1, the set of prototypes is not specified by the model. This will be discussed

further in Section 2.3.

2.2.4 C2 Layer

The input to a C2 unit consists of activity from all S2 units for a given prototype.

A C1 unit’s activation is equal to the maximum input activation. There is one

C2 unit for each prototype, and the activity of a C2 unit indicates the best match

for that prototype anywhere in the image (and at any size). Thus, C2 activity

provides an image representation that is invariant to changes in the object’s

position and scale.

CHAPTER 2. BACKGROUND & PRIOR WORK 13

2.2.5 Classifier

The input to the classifier consists of the activity for all C2 units in the network.

Each activity value is called a feature, and the vector of activities of all C2 units

is called a feature vector. Similarly, the class of object in the image is called the

label. The classifier compares the feature vector to those it has seen in the past,

and predicts a label for the image.

To perform this prediction, the classifier must have been exposed previously

to the feature vectors and known labels for a set of example images. During this

training phase, the classifier uses the examples to learn the relationship between

labels and features.

2.2.6 Related Work

Perhaps the best known example of an alternating multilayer architecture is the

HMAX model [1, 2]. HMAX was initially designed as a neuroscience tool to

account for the behavior of biological vision systems, and its parameters were

chosen to match observations from neurophysiology [5]. The model was later

shown to be useful for computer vision problems, with researchers using it to

demonstrate what was then state-of-the-art performance on common computer

vision problems [6, 7]. However, it should be noted that the model’s performance

on visual tasks is well below the capabilities of humans. The model did match

constrained human performance [2] on a so-called “speed of sight” task [8], in

which the image is shown very briefly.

The design of HMAX was influenced by the work of Fukushima on the

Neocognitron, and was itself the basis for the Sparse Localized Features (SLF)

model of Mutch & Lowe [9]. Additionally, alternating multilayer architectures

CHAPTER 2. BACKGROUND & PRIOR WORK 14

are closely related to Convolution Networks [10, 11] and other “deep” neural

networks [12, 13], which have recently generated interest in both academic and

industrial contexts. The model has been extended by a number of researchers,

increasing its performance substantially [14, 15, 16, 17, 18, 19, 20, 21, 22, 23,

24, 25]. Since its introduction, HMAX has been applied to tasks such as bio-

metric analysis [26], face and facial expression recognition [27, 28], remote sens-

ing [29], and the modeling of visual attention [30, 31, 32]. The alternating

multilayer architecture is also a common theme in the neuroscience literature

[33, 34, 35, 36, 37].

2.3 Prototype Learning

As discussed above, the choice of prototypes used by the S2 layer is not given

as part of the model. Instead, prototypes are learned from images by a process

known as imprinting. In this approach, illustrated in Figure 2.2, the model is ap-

plied to a set of example images and the C1 activity is recorded—or imprinted—

for selected image regions. These regions are selected at random, and one pro-

totype is created from each region.

The method of imprinting is argued to create a redundant “dictionary” of

discriminative shape components [38]. This is thought [2] to be central to the

model’s success, and the learning of S2 prototypes via imprinting is the pri-

mary contribution of the extended HMAX model compared to the base model

of Riesenhuber & Poggio [1]. This is explained by Serre et al. [2]:

The major extension is a new unsupervised learning stage of the units

in intermediate stages of the model. A key assumption in the new

model is that the hierarchy [...] builds a generic dictionary of shape-

CHAPTER 2. BACKGROUND & PRIOR WORK 15

tuned units which provides a rich representation for task-specific cat-

egorization [...] The resulting dictionary is generic and universal in

the sense that it can support [...] the recognition of many different

object categories. (Emphasis added.)

The prototypes in the dictionary are redundant if they encode the same shape

more than once, and are discriminative if they yield feature values that help

distinguish between different visual categories.

The performance of the HMAX model was shown to increase significantly

when manually constructed prototypes were replaced with those learned by im-

printing [39]. In practice, imprinting often leads to strong model performance

even when the prototypes are learned from unrelated images. In one case, for

example, the model successfully performed a multiclass object recognition task

using prototypes learned from randomly-chosen natural images [7]. This sup-

ports the notion that imprinting can create dictionaries that are universal.

Due to the random selection of image regions, however, there is no guarantee

that imprinted prototypes will be helpful for classification. In fact, this is often

not the case, either because prototypes are redundant or because they lead to

non-discriminative features. This is problematic for two reasons. The first is

that such prototypes can decrease the performance of the model, since many

common classifiers are sensitive to irrelevant features [40, 41]. The second rea-

son is that the addition of these prototypes dramatically increases the model’s

computational complexity, which is already quite significant.

To address these problems, some researchers [39, 31, 16, 9, 19] have success-

fully used a process known as feature selection [42] to identify and remove extra-

neous prototypes. The approach has been very effective, increasing performance

CHAPTER 2. BACKGROUND & PRIOR WORK 16

Figure 2.2: Illustration in which prototypes are constructed by imprinting for
a hypothetical animal/no-animal task. (a) Image regions (shown as red boxes)
are chosen at random, and (b) new prototypes are recorded from the model’s C1
activity. In this example, six prototypes are created from three images.

CHAPTER 2. BACKGROUND & PRIOR WORK 17

while reducing the number of prototypes by as much as 75% [16]. Unfortunately,

the computational expense of feature selection can be prohibitive, and this limits

the number of imprinted prototypes that can be evaluated. Additionally, fea-

ture selection can only return a discriminative prototype if it was found during

imprinting—that is, it can never synthesize a new prototype.

An alternative way to reduce the number of prototypes is called clustering

[43]. Here, the set of imprinted prototypes is grouped into clusters of visually

similar elements. A new prototype is created for each cluster, and only the new

prototypes are used by the model. In the most common approach [44, 39, 19], the

k-means algorithm [45] is used to create new prototypes that are the “average”

of the elements in each cluster. The techniques of feature selection and k-means

clustering will be discussed further in Chapters 6 and 7.

2.3.1 Learning of Invariance Properties

In addition to learning prototypes for S2 units, it is also possible to learn the

connectivity patterns of C-units, which encode the model’s invariance properties.

The general problem of invariance learning has been considered in a handful

of studies [46, 47, 48, 49, 50], and was applied to an HMAX-like system by

Masquelier et al. [51]. See also [52, 53] for a discussion of invariance learning in

biological systems. Note that I ignore the problem of invariance learning in this

work, and instead focus only on the learning of selectivity. Thus, I apply fixed

connectivity for C1 and C2 units.

CHAPTER 2. BACKGROUND & PRIOR WORK 18

2.4 Evaluation

The purpose of learning prototypes is to increase the accuracy of the classifier

while decreasing the number of prototypes used at (and thus the compute cost

of) the S2 layer. To evaluate a particular learning method, therefore, an obvious

approach is to compute the accuracy using sets of learned prototypes, and com-

pare that to some baseline accuracy. One baseline is the accuracy that would

be achieved by chance—that is, if the model classified each feature vector by

randomly guessing from the set of target classes. Given T target classes, the

probability of correctly guessing the class for a single feature vector is 1
T

, and

thus the accuracy due to chance for a binary classification task is 50%. Ac-

curacy that is (statistically) significantly above 50% implies that the learned

prototypes allow the classifier to form a useful decision boundary. Some stud-

ies, such as that of Serre et al. [39], compare the classifier accuracy and related

measures for learned prototypes to that of manually constructed prototypes.

In this case, the performance for manually-chosen prototypes provides a lower

bound on the performance achievable in the absence of learning. In some cases,

these manually-chosen prototypes lead to performance that would be expected

if the classifier were guessing at random [44]. The difference between the two

accuracies indicates the relative performance benefit of learning.

Note that accuracy indicates only whether prototypes led to discriminative

features. It does not, however, explain why those features were useful for clas-

sification. To better understand this, it is common to ask what a given S2 unit

is “looking for”—that is, what input pattern it responds to. Remember that

a prototype represents a configuration of C1 activity. However, the invariance

properties of the C1 layer mean that it produces the same activity for an entire

CHAPTER 2. BACKGROUND & PRIOR WORK 19

Figure 2.3: Example visualizations of prototypes taken from Serre et al. [6],
corresponding to airplanes (left), faces (middle), and motorcycles (right). Here,
an oval indicates the location and scale of an edge detector (i.e., an S1 unit),
while color indicates the contrast of those edges.

class of related images. Thus, the prototype actually represents a class of related

image patterns, which can be difficult to analyze.

Various ways to visualize a prototype have appeared in the literature. Since

S1 units specify the presence of edges, one way to visualize the input pattern

corresponding to a prototype is to show the activation of those edge detectors

[39, 6, 35]. For clarity, each S1 detector is represented by an oval, which indicates

the location and orientation of the detector’s preferred edge. Some examples of

this approach are shown in Figure 2.3. Another approach [9] applies an S2 unit

at multiple locations and scales across each image in a corpus, and records the

image locations that lead to the highest activity. This provides a collection

of image patches that match the prototype, and these patches are inspected

manually. I have also used this visualization approach in my work [54].

2.4.1 Datasets Used in This Work

The computer vision literature contains a wealth of public datasets, which pro-

vide a shared point of reference and allow the comparison of models with very

different architectures. While we do not attempt an exhaustive list, this section

provides a survey of some common object recognition datasets.

CHAPTER 2. BACKGROUND & PRIOR WORK 20

Two datasets used for research in HMAX-like visual models are the Caltech

101 corpus [55] and the tasks of Fergus et al. [56]. The Caltech 101 corpus

includes examples of 102 categories (101 foreground categories and a background

category), where each category contains between 30 and 800 examples. The tasks

of Fergus et al. provide similar examples for a set of five (four foreground and one

background) categories. These datasets have been used extensively in research,

both in HMAX-like models [38, 29, 57, 58, 59, 14, 15, 60, 9, 20, 25, 23, 19, 16, 6,

7, 61, 62] and the broader computer vision literature [63, 64, 65, 66, 67, 68]. The

related Caltech 256 corpus [69] has also been used for work on HMAX-related

models [62, 29, 61]. The Animals dataset of Serre et al. [2, 38, 70] presents an

Animal/No-Animal task, and was used to compare behavior of their HMAX

model with that of human subjects. Example images from these datasets are

shown in Figure 2.4.

A number of authors [71, 17, 72, 73] have raised concerns about corpora

based on unconstrained natural imagery of the kind described above. The first

concern is simply that the tasks have become too easy, and thus fail to differ-

entiate between models. This issue is somewhat positive, in that it reflects the

substantial progress made since these datasets became available, and is being

addressed with the introduction of significantly larger datasets. A more serious

concern is that these datasets may be too easy simply because they lack real-

world variation in the presentation of objects. If an object is always presented in

the same way, and this way is different for different objects, then the model may

end up recognizing the presentation rather than the object itself. The Caltech

101 dataset has received particularly strong criticism. For example, Pinto et

al. [17] showed that a simple model with no invariance properties could account

for the dataset’s best-reported performance.

CHAPTER 2. BACKGROUND & PRIOR WORK 21

(a) Caltech 101 (b) Caltech 256

(c) Datasets due to Fergus et al. [56]. (d) Animals

Figure 2.4: Example images from reference corpora used in this work.

CHAPTER 2. BACKGROUND & PRIOR WORK 22

To demonstrate, imagine that the goal is to build a dataset consisting of cars

and airplanes. This dataset could be composed of example images downloaded

from the internet, such as those shown in Figure 2.5a. In these images, the

object’s context is highly predictable. Airplanes are set against a blue or cloudy

sky, while cars are shown driving over asphalt. Furthermore, imagine that the

visual model is evaluated on the dataset, and it performs spectacularly. Does this

suggest that the model performs invariant object recognition? If so, it should

be able to recognize the same objects in a new context, such as those in Figure

2.5b. An airplane spends a great deal of time resting on the ground, after all,

and often appears on the same asphalt surface that composes the “car” context.

There are even instances in which a car may appear in the sky! If the dataset

does not include such examples, we have no way of knowing whether the model

is simply performing “blue sky” detection for airplanes and “road” detection for

cars.

This issue relates to what the machine learning community calls generaliza-

tion, which is the ability to solve the general problem we care about, rather than

exploiting specific regularities in the training data. Ideally, an object recognition

system should mimic the abilities of natural vision systems. Thus, the system

should generalize with respect to object presentation, which includes such at-

tributes as pose, location, illumination, and background clutter or context.

In response to these concerns, some authors have chosen to create synthetic

object recognition tasks. These tasks were designed to probe a system’s ability

to demonstrate viewpoint invariant object recognition, without using visual cues

from the surrounding environment. The dataset is constructed by rendering a 3D

object model from various points of view, and then composing the object with a

randomly-chosen image background. The difficulty of each task depends on the

CHAPTER 2. BACKGROUND & PRIOR WORK 23

(a) (b)

Figure 2.5: (a) Example images of cars and airplanes for an object recognition
task. In this hypothetical dataset, objects are strongly associated with a partic-
ular context, where airplanes appear on sky backgrounds, and cars on asphalt.
(b) Examples of an “unexpected” context for the same task.

CHAPTER 2. BACKGROUND & PRIOR WORK 24

type of background and range of viewpoints from which an object is rendered.

Pinto et al. [18, 74] provide two such datasets of rendered objects. The first

dataset contains rendered examples of cars and airplanes (Car v. Plane), and

measures category-level discrimination (Figure 2.6a). The second dataset con-

tains rendered examples of two different faces (Face1 v. Face2), and measures

subordinate-level discrimination—that is, discrimination between examples of

the same category (Figure 2.6b). The provided data is split into seven different

variation levels—levels of variation in rotation, position, and scale of the objects

of interest—and each level of variation defines a separate object-recognition task.

Additionally, a similar set of tasks was constructed by Brumby et al. [62],

which contain both rendered and natural examples of cats and dogs (Cats v.

Dogs; Figure 2.6c). These objects were composed with various backgrounds, in-

cluding uniform gray, randomly-generated 1
f

noise, and natural imagery selected

randomly from the internet.

The use of computer-generated objects could be considered a source of con-

cern, as they may present visual statistics unrepresentative of natural imagery.

A possible solution to this problem could use images of real objects in conjunc-

tion with natural image backgrounds. (In fact, this was already done as part of

the Cats v. Dogs dataset.) There exist a number of datasets containing real fore-

ground objects with variation in orientation and illumination, including ALOI

[75], ETH80 [76], NORB [77], and COIL [78]. Given pixel-wise object masks—

that is, a labeling of pixels as “foreground” or “background”—the object can be

easily extracted to create new corpora (see Figure 2.7 for an example). While

object masks are available for the ALOI and ETH80 datasets, NORB and COIL

lack this information. Unfortunately, the automatic generation of such masks is

sometimes non-trivial, as illustrated in Figure 2.8 for an example COIL object.

CHAPTER 2. BACKGROUND & PRIOR WORK 25

(a) Cars v. Planes (b) Face1 v. Face2

(c) Cats v. Dogs

Figure 2.6: Example images from synthetic corpora used in this work.

CHAPTER 2. BACKGROUND & PRIOR WORK 26

Figure 2.7: Example image from the ETH80 dataset (left) and corresponding
object mask (right), as provided with the dataset.

Figure 2.8: Example image from the COIL dataset (inner left) and the best
corresponding object mask I was able to generate using a color threshold (right).
A contrast-enhanced section of the object’s boundary is shown (far left), which
shows the presence of background artifacts.

CHAPTER 2. BACKGROUND & PRIOR WORK 27

It is worth noting that we often do care about the context in which an ob-

ject appears, including its associated background information. In fact, “scene”

recognition has become a fruitful line of research unto itself [79, 80], and has

been suggested as a mechanism with which to “prime” object detection [81, 82].

For any given experiment, however, we want to know exactly what is being mea-

sured. We want to know that a model performs well because it solves the object

recognition problem rather than relying on background artifacts and consistent

presentation. In general, we want to know why a model performs the way it

does, which drives the quest for explainable visual models [83].

Chapter 3

Glimpse

To support my research, I have created a novel system for the implementation

and application of hierarchical visual models. I call this system the General

Layer-wise IMage Processing Engine (GLIMPSE) [84]. The goal of the Glimpse

Project is to allow a broad range of feed-forward, hierarchical models to be

encoded in a high-level, declarative manner, with low-level details of the imple-

mentation hidden from view. This project combines an efficient implementation

with the ability to leverage parallel processing facilities and is designed to run

on multiple operating systems using only common, freely-available components.

Using this system, I have instantiated a particular hierarchical model that I

call the Glimpse model. The rest of the chapter discusses this model, starting

with the architecture in Section 3.1. In Section 3.2, I discuss the method used

to choose some of the more significant model parameters. Finally, Section 3.3

provides a comparison of Glimpse behavior to that of similar hierarchical models

from the literature, demonstrating that Glimpse effectively replicates the behav-

ior of well-known models from the literature.

28

CHAPTER 3. GLIMPSE 29

3.1 Architecture

The Glimpse model is an example of an alternating multilayer architecture intro-

duced in Chapter 2. It applies multiple stages with alternating layers of S- and

C-units, which provides a trade-off between selectivity (i.e., object specificity)

and invariance (i.e., stability under image transformations). It uses six layers in

total.

An image is first input to the model and is preprocessed. A layer of S1

units is then applied, which implement localized edge detectors across a range of

scales and orientations. This is followed by a layer of C1 units, which provides

a representation that is invariant to small changes in an object’s location and

scale. A layer of S2 units is then applied, which detect localized patterns of

activity often representing shapes. These patterns are given by prototypes, and

are detected at each scale independently. A layer of C2 units is applied to the

result, which pools over the entire image and over all scales. The output is

largely invariant to changes in location and scale of the target object. Finally, a

classifier is applied to a feature vector composed of C2 activity, and a prediction

is made regarding the class of object in the image. A diagram of the model is

given in Figure 3.1, which also summarizes some of the model’s more significant

parameters. Below, I provide details for each layer of the model.

3.1.1 Preprocessing Layer

In the first layer, the input image is preprocessed. The image is converted to

grayscale, and resized such that its shortest edge is 220 pixels (maintaining the

image’s aspect ratio). The result is split into a nine-band scale pyramid by

down-sampling the image at progressively higher rates (using an anti-aliasing

CHAPTER 3. GLIMPSE 30

Figure 3.1: Overview of the Glimpse model. An image is presented at the
bottom layer, and processing flows up the diagram. Layers of S-units are shown
as solid-outline boxes, and C-unit layers are shown as dashed-outline boxes. The
C2 layer generates a one-dimensional vector of features, with one feature per S2
prototype. At the top layer, those features are passed to a trained classifier,
which predicts the object class.

CHAPTER 3. GLIMPSE 31

Figure 3.2: Illustration of a scale pyramid for an example image containing a
circle. This pyramid has five scales, with a down-sampling ratio of 21/4 between
scales. Scale bands appear translucent for illustration.

filter). The ratio between neighboring scale bands is 21/4. An example scale

pyramid is shown in Figure 3.2 for an image containing a circle.

3.1.2 S1 Layer

The first stage of S-units applies localized edge detectors over each scale band

of the preprocessed image. The detectors are implemented by first computing a

normalized dot-product1 and then applying the absolute value operator. That

is, the activation of the S1 unit is given by

S1(x,d) = |(x,d)|
‖x‖ · ‖d‖ (3.1)

where d is an S1 edge detector, and x is a patch of the input image, (·, ·) denotes

the dot product, |·| denotes the absolute value operator, and ‖·‖ denotes the L2

norm of the vector. Here, vectors are denoted in lowercase bold font (x), and

matrices in uppercase bold font (X). Scalars will be denoted in lowercase (x).

Edge detectors are defined by the Gabor function, given as
1The normalized dot-product is also called the cosine similarity.

CHAPTER 3. GLIMPSE 32

(a) Sine wave (b) Gaussian (c) Gabor edge detector

Figure 3.3: A Gabor edge detector can be thought of as the combination of a
sine wave with a two-dimensional, oriented Gaussian function.

d (u, v) = exp
(
−(u2

0 + γ2v20)

2σ2

)
sin
(
φ+

2πx0

λ

)
, where (3.2)

u0 = u cos θ + v sin θ

v0 = −u sin θ + v cos θ .

Here, u and v define the horizontal and vertical offset from the center of the

detector. This defines a Gaussian window applied to a sinusoidal wave, as illus-

trated in Figure 3.3.

In this work, I use orientations θ =
(
π
8
, 3π

8
, 5π

8
, 7π

8

)
, phase φ = 0, aspect ratio

γ = 0.6, wavelength λ = w
4
, and scale σ = λ

2
, where w = 11 is the detector

size. Thus, there are four S1 detectors, corresponding to edges at four different

orientations. This is shown in Figure 3.4. When these detectors are applied to

the “circle” image used in Figure 3.2, this produces the result shown in Figure

3.5.

Note that the choice of λ and σ was made to ensure that one to two cycles

of the sinusoidal wave would be present in the resulting detector. Overall, the

CHAPTER 3. GLIMPSE 33

Figure 3.4: Visualization of the S1 detectors corresponding to edge orientations
θ =

(
π
8
, 3π

8
, 5π

8
, 7π

8

)
, given clockwise from the top-left corner.

Figure 3.5: S1 activity at one scale for an image containing a circle. Activity
is shown for all four orientations, with plots corresponding to the detectors in
Figure 3.4.

Gabor parameters were chosen to provide a good trade-off between orientation

and scale specificity, as discussed below in Section 3.2.

The behavior of the S1 activation function (Equation 3.1) has a number of

desirable properties. First, the dot product provides a measure of similarity

between the input patch and detector. Second, the normalization constraint

provides a form of contrast gain control, in that a dark edge on a light background

elicits a similar response regardless of the darkness of the edge or brightness of the

background. However, note that this causes poor behavior for very dark image

regions, since Equation 3.1 approaches infinity as the norm on the input patch

shrinks to zero. Thus, I suppress activation in low-light regions by thresholding

the input norm as

S1(x,d) = |(x,d)|
max (‖x‖ , τ)× ‖d‖ . (3.3)

CHAPTER 3. GLIMPSE 34

In my experiments, I use the threshold τ = 0.1.

Another desirable property of Equation 3.1 is its invariance to an inversion of

the image, which is provided by the absolute-value operation in the numerator.

That is, the model responds identically when each white pixel is replaced with

a black pixel and vice versa.

3.1.3 C1 Layer

The C1 layer implements local pooling over space, as well as a down-sampling in

the spatial resolution. Each C1 unit pools over a small neighborhood of S1 units

at one scale, where this neighborhood is 11x11 units in all experiments. Given

a neighborhood of S1 activation denoted by the vector x, the C1 activation is

calculated as

C1(x) = max
i

xi , (3.4)

where xi ranges over the elements of the input neighborhood. The result is then

down-sampled by some constant factor, N . Thus, C1 activity is retained at every

scale, but only for every N th location. In my experiments, the down-sampling

factor was set to N = 5, which results in each S1 unit contributing to the

activation of exactly one C1 unit. Applying this processing to the S1 activity

in Figure 3.5 results in the C1 layer shown in Figure 3.6. This has the effect of

“blurring” the S1 edge maps.

3.1.4 S2 Layer

The S2 layer detects patterns in each scale and location of C1 activity. Each S1

unit compares a local neighborhood of C1 activity to a stored pattern called a

prototype. The comparison is implemented as a radial basis function (RBF), and

CHAPTER 3. GLIMPSE 35

Figure 3.6: C1 activity at one scale for an image containing a circle. Activity is
shown for the four orientations in Figure 3.5.

is given as

S2(x,p) = exp
(
−2β ‖x − p‖2

)
(3.5)

for C1 input x, S2 prototype p, and parameter β. The S2 activity is maximal

when the input and prototype are identical, and decreases as the input diverges

from the prototype. This decrease is not linear, however, but follows a Gaussian

function with width β−1. Large values of β cause the S2 unit to be sharply

tuned, such that the input and prototype must be nearly identical for the unit

to become active. The unit becomes broadly tuned as β decreases. Note that the

input and prototype contain activity for all four orientations bands. However,

S2 prototypes are applied at each scale independently.

A prototype is constructed by imprinting the C1 data from a randomly se-

lected patch in a randomly selected training-set image, as discussed in Chapter

2. This is illustrated in Figure 3.7a. Applying the prototype to the image from

which it was imprinted results in S2 activity shown in Figure 3.7b. Notice the

high activation for the region from which the prototype was imprinted.

CHAPTER 3. GLIMPSE 36

(a) (b)

Figure 3.7: (a) Example in which a prototype is ”imprinted” from an image, with
the selected region shown in red. (b) The S2 activity resulting from applying this
prototype to the original image. Red indicates high activity, while blue indicates
low activity.

3.1.5 C2 Layer

The C2 layer applies a maximum-value pooling operation to the activity of all

S2 units for a given prototype, including all locations and scale bands. That is,

the activation of a C2 unit is given by

C2(x) = max
i

xi (3.6)

where x is the activation of all S2 units for a given prototype. Thus, the C2

layer has one unit for each S2 prototype. The activation of a unit indicates the

degree to which the corresponding prototype was matched at any location and

scale within the image.

CHAPTER 3. GLIMPSE 37

3.1.6 Classifier

As the final step in the model, a trained classifier is applied to a feature vector

that is constructed from C2 activity. The classifier analyzes the feature vector

by applying a decision function, which decides which object label to return. A

simple decision function might be

f(x) = sgn

(
m∑
i=1

xi

)
, (3.7)

where x is the feature vector composed of C2 activity, and m is the number of

features. If the sum of the features is greater than zero, then the “positive” class

is chosen by returning +1. Otherwise, the “negative” class is chosen by returning

−1. In practice, the values +1 and −1 would be associated with different object

labels, such as “dog” and “person”.

The linear decision function in Equation 3.7 is not very useful, because it

assumes that all features are associated with the positive class. What if a strong

match for one prototype indicates the presence of a “dog”, while a strong match

for another prototype indicates a “person”? To handle this case, a slightly more

complex function is needed. An example of such a function is

f(x) = sgn

(
b+

m∑
i=1

αixi

)
, (3.8)

where the feature weights αi and bias b are parameters that are chosen during

a training process. This allows, for example, a “dog” feature to be weighted

negatively, assuming that −1 indicates the “dog” class.

The training process takes a collection of labeled feature vectors called the

training set, and chooses the classifier’s parameters such that the classifier pre-

CHAPTER 3. GLIMPSE 38

dicts the correct label for as many training examples as possible. At the end of

training, the parameters are fixed, and the classifier is evaluated on a set of la-

beled examples called a test set that were not part of the training set. The errors

on this set determine the performance of the classifier, and thus the performance

of the model.

The form of the decision function and the learning method used to choose

its parameters are defined by the choice of classification algorithm. A com-

mon choice of classification algorithm in HMAX-like models is called a support

vector machine (SVM). An SVM chooses a subset of the feature vectors as ref-

erence points, called support vectors. Given a new image, the decision function

compares the feature vector to each support vector. The predicted label is the

one associated with the most similar support vectors. Specifically, the decision

function is defined as

f(x) = sgn

[
b+

∑
k

γkφ (x,vk)

]
, (3.9)

where vk denotes the kth support vector, γk denotes the importance of that

vector, and b is a bias term. The function φ (x,v) is called the kernel function,

and measures the similarity between the feature vector and the support vector.

In the simplest case, called a linear SVM, φ (x,v) is just the inner product of

the two vectors. In this case, Equation 3.9 can be rewritten as

f(x) = sgn

[
b+

∑
i

(∑
k

γkvki

)
xi

]
, (3.10)

which takes the form of Equation 3.8 with feature weights given as αi =
∑

k γkvki.

In some instances, classification is performed using logistic regression [85].

CHAPTER 3. GLIMPSE 39

This is an alternative approach2 with a decision function given by

f(x) = sgn
[

1

1 + e−(b+
∑

αixi)
− 1

2

]
, (3.11)

where i is a feature index, b is a bias term, and the expression 1/ (1 + e−t) is called

the logistic function. In some cases, the classifier is encouraged to use as few

features as possible, which is achieved by setting the remaining feature weights

αi to zero. This is called “sparse” logistic regression [86]. In my experiments,

sparse logistic regression consistently resulted in performance that was similar

to that of a linear SVM classifier, while being significantly faster to train.

It is sometimes useful to measure a feature’s “importance”, that is, the de-

gree to which it influences the classification. In the case of a linear SVM, the

importance of the ith feature has been measured [40, 87] as the value α2
i . Similar

values have been used to measure feature importance in logistic regression [41].

3.2 Model Parameters

I have performed a number of experiments to investigate the optimal parameter

settings for the Glimpse model. One significant choice is the method used to

create scale bands in the S1 layer, which is considered in Section 3.2.1. The

optimal size of the edge detector at the S1 layer is considered in Section 3.2.2,

and Section 3.2.3 considers the best way to implement normalization in the S1

activation function.
2Despite the misleading terminology, logistic regression is actually an algorithm for classi-

fication problems rather than regression.

CHAPTER 3. GLIMPSE 40

Scale 1 2 3 4
Correlation 0.95 0.89 0.83 0.81

Table 3.1: Similarity between the response maps for multiscale detectors com-
pared with that for multiscale inputs (i.e., image scaling). The similarity is
measured as the correlation coefficient for the response maps shown in Figure
1.9. The correlation coefficient takes values between zero and one, with larger
values indicating more similar maps.

3.2.1 Scaling

In a hierarchical model such as HMAX, the activity of the S1 layer indicates

the presence of edges at various locations and scales. Edges can be extracted at

different scales using (at least) two alternative approaches. First, a battery of

multiscale detectors can be applied to the original image, where each detector

responds to an edge at a different scale. Second, the image may be repeatedly

down-sampled, with a single detector scale applied to each layer of the resulting

scale pyramid. Given the correct down-sampling ratio, the two alternatives

produce equivalent results [88, 89].

To demonstrate this equivalence, I will use the ”dog walking” image shown

in Figure 3.8. This image is first processed with a set of multiscale detectors3, as

shown in Figure 3.9, with results shown in Figure 3.10. The same image is then

used to construct a scale pyramid, and only the smallest scale detector is applied

to each level. Results of this latter step are shown in Figure 3.11. Notice that the

two maps are nearly identical. Furthermore, the pixel-wise correlation between

corresponding edge maps is shown in Table 3.1, with very similar output for the

two methods. These results have been found for multiple images.

The equivalence can be seen in a more general way by investigating the
3Notice that the detectors in Figure 3.9 are much larger than we would use in practice.

This is required so that large Gabor waves fit entirely within the detector window. This is not
an issue when using a scale pyramid, because only the smallest scale detector is used.

CHAPTER 3. GLIMPSE 41

Figure 3.8: Example image used for discussion of detector scaling in Glimpse.

Figure 3.9: Multiscale edge detectors of size 41x41 pixels, as defined by Equation
3.2, were used to avoid clipping in large scale detectors. Color indicates the
detector’s preferred input, with black indicating low activity, white indicating
high activity, and gray indicating no preference.

CHAPTER 3. GLIMPSE 42

Figure 3.10: Edge maps for multiscale detectors, where the order of response
maps corresponds to that in Figure 3.9. Brightness indicates response strength,
with white indicating maximum response.

CHAPTER 3. GLIMPSE 43

Figure 3.11: Edge maps for a small scale detector applied to a scale pyramid,
formatted as in Figure 3.10. Notice that the corresponding maps are very similar
between methods.

CHAPTER 3. GLIMPSE 44

frequency response for the edge detectors used in each method. Figure 3.12

(top) shows the power spectrum of the four edge detectors shown in Figure

3.9. Figure 3.12 (bottom) shows the corresponding results for a high-scale filter

applied to different layers of a scale pyramid. The similarity of the responses

for both methods demonstrates that they are sensitive to edges in the same set

of scale bands. Thus, edge maps generated by the two methods will be nearly

identical, and this property holds regardless of the input.

The result of Glimpse’s S1 layer is a set of edge maps, each indicating the

presence of an edge at a specific orientation and scale. Ideally, the architecture

should minimize runtime costs, allowing for fast “shallow” processing of large-

scale content. That is, scale bands containing low-frequency information should

incur lower computational cost during analysis, since low frequencies have low

spatial resolution. Given the equivalence of scale pyramids to multiscale detec-

tors, I argue that a scale pyramid better supports the two design goals given

above. By scaling the image, I can choose a single detector scale that is well

adapted to the size of the detector. This ensures that the entire Gabor pattern

fits within the window (i.e., it avoids “clipping”), which greatly increases its ori-

entation specificity. Furthermore, note that computing S1 feature maps for large

scales is computationally cheaper under a scale pyramid, because the size of the

input matrix is smaller for lower frequencies. Indeed, this approach is used in

the SIFT [90] and SLF [9] models in the literature.

3.2.2 Edge Detector Size

Next, I consider the optimal size of the S1 edge detector. Since down-sampling

always increases the frequency response of the system, the ideal solution is to

CHAPTER 3. GLIMPSE 45

Figure 3.12: (top) Frequency response for multiscale detectors shown in Figure
3.9. The horizontal axis indicates frequency, and the vertical axis indicates the
degree of response. Each detector responds to a range of frequencies. (bottom)
Effective frequency response when applying a single detector to down-sampled
versions of the same image. Notice the strong similarities in the response char-
acteristics.

CHAPTER 3. GLIMPSE 46

choose the detector with the highest possible frequency—and thus the smallest

size. This has the added benefit of minimizing the system’s run-time. Note,

however, that the detector should not be too small, as aliasing will cause the

frequency response to blur for some diagonal orientations. Thus, I measure the

power spectrum of the multi-orientation detectors at different sizes4, looking for

the smallest size that maintains a sharp frequency distribution.

Figure 3.13 shows the power spectrum for edge detectors of various areas.

As the area of the detector is increased, its frequency response decreases (that

is, a larger detector matches a lower-frequency edge), and tightens to match

a smaller range of frequencies. Although only a single Gabor orientation is

shown here, results for other orientations are nearly identical. Based on the

argument given above, the optimal detector will have a high-frequency response

in a tight band, which corresponds to a tight peak near the right side of the

plot. In this case, an 11x11 pixel window is suggested. Figure 3.14 shows

the two-dimensional Fourier transform of the same set of Gabors, which shows

the frequency response of the detector for each orientation. Here, frequency is

plotted as the distance from the center of the plot, and Gabor orientation is

given by the angle from the horizontal. In these plots, the radial width of the

high power areas indicates the range of orientations to which the given detector

responds. Thus, a patch that is far from the center of the image and which has a

small radial width indicates a detector that responds to high-frequency input at

a specific orientation. These results also suggest that an edge detector of 11x11

pixels provides the best trade-off between frequency and orientation selectivity.
4The power spectrum of these small ”images” can be measured without edge artifacts,

because detector values decrease to zero at the edges by design.

CHAPTER 3. GLIMPSE 47

(a) w = 5 (b) w = 7

(c) w = 9 (d) w = 11

(e) w = 15 (f) w = 21

Figure 3.13: Frequency sensitivity for different detector widths w, summarized
by the detector’s power spectrum. The horizontal axis indicates frequency, and
the vertical axis indicates the degree of response. Here, the Gabor wavelength is
set to 1

4
the detector width. Notice that frequency sensitivity drops dramatically

for detectors smaller than 11 pixels.

CHAPTER 3. GLIMPSE 48

(a) w = 5 (b) w = 7

(c) w = 9 (d) w = 11

(e) w = 15 (f) w = 21

Figure 3.14: Frequency sensitivity for Gabor detectors of various size, shown
as the two-dimensional power spectrum. The center of each plot indicates the
detector’s responsiveness to low frequency input, and the border of the plot
indicates the same for high frequencies. The angle from the horizontal indicates
the orientation selectivity, with 0◦ meaning an input of a horizontal line.

CHAPTER 3. GLIMPSE 49

3.2.3 S1 Normalization

Finally, I consider the best way to implement normalization in the S1 activation

function (see Equation 3.1). As noted above, normalization is useful to provide

contrast gain control, meaning that the S1 unit will be somewhat invariant to a

change in the contrast of the input. For example, this allows an edge detector

to match well even in a region of low contrast. However, a direct normalization

of the input as

x′ =
x

‖x‖
(3.12)

has the undesirable property of magnifying noise in regions with extremely low

light (seeing “ghosts in the darkness”).

To avoid amplifying this noise, I bias the denominator in Equation 3.12 to

guarantee that it is bounded by some constant. In the simplest case, we can use

an additive bias of the form

x′ =
x

‖x‖+ b
. (3.13)

This is similar to the proposed ”divisive normalization” model of contrast gain

control in cortex [91, 92]. The approach ensures that regions with gain less than

b are not amplified, but fails to appropriately scale regions whose gain is larger

than b. In fact, only regions with very high contrast will be mapped to have

near-unit norm. This is illustrated in Figure 3.15a, which shows the behavior of

an additive bias for different values of b.

As an alternative, a conditional bias takes the form

x′ =
x

max (‖x‖ , b) , (3.14)

which maps all regions with gain larger than b to the surface of a spheroid with

CHAPTER 3. GLIMPSE 50

radius b (see Figure 3.15b). Only those regions lying within the sphere are

suppressed. This achieves gain control for those regions lying on, or outside, the

unit sphere, and treats those lying within the sphere as noise. This is illustrated

in Figure 3.15b, which shows that the input patches are properly normalized even

when the bias is large. Due to this behavior, I use a conditional bias (Equation

3.14) in the Glimpse model.

3.3 Comparison to Previous Models

The goal of this work is to uncover general properties of alternating multilayer

architectures. However, the use of a new model risks introducing a qualitative

shift in behavior, and thus to non-generalizable results. As a result, I performed

extensive validation to verify that the Glimpse model captures the qualitative

behavior of similar hierarchical models found in the literature.

Implementations for the HMAX and SLF models were first downloaded from

the internet [93]. I then measured the performance of all three models (Glimpse,

SLF, and HMAX) using imprinted prototypes on tasks commonly used in the

literature. The SLF model has been used in a number of studies (e.g., [18]), and

has often been shown to out-perform the HMAX model [9]. Thus, SLF provides

an additional reference point that is helpful for validating the Glimpse model.

Figure 3.16 shows a diagram of the HMAX model used in this work, with

values for some of the more important parameters. This is an approximation

of the model used by Serre et al. [6, 2]. Compared with the diagram of the

Glimpse model (Figure 3.1), there are two significant differences. First, the

HMAX S2 layer uses prototypes of six different sizes, while Glimpse uses a single

prototype size. Second, the S2 prototypes used in the HMAX implementation

CHAPTER 3. GLIMPSE 51

(a) Additive: x′ = x
‖x‖+b

(b) Conditional: x′ = x
max(‖x‖,b)

Figure 3.15: Effect of normalization on S1 activity for two different approaches.
(a) Input activity is bounded with an additive bias as x′ = x

‖x‖+b
, and the

behavior is plotted for various values of the bias b. This causes the input to be
suppressed even when its energy was initially large. (b) Input activity is bounded
with a conditional bias as x′ = x

max(‖x‖,b) . Low-energy inputs are suppressed,
while the response to high energy patches is contrast invariant.

CHAPTER 3. GLIMPSE 52

Figure 3.16: Architecture diagram for the HMAX model. The default parameter
choices—which are used in this work—are shown to the right of the diagram.

CHAPTER 3. GLIMPSE 53

Figure 3.17: Architecture diagram for the SLF model. The default parameter
choices—which are used in this work—are shown to the right of the diagram.

CHAPTER 3. GLIMPSE 54

are “normalized”, meaning that the total activation within each prototype is

scaled to have unit (L2) norm5.

Similarly, Figure 3.17 shows a diagram of the SLF model used in this work.

Differences between Glimpse and SLF are three-fold. First, note the use of

“lateral inhibition” at the C1 layer, which means that C1 units at a given lo-

cation compete. As a result, less active units have their output suppressed—or

inhibited—by more active units. Second, the S2 layer in the SLF model uses

“sparse prototypes”, which means that an imprinted prototype uses only the

most active orientation at each location. When comparing such a prototype to

an input patch, only these active orientations are considered. This is argued to

increase the model’s robustness to clutter [9]. Third, the C2 layer of the SLF

model pools over a limited area of S2 activity, rather than pooling globally over

all scales and locations. This area is given by a small neighborhood around the

prototype’s original location, and includes the S2 activity for the scale immedi-

ately above and below the imprinted scale.

Results are shown in Figure 3.18 for the HMAX, SLF, and Glimpse models

on subsets of Caltech101 [55], the Animals task of Serre et al. [2], and the syn-

thetic tasks of Pinto et al. [18]. Following Serre et al. [6], each model uses 4075

C2 features learned by imprinting, and a linear-kernel SVM for classification.

Performance is reported as the area under the ROC curve (AUC). I performed

five independent trials for each model and corpus, and imprinted new prototypes

in each trial. The height of each bar shows the mean performance across those

trials, and error bars show one standard error. Figure 3.19 shows a similar com-

parison for the tasks of Fergus et al. [56], where Glimpse is compared with the

SLF model. Performance for the HMAX model was omitted in this and later
5Note that this normalization process is not applied to the S2 unit’s input.

CHAPTER 3. GLIMPSE 55

Figure 3.18: Performance comparison (AUC) for 4075 C2 features using HMAX
(white), SLF (hatched gray), and Glimpse (blue) models. Datasets include sub-
sets of Caltech101 categories—Airplanes, Faces, Faces (easy), and Watch—the
Animals dataset of Serre et al. [2], and the synthetic tasks of Pinto et al. [18].
Error bars indicate standard error over five independent trials.

experiments, since 1) the behavior of SLF and HMAX is often quite similar,

while 2) applying the HMAX model takes considerably more time.

From these two figures, we see that the behavior of Glimpse appears to be

consistent with that of the reference models across all tasks. This suggests that

the model has the salient features of previous work. Thus, there is a good chance

that interesting results found for the Glimpse model would also apply for other

hierarchical models.

However, I do note differing results for two tasks. On the Animals task, the

HMAX model displays performance that is significantly above that of the other

models. This is unsurprising, as it is the task for which the model’s parame-

ters were optimized. Additionally, the SLF model displays performance that is

significantly below that of the other models on the Face1 v. Face2 task. This

result is likely due to the use of localized pooling at C2 in the SLF model, which

CHAPTER 3. GLIMPSE 56

Figure 3.19: Performance comparison (AUC) for 4075 C2 features using SLF
(hatched gray) and Glimpse (blue) models. Datasets are due to Fergus et al. [56].
Error bars indicate standard error over five independent trials. (Note that a lack
of variation leaves the error bars difficult to see.)

is inappropriate in synthetic tasks that vary the object’s location. Thus, it is

surprising that SLF performance does not suffer on the Cars v. Planes task, as

that too includes strong variation in object location. Interestingly, these results

show that model performance is quite saturated across all Caltech101 and Fergus

et al. tasks, indicating that these tasks are of limited use for object recognition

research. This result is investigated further in Chapter 4.

Figure 3.20 compares the SLF and Glimpse models on the Cats v. Dogs tasks.

Glimpse performs better—often significantly better—than the SLF model on all

tasks. As discussed above, this may be due to the localized pooling operation at

C2 of the SLF model.

Thus far, the behavior of Glimpse has only been investigated for very large

networks, that is, those employing a large number of prototypes. It is possible

that two models could behave similarly in this case, while showing qualitatively

different behavior for less complex S2 layers. To investigate this, I measure the

CHAPTER 3. GLIMPSE 57

Figure 3.20: Performance comparison (AUC) for 4075 C2 features using SLF
(hatched gray) and Glimpse (blue) models. Tasks are from the Cats v. Dogs
dataset. Results on the left give performance for photographic foreground ob-
jects, while results on the right give the same for rendered foreground objects.
Results are given for different types of backgrounds, including uniform color
(Gray), randomly generated images following a 1

f
frequency distribution (Noise),

and randomly chosen photographs of outdoor scenes (Image). Error bars indicate
standard error over five independent trials.

CHAPTER 3. GLIMPSE 58

performance for each of the models as the number of prototypes is increased,

and thus capture the “scaling behavior” of each model.

Results are shown in Figures 3.21-3.23 for a representative subset of the

tasks in Figure 3.18. As before, these results show that Glimpse has captured

the qualitative behavior reported in the literature, even with respect to changes

in the number of units in the S2 layer. Additionally, it is interesting to note

the lack of a consistent ranking for the three models, since each model shows

superior performance on at least one of the four datasets. This is important to

note for those developing their own models, so that no single model is considered

a “gold standard”.

CHAPTER 3. GLIMPSE 59

(a) Airplanes (Caltech101)

(b) Watch (Caltech101)

Figure 3.21: Performance comparison (AUC) on Caltech101 tasks for varying
number of C2 features using HMAX (gray), SLF (dashed), and Glimpse (blue)
models. Error bars show one standard error.

CHAPTER 3. GLIMPSE 60

Figure 3.22: Performance comparison (AUC) on the Animals task for varying
number of C2 features using HMAX (gray), SLF (dashed), and Glimpse (blue)
models. Error bars show one standard error.

Figure 3.23: Performance comparison (AUC) on the Cars v. Planes task (vari-
ation level three) for varying number of C2 features using HMAX (gray), SLF
(dashed), and Glimpse (blue) models. Error bars show one standard error.

Chapter 4

The Role of Shape Prototypes

In this chapter, I describe a series of detailed experiments to investigate how

learned shape prototypes in alternating multilayer models affect classification

performance. Surprisingly, I find that the classification performance of networks

using randomly generated prototypes—with no apparent spatial structure—per-

form in a nearly identical way to networks using prototypes imprinted from

natural images in a way so as to capture “useful” shape components.

The rest of this chapter is organized as follows. Section 4.1 discusses the basic

methodology used in all experiments for this chapter. The benefit of invariant

representations is considered in Section 4.2. The role of shape prototypes is

investigated in Section 4.3. Finally, a discussion of the results is given in Section

4.4. This work has been published in a shorter format as [54].

4.1 Methods

Unless otherwise noted, all experiments in this work use the following exper-

imental methodology. In each trial, a different subset of half the images was

61

CHAPTER 4. THE ROLE OF SHAPE PROTOTYPES 62

chosen for training, with the other half reserved for testing. Each trial chooses a

different set of prototypes, and performance is reported on the test set. Results

are somewhat stochastic, because the classifier is applied with a different set of

features and a different set of testing images in each trial. Thus, each experiment

is repeated five times, and the average performance is reported.

Beyond the features derived from C2 activity (see Chapter 3), the exper-

iments below use two additional types of features. First, “pixel” features are

computed by converting the image to grayscale, and concatenating image rows

to form a single vector. Second, “C1” features are derived from the activity of

all units in the C1 layer by concatenating units for all positions, scales, and edge

orientations to form a single vector. Both cases result in a feature space of very

high dimensionality1. Techniques for dimensionality reduction, such as PCA,

were not used, because the goal was to give the invariant representation every

opportunity to succeed.

Note that a fixed feature space is required for many classifiers, including

SVMs. That is, the number of features representing each image must be con-

stant. However, the dimensionality of a pixel or C1 representation depends on

the size of the input image2, and thus the size of the images was constrained in

these experiments. For tasks derived from the Caltech 101 dataset and the tasks

of Fergus et al., the image size was constrained by removing border pixels as

needed. Fortunately, this is likely to have little effect on Glimpse’s performance,

as foreground objects are intentionally placed in the center of each image. All

remaining tasks employ images of the same size.
1The dimensionality of a C1 representation is at least 20,000 features. This size increases

as the image becomes elongated. A pixel representation is even larger, with approximately
50,000 features for a square image.

2This is not the case for a C2 representation, which provides one feature per prototype.

CHAPTER 4. THE ROLE OF SHAPE PROTOTYPES 63

4.2 Role of Invariant Representations

I first investigate the benefit of Glimpse’s C2 features relative to a simpler image

representation. Remember from Section 2.2 that Glimpse’s C2 representation is

described as invariant, because C2 activity is unaffected by changes to an ob-

ject’s location or scale. Here, I specifically investigate the role of this invariance

property in the success of the model.

To do this, a given task is performed using a representation composed of

C2 activity, and Glimpse’s performance is measured. The same task is then

performed using a representation composed of C1 features, and again using pixel

features. These latter representations lack the strong invariance properties of the

C2 layer, and thus provide a useful performance baseline.

The results are shown in Figure 4.1, which reports performance across a

number of datasets for raw pixel features (light gray), C1 features (dark gray),

and 4075 C2 features (blue). Performance is reported as the mean area under

the ROC curve (AUC) across five independent trials, with error bars showing

one standard error. The set of prototypes is imprinted independently for each

trial.

Interestingly, the Caltech 101 tasks do not appear to require an invariant

representation. In most cases, performance for C1 features is almost identical

to that using C2 features. In fact, many tasks can be performed using only raw

pixel data, and I am thus forced to conclude that these tasks are of little use

in the study of invariant object recognition. These results agree with similar

findings of Pinto et al. [17]. Consequently, these datasets will not be used in the

experiments described in the next sections.

In contrast, results for the remaining tasks showed a significant benefit for

CHAPTER 4. THE ROLE OF SHAPE PROTOTYPES 64

Figure 4.1: Performance comparison (AUC) for raw pixels (white), C1 features
(hatched gray), and 4075 C2 features (blue). Datasets include subsets of Cal-
tech 101 categories—Airplanes, Faces, Faces (easy), Motorbikes and Watch—the
Animals dataset of Serre et al., and the synthetic tasks of Pinto et al.—Cars
v. Planes and Face1 v. Face2. The vertical axis indicates the mean perfor-
mance over five independent trials, and error bars indicate standard error over
five independent trials.

CHAPTER 4. THE ROLE OF SHAPE PROTOTYPES 65

invariant representations. For the Animals, Cars v. Planes, and Face1 v. Face2

tasks, pixel features were effectively useless for recognition. In addition, while

C1 features provide a useful representation for these tasks, an invariant repre-

sentation using C2 features is significantly more useful.

Figure 4.2a shows results for the tasks of Fergus et al. These results are quite

similar to those for the Caltech 101 tasks in Figure 4.1. Again, pixel features

account for nearly all of the model’s performance, and an invariant representa-

tion provides little additional benefit. Figure 4.2b shows results for the various

Cats v. Dogs tasks. On the left half of the plot, results are shown for real

objects—those captured from natural imagery—on the three background types.

While the invariant C2 representation is clearly superior to raw pixel features, a

C1 representation completely accounts for the performance increase. However,

note the model’s surprisingly high performance in the presence of natural image

backgrounds (i.e., bars labeled “Image” on the left side of Figure 4.2b). It is pos-

sible that this is caused by unintentional regularities in the background for each

object, such as a tell-tale difference in the edge statistics of “cat” backgrounds

vs “dog” backgrounds.

The right half of Figure 4.2b shows results for the Cats v. Dogs tasks using

rendered objects. In this case, an invariant C2 representation provides a clear

benefit over C1 features. Additionally, the performance for C1 and C2 features

decreases as the backgrounds become more complex, with the highest perfor-

mance for simple gray backgrounds, lower performance for backgrounds con-

taining randomly generated noise, and the lowest performance for backgrounds

containing complex image natural images. However, note the strong perfor-

mance for raw pixel features, which may indicate an insufficient variation in the

presentation of objects or their backgrounds.

CHAPTER 4. THE ROLE OF SHAPE PROTOTYPES 66

(a) Datasets from Fergus et al.

(b) Cats v. Dogs

Figure 4.2: Performance as in Figure 4.1 comparing pixel (white), C1 (hatched
gray), and 4075 C2 (blue) features.

CHAPTER 4. THE ROLE OF SHAPE PROTOTYPES 67

In summary, these results suggest that Glimpse’s C2 representation provides

a significant benefit for performing object recognition. However, many tasks that

are used often in the literature do not require an invariant representation, and

thus provide little information about the efficacy of object recognition models.

4.3 Importance of Shape

In this section, I test the “shape dictionary” hypothesis discussed in Section

2.3, which suggests that an imprinted representation is useful because it cap-

tures important “shape-based” properties of objects [2]. To isolate the benefit

of learned shape features, I measure the impact on Glimpse’s performance when

this information is degraded. In the first step, a set of prototypes is imprinted

as previously described. Performance is then measured on the same task when

these prototypes are “shuffled”, that is, when the order of activation values in

each prototype are randomly permuted. This process is demonstrated in Fig-

ure 4.3. As a result, the shape information—that is, spatial and orientation

configuration—is scrambled, while the basic activation statistics within each

prototype are maintained.

Finally, performance is measured for a set of unlearned, ”shape-free” pro-

totypes. This set is constructed randomly, where each prototype component is

drawn independently from a uniform distribution over activation values. (This

approach should not be confused with imprinting, in which randomness is used

to choose the location of image regions.) Due to their construction, these pro-

totypes capture neither the spatial information, nor the activation statistics of

learned shape prototypes. Recent evidence suggests that various kinds of random

features can be surprisingly useful in hierarchical networks [64, 94, 95], though

CHAPTER 4. THE ROLE OF SHAPE PROTOTYPES 68

(a) Image patch.

(b) Imprinted activation.

(c) Shuffled activation.

Figure 4.3: An example in which (a) an image patch is used to construct (b)
an imprinted prototype. The figure shows the activations—white denotes high
activation, black denotes low activation—for a neighborhood of C1 units, with
one plot for each edge orientation. The activation values within this prototype
are then permuted to create (c) a shuffled prototype. Note that activation is
permuted across orientation bands as well as locations.

CHAPTER 4. THE ROLE OF SHAPE PROTOTYPES 69

the reasons for this behavior are still unclear.

Specifically, random prototypes are constructed as observations of a mul-

tivariate, independent, and identically-distributed random variable, with each

component given by

pi ∼ Uniform(0, 1) .

An example of such a prototype matrix is shown in Figure 4.4.

Additionally, random and shuffled prototypes are both sparse and gain invari-

ant, which are properties that imprinted prototypes lack3. Sparsity is enforced

by lateral inhibition across orientation bands at each location, where the activity

xi for the ith orientation at location ` is scaled as

x′
i =

xi

a`
,

and where a` =
√∑

x2
j measures the total energy for all units at location `.

This has the effect of suppressing less active orientations. Gain invariance is

achieved by constraining the total energy of the input and prototype, where S2

activation is computed as

S2

(
x
‖x‖ ,

p
‖p‖

)
for input x and prototype p, and activation function S2 (·, ·) as given in Equation

3.5 (Page 28). This allows the comparison between input and prototype to be

unaffected by a change in contrast in x.

I found that performance for shuffled and random prototypes was substan-

tially lower without the sparse contrast-invariant activation function. In con-

trast, such an activation function significantly decreased performance when im-
3This approach was inspired by the architecture of the PANN model [29].

CHAPTER 4. THE ROLE OF SHAPE PROTOTYPES 70

Figure 4.4: An example of a random prototype, with plots corresponding to the
four orientation bands. Each component is chosen independently from a uniform
distribution.

printed prototypes were used. The reason for this relationship is currently un-

known. However, I hypothesize that this result indicates that imprinted and

random prototypes operate in different ways. I believe that a “good” set of im-

printed prototypes should contain examples of specific and discriminative shapes

from the domain. These are qualities that a set of random prototypes will lack.

In contrast, a “good” set of shuffled or random prototypes may need to simply

contain prototypes that are sufficiently different from one another, which are

qualities that a set of imprinted prototypes will lack.

Glimpse’s performance for imprinted, shuffled, and random prototypes is

shown in Figure 4.5. Performance is reported as mean AUC over five independent

trials for the datasets identified in Section 4.2. Each feature vector is based on

4075 prototypes. Figure 4.5a shows this comparison for the Animals task, and

for variation level three of the Cars v. Planes and Face1 v. Face2 tasks. Figure

4.5b shows the same comparison for the Cats v. Dogs tasks. Across all datasets,

I found that the degradation of shape information has surprisingly little impact

on Glimpse’s performance. In fact, this degradation led to an improvement in

performance for the Face1 v. Face2 task.

Figures 4.6a and 4.6b show a similar comparison (without “shuffled” proto-

CHAPTER 4. THE ROLE OF SHAPE PROTOTYPES 71

types) for the Cars v. Planes and Face1 v. Face2 tasks, respectively, as the level

of variation is increased. Following Pinto et al. [18], performance is plotted as

the variation level is increased. As before, performance is plotted as mean AUC,

with error bars showing one standard error. Results for imprinted prototypes

were similar to those reported by Pinto et al. [18], with performance dropping

as the variation level was increased. However, I find that random prototypes

also perform this way, with behavior that is nearly identical to that of imprinted

prototypes. Critically, I find that a (invariant) C2 representation based on ran-

dom prototypes performs well even when a pixel or C1 representation does not.

Thus, an invariant representation is crucial, while shape is not.

Taken together, these results seem to contradict the “shape dictionary” hy-

pothesis. A number of possible explanations for these results were considered. I

first considered the possibility that a sufficiently large network is simply robust

to a bad choice of prototypes. That is, it is possible that any sufficiently large set

of prototypes would lead to the behavior seen in Figure 4.6. To investigate this,

I compare the performance of these two representations using different numbers

of prototypes, with results shown in Figure 4.7. Performance was quite similar

even when using only 10 prototypes. Regardless of the size of the network, I was

unable to find a significant difference in performance between a representation

based on random versus imprinted prototypes.

Alternatively, I considered the possibility that a random prototype provides

a weakly discriminative feature when used in isolation, but that a group of ran-

dom prototypes could be strongly discriminative. This might be the case if each

feature provides an independent piece of information about the object, which

when combined is enough for recognition. This is inspired by a machine learn-

ing technique called boosting [96], in which a number of “weak” classifiers are

CHAPTER 4. THE ROLE OF SHAPE PROTOTYPES 72

(a) Animals and synthetic tasks of Pinto et al. Variation level three
is used for synthetic tasks.

(b) Rendered Cats v. Dogs on various backgrounds.

Figure 4.5: Comparison of Glimpse’s performance across different tasks, using
4075 imprinted (blue), shuffled (gray), and random (hatched red) prototypes.
The vertical axis shows the mean AUC over five independent training and testing
splits, and error bars show the standard error. Results for the Cars v. Planes
and Face1 v. Face2 tasks use variation level three.

CHAPTER 4. THE ROLE OF SHAPE PROTOTYPES 73

(a) Cars v. Planes

(b) Face1 v. Face2

Figure 4.6: Comparison of Glimpse’s performance on two tasks, using 4075 im-
printed prototypes (blue); and 4075 random prototypes (dashed red). The hor-
izontal axis shows the variation level (over rotation, position, and scale) of the
object of interest, and the vertical axis shows the mean AUC over five inde-
pendent training and testing splits at each variation level. Error bars show the
standard error. Results for raw pixel (gray) and C1 (dashed gray) features are
shown for reference.

CHAPTER 4. THE ROLE OF SHAPE PROTOTYPES 74

(a) Cars v. Planes

(b) Face1 v. Face2

Figure 4.7: Comparison of Glimpse’s performance for different numbers of im-
printed (blue), shuffled (gray), and random (dashed red) prototypes. Perfor-
mance is reported as mean AUC over five trials, with error bars showing one
standard error. Variation level three is used for each task.

CHAPTER 4. THE ROLE OF SHAPE PROTOTYPES 75

combined to create a single, highly discriminative group. In contrast, I expect

imprinting to generate at least some prototypes that provide highly discrimina-

tive representations, even when considered in isolation.

To investigate this, I measured performance based on individual features.

For each prototype generation method (imprinting or random), I generated 4075

prototypes as before, except here I used them one at a time to create a single

value to represent each image in order to train and test the SVM. As before,

I performed five independent training and testing splits using each prototype.

Figure 4.8a shows the performance for single imprinted prototypes and single

random prototypes on the Cars v. Planes task, where the prototypes are ranked

by performance. Figure 4.8b shows the same values for the Face1 v. Face2

task. I found very little difference between the two representations in terms of

the occurrence of individually-discriminative features. In fact, it is striking how

well the best random features perform when operating in isolation. In short, it

appears that random prototypes are not limited to operating in ensembles.

Lastly, I investigated the hypothesis that the imprinted and random proto-

type representations behave similarly because they code for similar visual fea-

tures. It is possible, in theory, that the process of random prototype generation

occasionally creates the kind of useful shape selectivity that would be expected

under imprinting. In this case, I would expect these “lucky” random features to

be among the most discriminative when used in isolation.

Due to the nature of these networks, it is difficult4 to interpret the contents

of a prototype directly. Instead, I attempt to characterize a given prototype by

examining those input patches that provide the best match. Figures 4.9 and 4.10
4As one example, the invariance properties of the C2 layer may cause the same feature

values to be produced for multiple images.

CHAPTER 4. THE ROLE OF SHAPE PROTOTYPES 76

(a) Cars v. Planes

(b) Face1 v. Face2

Figure 4.8: Performance (mean AUC and range) using individual features from
either imprinted (solid blue) or random (dashed red) prototypes for (a) the Cars
v. Planes task, and (b) the Face1 v. Face2 task. In both cases, the tasks use
variation level three. The line shows the mean performance over five independent
trials, while the shaded area shows the range of performance values.

CHAPTER 4. THE ROLE OF SHAPE PROTOTYPES 77

shows this data for the most discriminative prototypes on the Cars v. Planes

and Face1 v. Face2 tasks, respectively. Each row in the figures corresponds

to one of the five most discriminative prototypes, that is, those ranked 1–5 in

Figure 4.8. The columns of each row give the 10 image patches from the dataset

to which the corresponding prototype matched most closely, where each image

is allowed at most one match. Although it may appear that patches in, say, the

top row of Figure 4.10a are from slightly different positions of the same image,

these patches are in fact from different images.

As expected, it appears that the five imprinted prototypes are responding

preferentially to specific “shape-based” patterns relevant to faces, and are rel-

atively robust to rotation and translation of those patterns. However, the five

random prototypes display no obvious “shape” preference along each row, nor

do their responses appear to be relevant to faces.

These results show that, while imprinted features are highly selective to shape

and somewhat invariant to background clutter, random prototypes are not easily

interpretable as shape templates. Although results were shown for one partic-

ular set of imprinted and random prototypes, this behavior was found to be

qualitatively similar for other, independently generated, sets of prototypes.

4.4 Discussion

In this work, I investigated the hypothesis that shape-based prototypes are cen-

tral to the ability of alternating multilayer networks to perform invariant object-

recognition. To summarize the results:

• I apply Glimpse to challenging benchmarks for invariant object recognition,

and find that learned “shape” prototypes are not necessary to achieve the

CHAPTER 4. THE ROLE OF SHAPE PROTOTYPES 78

(a) Imprinted prototypes

(b) Random prototypes

Figure 4.9: Characterization of best-performing prototypes for the Cars v.
Planes task (cf. Figure 4.8a) based on the input patches to which they re-
spond most strongly. (a): Each row corresponds to one of the top five imprinted
prototypes (those ranked 1–5 in the imprinted set in Figure 4.8a). The 10 images
in each row are the 10 image patches in the Cars v. Planes dataset to which the
prototype matched most closely. All patches in a row are drawn from different
images. (b): Same as part (a), but here the five top prototypes are those ranked
1–5 in the random-prototype set in Figure 4.8a. In contrast to part (a), there is
a distinct lack of shape specificity along each row.

CHAPTER 4. THE ROLE OF SHAPE PROTOTYPES 79

(a) Imprinted prototypes

(b) Random prototypes

Figure 4.10: Characterization of best-performing prototypes for the Face1 v.
Face2 task (cf. Figure 4.8b) based on the input patches to which they respond
most strongly. Results are shown as in Figure 4.9, with the best matches shown
for (a) imprinted and (b) random prototypes. As before, random prototypes
lack the shape specificity that is characteristic of imprinted prototypes.

CHAPTER 4. THE ROLE OF SHAPE PROTOTYPES 80

performance seen in the literature. These benchmarks specifically empha-

size viewpoint-invariance by including realistic variation in the presentation

of objects. As such, the “shape-free” features based on random prototypes

seem to provide an unlearned, unbiased (i.e., universal) dictionary.

• Upon analysis, I find evidence that (1) randomly-generated prototypes me-

diate performance that is on par with a learned shape dictionary (Figures

4.5 and 4.6), even for small networks (Figure 4.7) or single prototypes

(Figure 4.8). Critically, I also find evidence that (2) those prototypes lack

shape specificity (Figures 4.9 and 4.10), a characteristic that was thought

to be central to the success of these networks.

Taken together, these results argue that our understanding of successful hierar-

chical visual models is far from complete, and that further analysis is warranted.

Furthermore, my work suggests that—when used properly—random prototypes

may have an important role to play in these hierarchical networks.

I am left with several questions that have yet to be answered. Chief among

them are: (1) In what types of object-recognition tasks would a set of learned

shape-based prototypes provide an advantage over randomly generated proto-

types? Equivalently, for what sorts of tasks can we simply rely on random

prototypes and thus avoid the cost of learning? (2) What are the mechanisms

underlying the success of random prototypes in my experiments? For example,

can this success be explained by mechanisms related to the methods of random

projections or compressive sensing [97, 98]? The consideration of these questions

is left for future work.

Chapter 5

Feature Selection

This chapter considers the problem of learning prototypes from data. In this

sense, the method discussed here can be thought of as an extension of imprint-

ing. Although the literature on hierarchical visual models contains many ap-

proaches to prototype learning, this chapter focuses on one particular approach

called feature selection. The approach of feature selection has been reported

to significantly increase performance in some models [9], even on complex tasks

with many object categories.

In this chapter, I explore the benefits of feature selection for increasing the

performance of the Glimpse model. I find that this method leads to a dramatic

improvement in performance, but is limited by its prohibitive computational

cost.

5.1 Background

Feature selection begins in a manner similar to imprinting. The process starts

by selecting patches at random from training images. Glimpse is applied to

81

CHAPTER 5. FEATURE SELECTION 82

Figure 5.1: Illustration in which prototypes are learned by feature selection. (a)
Image patches (shown as red boxes) are chosen at random, and (b) candidate
prototypes are recorded from the model’s C1 activity that is calculated from
these patches. (c) Task feedback is used to weight each candidate prototype,
illustrated here with high, medium, and low weight indicated by a green check
mark, yellow question mark, and red “X”, respectively. (d) Candidates are
selected by weight to construct the final set of prototypes.

each patch, and the model’s C1 activity for each patch is recorded as a candi-

date prototype. Each candidate is assigned a weight that reflects its estimated

“quality”. A candidate prototype’s weight is estimated from task feedback in

an application-specific way, as will be described below. Finally, candidates are

selected by weight to form the final set of prototypes. This process is illustrated

in Figure 5.1.

A more detailed description of feature selection is shown in Algorithm 5.1.

The algorithm begins in Line 1 by choosing a large set of candidate prototypes

from training images, as done in imprinting. Glimpse is then used with these

CHAPTER 5. FEATURE SELECTION 83

Algorithm 5.1 Prototype learning by feature selection.
Input: Number n of candidate prototypes, number k of selected prototypes, and
set of training and testing images.

1. Select n candidate prototypes from training images, as in imprinting.

2. Use Glimpse with candidate prototypes to compute n features for each
training image.

3. Select k features:

(a) Compute quality J(fi) of each feature fi.
(b) Rank features by quality.
(c) Select the k highest-ranked features.

4. Create set P of only those candidate prototypes whose feature was selected
in Line 3c.

5. Evaluate Glimpse on testing images using prototypes in P.

prototypes to extract features for each image in the training set. From the

extracted features, a subset is selected in Lines 3a-3c. In Line 3a, the quality of

each feature fi is computed in an application-specific way. The quality measure

is denoted as J(·). Features are then ranked according to J(fi) in Line 3b. The

first k features in the ranked list are “selected” in Line 3c, where k is specified a

priori. The prototype associated with each selected feature is identified in Line

4. Glimpse is used with the selected prototypes in Line 5, and the performance

is evaluated on a set of testing images.

In the most common approach, the quality J(·) of each feature is computed

using feedback from the classifier. This feedback indicates whether a given fea-

ture was discriminative. For a linear SVM, this value can be computed from the

feature weights αi that are assigned when training the classifier. As discussed in

CHAPTER 5. FEATURE SELECTION 84

Section 3.1.6, the decision function of a linear SVM can be written as

f(x) = sgn

[
b+

∑
i

(∑
k

γkvki

)
xi

]
, (5.1)

where γk is the weight on the kth support vector, vki is the ith feature of the kth

support vector, and xi is the ith feature value. The weight of the ith feature is

given as αi =
∑

k γkvki, and feature quality is measured as J(fi) = α2
i . This

approach has been used successfully by a number of researchers [9, 16, 99] to

increase model performance while minimizing the number of prototypes.

One drawback of feature selection is its high computational cost, which results

from the fact that feature quality requires feature values to be computed for every

candidate prototype on every training image. In practice, this significantly limits

the number of candidate prototypes that can be evaluated.

As a result of this drawback, some researchers have suggested the use of other

forms of task information [19, 25, 39]. In one example, candidate prototypes are

selected only if they were created from the part of the image that contained the

foreground object [39].

Another approach chooses the weight of a candidate based on the classifier’s

estimated feedback [15]. In this method, a small set of reference prototypes is

recorded from training images, and classifier feedback is used as defined above to

weight each prototype. When a weight is needed for a candidate prototype, it is

not measured directly from classifier feedback. Instead, the weight is copied from

the most similar reference prototype. If the reference prototype was useful for

classification, then the candidate is weighted highly. Otherwise, the candidate

is given a low weight.

The estimated feedback approach compares prototypes with respect to a

CHAPTER 5. FEATURE SELECTION 85

number of properties of the activation values within the prototype’s template,

such as the mean and standard deviation of the activation values. These prop-

erties are intrinsic, in that they have nothing to do with the current task. The

approach was demonstrated to select useful features for an HMAX model, while

significantly reducing its computational cost [15].

5.2 Methods

As discussed in the previous section, feature quality has often been computed

from weights assigned by a linear SVM. In my experiments, I use a similar

approach, but instead use weights assigned by sparse logistic regression [86]. As

discussed in Section 3.1.6, the decision function for logistic regression can be

written as

f(x) = sgn
[

1

1 + e−(b+
∑

αixi)
− 1

2

]
, (5.2)

where αi is the weight on the ith feature. In my experiments, I compute feature

quality as J(fi) = α2
i . The parameters in Equation 5.2 have been chosen using

a sparse optimization procedure, so that the fewest number of features are used.

Performance is measured as the classification accuracy1 for five independent

trials, and the mean and standard error of the trials is reported. Due to its

prohibitive computational cost, however, only a single trial is reported for feature

selection.

In each trial, half the images are chosen at random for training, and the

other half are saved for testing. The training images are used to choose a new

set of prototypes, and a sparse logistic regression classifier is trained on features
1Accuracy is used in this and later chapters that employ multiclass datasets, since AUC is

a measurement of performance on binary tasks.

CHAPTER 5. FEATURE SELECTION 86

Figure 5.2: Performance on the Animals task for prototypes learned by feature
selection (solid orange line), compared with performance for imprinted (solid
blue line) and random prototypes (dashed red line).

composed of C2 activity. The datasets used in these experiments are those for

which an invariant representation was found to be useful in Section 4.2, including

the Animals task of Serre et al. [2], and the Cars v. Planes and Face1 v. Face2

tasks of Pinto et al. [18].

5.3 Results

I evaluated the performance for prototypes learned by feature selection, and

compared this with the performance of imprinted and random prototypes. For

each method, performance was computed for a range of network sizes (i.e., for

different numbers of prototypes). Results are given for the Animals task in

Figure 5.2, the Cars v. Planes task in Figure 5.3a, the Face1 v. Face2 task in

Figure 5.3b, and the Caltech 256 task in Figure 5.4.

I found that feature selection consistently out-performs other methods. For

the baseline methods of imprinting and random construction, performance im-

CHAPTER 5. FEATURE SELECTION 87

(a) Cars v. Planes

(b) Face1 v. Face2

Figure 5.3: Performance on synthetic tasks for prototypes learned by feature
selection (solid orange line), compared with performance for imprinted (solid
blue line) and random prototypes (dashed red line).

CHAPTER 5. FEATURE SELECTION 88

Figure 5.4: Performance on the Caltech 256 task for prototypes learned by
feature selection (solid orange line), compared with performance for imprinted
(solid blue line) and random prototypes (dashed red line).

proves consistently with model size—that is, with an increase in the number of

prototypes. In contrast, performance for feature selection generally saturates

at a particular model size, with the best performance occurring even for small

networks. This shows that task feedback can be used to find highly discrimi-

native, task-specific prototypes. Interestingly, performance for feature selection

is not decreased by including more prototypes. This suggests that the model

is robust to prototypes that lead to irrelevant and redundant features, at least

when sparse logistic regression is used for classification.

The benefit of feature selection depends heavily on the size of the model used.

For example, the performance for prototypes learned by feature selection is no

better than that of random prototypes on the Cars v. Planes task, if the model

is allowed to use only 10 prototypes. However, the benefit of feature selection

quickly becomes apparent when the model size increases.

In a sense, the “saturation point” for feature selection—that is, the smallest

CHAPTER 5. FEATURE SELECTION 89

model with high performance—provides a measure of a dataset’s complexity. In

this sense, the Face1 v. Face2 dataset is more complex than the Cars v. Planes

dataset. This agrees with our intuition, since a single “wheel” prototype was

enough to achieve high performance on the Cars v. Planes task (see Figures

4.8a and 4.9a). This measure also suggests that the Animals dataset is more

complex than the Face1 v. Face2 dataset, which could be explained by the

broad variation of appearance in the “animal” category. Similarly, this measure

suggests that the Caltech 256 dataset is more complex than the Animals dataset,

which could be explained easily by the significant difference in the number of

object categories between the two datasets.

5.4 Conclusions

In this chapter, I explored the benefits of feature selection for increasing the per-

formance of the Glimpse model. I found that feature selection led to a dramatic

improvement in performance, although the method is limited by its prohibitive

computational cost.

Prototypes learned by feature selection consistently out-performed those learned

by baseline methods such as imprinting. The benefit of feature selection over

other methods was often significant, but this result depended on the number of

prototypes used in the model. Overall, the difference between methods only be-

comes apparent at a certain scale, and this scale appears to be task dependent.

Thus, my results suggest that it is critical to consider the scaling behavior of

a model, rather than simply measuring performance at a fixed number of pro-

totypes. Interestingly, performance for prototypes learned by feature selection

was very high on some datasets, even when very few prototypes were used. This

CHAPTER 5. FEATURE SELECTION 90

result suggests that task feedback has been used successfully to find a small set

of task-specific and discriminative prototypes.

Chapter 6

Learning by Clustering

As discussed in Section 2.3, imprinting has a number of drawbacks that result

from the inclusion of redundant and non-discriminative prototypes. This in-

creases the model’s computational cost, and can decrease its performance as

well. A number of approaches have been suggested in the literature to overcome

these drawbacks.

This chapter investigates k-means clustering, which is a fast method for sum-

marizing a large set of prototypes by creating a small number of representative

examples. K-means has been used repeatedly in the literature to learn proto-

types in hierarchical models. For example, this approach is suggested [100] as the

best approach for “unsupervised” learning in convolutional networks, which are

hierarchical models that bear a strong resemblance to HMAX. While k-means

has been used to learn prototypes in HMAX [19, 39, 44], its benefit—compared

with imprinting, for example—is still unclear.

Surprisingly, I find that k-means provides no performance benefit when com-

pared to imprinting, but instead often hurts performance. I explore two hy-

potheses to explain the lack of improvement, but find that both hypotheses are

91

CHAPTER 6. LEARNING BY CLUSTERING 92

contradicted by the evidence. Thus, finding an explanation for the behavior of

k-means prototypes is left as an open problem.

The rest of this chapter is organized as follows. Section 6.1 provides back-

ground on k-means clustering, and discusses how this method can be used to

learn prototypes. Section 6.2 outlines the experimental methodology used in the

experiments of this chapter, and my results are presented in Section 6.3. Finally,

Section 6.4 summarizes the findings and provides conclusions.

6.1 Background

The approach of clustering takes the choice of prototypes and casts it as a ma-

chine learning problem. Just as in imprinting, the process starts by randomly

selecting image patches, applying a hierarchical model, and recording the model’s

C1 activity for each region. These prototypes are then treated as vectors that

are partitioned into a number of clusters. Each cluster is summarized by a new

prototype that is representative of the cluster members, and the model is eval-

uated using only these representatives as prototypes. This process is illustrated

in Figure 6.1.

Clusters are chosen so that prototypes from the same cluster are similar. The

overall quality of a cluster is measured as the variance of the cluster elements.

Once clusters are chosen, each cluster is summarized by computing the average

of all prototypes assigned to it. This is possible because the prototypes are

treated as vectors, so the ith component of the average is given by the average

of the ith component across all members of the cluster.

The above description can be written analytically as an objective function

that measures how well (or poorly) a given partitioning meets the criteria. This

CHAPTER 6. LEARNING BY CLUSTERING 93

Figure 6.1: Illustration in which prototypes are learned by clustering. (a) Im-
age patches (shown as red boxes) are chosen at random, and (b) prototypes are
recorded from the model’s C1 activity. (c) The prototypes are partitioned into
clusters. (d) Each cluster is summarized by computing the average of its proto-
types. This creates a new set of prototypes—given as vectors of C1 activations—
and the model is evaluated using only these new prototypes.

CHAPTER 6. LEARNING BY CLUSTERING 94

is given as

Obj(P;C) =
k∑

j=1

n∑
i=1

cij ‖xi − pj‖2 , (6.1)

where P = {pj} is the matrix of new prototypes, k is the number of prototypes

in that matrix, n is the number of original prototypes, and xi is the ith such

prototype. The matrix C encodes the cluster assignments, where the element

cij ∈ {0, 1} indicates whether the ith example is assigned to the jth cluster.

The goal of prototype learning by clustering is to find a new set of prototypes

P that minimize the objective function. The inner summation of Equation 6.1

ranges over the elements of a given cluster, calculating their dissimilarity with

the cluster’s representative prototype. The higher this dissimilarity, the more

the choice of prototypes is penalized. The outer summation ranges over the

clusters, combining these penalties. Thus, the best prototypes are those that

minimize the variance over all clusters simultaneously.

One approach to minimize Obj(P;C), called k-means [101], is shown in Al-

gorithm 6.1. The algorithm begins in Line 1 by choosing a large set of example

prototypes from training images, as done in imprinting. Clustering is then per-

formed in Lines 2a-2d. This begins by guessing the cluster centers P in Line

2a, and then repeatedly applies the following two steps. Cluster assignments are

reviewed in Line 2b to ensure that each candidate is assigned to the cluster with

the closest center. The center of each cluster is shifted in Line 2c to minimize

its distance to all members, where the new center is chosen to be the average of

all current members. These two steps are repeated until the objective function

reaches a fixed point in Line 2d. Finally, Glimpse is evaluated on separate set of

testing images in Line 3, where prototypes are given from the cluster centers P.

Note that a reassignment in Line 2b will always decrease the combined

CHAPTER 6. LEARNING BY CLUSTERING 95

Algorithm 6.1 Prototype learning by k-means clustering.
Input: Number n of initial prototypes, number k of clusters, and set of training
and testing images.

1. Select n prototypes from training images, as in imprinting.

2. Partition these prototypes into clusters:

(a) Choose initial cluster centers P arbitrarily.
(b) Reassign each candidate to the cluster with the nearest center, given

by

cij =

{
1 if j = argmin

j∗
‖xi − pj∗‖

0 otherwise.

(c) Update each cluster center according to the newly assigned points,
given by

pj =
1∑
i cij

∑
i

cijxi .

(d) Go to Step 2b unless the objective Obj() in Equation 6.1 has con-
verged.

3. Evaluate Glimpse on testing images using cluster centers P as prototypes.

penalty for the two clusters in the reassignment, that is, the cluster that loses a

member and the cluster that gains it. Similarly, Line 2c will never increase the

penalty for either cluster, since the cluster centers are chosen to minimize this

penalty. Since the value of the objective function is never increased, k-means is

guaranteed to converge to a (locally) optimal set of clusters.

6.2 Methods

In these experiments, Glimpse uses the sparse logistic regression classifier [86]

that was introduced in Section 3.1.6. Clustering is performed using the Mini-

Batch k-means algorithm [102], implemented in the Scikit-Learn Python package

CHAPTER 6. LEARNING BY CLUSTERING 96

[103]. In this chapter, performance is measured as the classification accuracy1

for five independent trials, and the mean and standard error of the trials is re-

ported. In each trial, half the images are chosen at random for training, and

the other half are saved for testing. The training images are used to choose a

new set of prototypes, and the classifier is trained on features composed of C2

activity. The datasets used in these experiments are those for which an invariant

representation was found to be useful in Section 4.2.

6.3 Results

For each dataset, the performance of Glimpse is measured using 1,000 proto-

types learned by k-means clustering, which uses a large set of 10,000 candidate

prototypes. Every set of k-means prototypes is learned from an independent

set of candidates. For comparison, the performance is computed on the same

dataset using 1,000 imprinted prototypes.

Results are shown in Figures 6.2 and 6.3. Surprisingly, imprinting led to a

superior representation in these experiments, with performance that was at least

as high as for k-means prototypes across all tasks.

As in Chapter 4, the performance for Glimpse is also analyzed for different

number of prototypes. Results are shown in Figures 6.4 and 6.5, which shows

the performance (mean accuracy) for different numbers of prototypes chosen

by imprinting and k-means. These results suggest that the difference between

representations is less significant in low-dimensional representations (i.e., for a

small number of prototypes), but that imprinted representations have a superior

scaling behavior.
1Accuracy is used in this and later chapters that employ multiclass datasets, since AUC is

a measurement of performance on binary tasks.

CHAPTER 6. LEARNING BY CLUSTERING 97

(a) Animals and synthetic tasks of Pinto et al. Variation level three
is used for synthetic tasks.

(b) Cats v. Dogs with rendered objects on various backgrounds.

Figure 6.2: Comparison of performance for C2 features using imprinted (gray)
and k-means (dashed gray) prototypes. The vertical axis shows the mean per-
formance (accuracy) over five independent trials for 1,000 prototypes, with error
bars showing one standard error. Surprisingly, imprinting led to superior repre-
sentations across nearly all tasks.

CHAPTER 6. LEARNING BY CLUSTERING 98

Figure 6.3: Comparison of performance on multiclass datasets for 1,000 C2 fea-
tures using imprinted (gray) and k-means (dashed gray) prototypes, as in Figure
6.2.

6.3.1 Effect of Training Size

Note that the experiment described in the previous section used the same number

of candidates when learning k-means prototypes, regardless of the number k of

prototypes to be learned. Consequently, the average number of candidates per

cluster varies inversely with k. For example, the ratio of candidates to prototypes

in Figure 6.4a is approximately 1,000:1 on the left side, but only 10:1 on the

right. It is possible that this difference adversely affects the performance of

learned prototypes. To test this, I measure the performance of Glimpse using

k-means prototypes learned with different numbers of candidates.

Results are shown for two representative datasets in Figure 6.6, which shows

the change in performance when k prototypes are learned with an average of

10, 100, and 1,000 candidates per cluster. This data is reported for the Animals

and Cars v. Planes tasks. Interestingly, I see little evidence that more training

samples result in better prototypes. In fact, the results for the Cars v. Planes

CHAPTER 6. LEARNING BY CLUSTERING 99

(a) Animals

(b) Face1 v. Face2

Figure 6.4: Comparison of Glimpse’s performance for different numbers of im-
printed (solid) and k-means (dashed) prototypes, for a representative sample of
the datasets used in Figure 6.2. Plots show mean performance (accuracy) over
five independent trials, with error bars showing one standard error.

CHAPTER 6. LEARNING BY CLUSTERING 100

Figure 6.5: Comparison of Glimpse’s performance on rendered Cats v. Dogs
over image backgrounds for different numbers of imprinted (solid) and k-means
(dashed) prototypes, as in Figure 6.4.

task shows a slight negative trend.

6.3.2 Effect of Activation Function

My results for prototypes learned using k-means are surprising, but not unprece-

dented. Although researchers have reported good performance for k-means in re-

lated visual models (e.g., see [100]), it is unclear whether these results also apply

to HMAX-like models. Studies of prototype learning for HMAX-like networks

have reported mixed results, and have roughly been in line with our findings.

For example, Brumby et al. [29] report that prototypes found using a Hebbian

learning rule (similar to an online version of k-means) often fail to outperform a

simple imprinting procedure.

Here, I consider whether the poor results for k-means, relative to its use in

other architectures, is related to Glimpse’s S2 activation function. One of the

unique characteristics of HMAX-like networks is their use of an RBF activation

CHAPTER 6. LEARNING BY CLUSTERING 101

Figure 6.6: Effect of sample size on Glimpse’s performance with k-means proto-
types on the Animals (solid) and Cars v. Planes (dashed) tasks. Performance is
shown for 128 prototypes. The horizontal axis shows the number of candidates
(on a log scale) per prototype, the vertical axis shows the mean performance
(accuracy) over five independent trials for sparse logistic regression. Error bars
show one standard error.

function. However, one of the models in which k-means has been successful uses

a dot-product activation function, similar to that used for Glimpse’s S1 layer.

This section investigates whether this difference can account for Glimpse’s poor

performance when using k-means prototypes.

To test this hypothesis, Glimpse’s S2 activation function was modified to use

a dot product in the following way. Remember that the RBF in Equation 3.5

is based on the distance between the input x and prototype p. However, the

distance is defined in terms of the inner product. Using this definition along

with the bilinearity of the inner product, the distance can be rewritten as

‖x − p‖ = ‖x‖2 + ‖p‖2 − 2 (x,p) , (6.2)

where the term (·, ·) denotes the dot product. If contrast normalization is used—

CHAPTER 6. LEARNING BY CLUSTERING 102

that is, the input and prototype are constrained to have unit norm—then Equa-

tion 6.2 implies that

‖x − p‖ ∝ (x,p) .

That is, the use of contrast normalization makes the distance function propor-

tional to the dot product between the two vectors2. A method for contrast

normalization was already introduced in Section 4.3, and was shown to be useful

for random prototypes. That method is used here as well.

Results are shown in Figures 6.7 and 6.8 for 1,000 prototypes learned with

k-means, where the S2 units use either an RBF (as in Figure 3.5) or a sparse,

contrast invariant activation function. In nearly all tasks, the updated activa-

tion function resulted in a significant decrease in performance. The only excep-

tion to this decrease was the synthetic Face1 v. Face2 task, in which a sparse

contrast-invariant activation function led to an increase in model performance.

These results suggest that the activation function is generally not responsible

for Glimpse’s poor performance when using k-means prototypes.

6.4 Conclusions

This chapter investigated the use of k-means clustering to learn prototypes in

Glimpse. I hypothesized that clustering would significantly increase the model’s

performance, compared to the use of imprinted prototypes. However, my results

suggest that k-means is poorly adapted to the problem of prototype learning.

The performance for prototypes learned by k-means was consistently worse than

that using an imprinted dictionary (Figure 6.2), and this relationship did not
2The connection between an RBF and normalized dot product is also discussed by Serre et

al. [104].

CHAPTER 6. LEARNING BY CLUSTERING 103

(a) Animals and synthetic tasks of Pinto et al. Variation level three
is used for synthetic tasks.

(b) Rendered Cats v. Dogs on various backgrounds.

Figure 6.7: Performance for k-means prototypes using the standard activation
function (gray), compared to that using a sparse, contrast invariant activation
function (hatched gray). The vertical axis shows the mean performance (accu-
racy) over five independent trials for 1,000 prototypes, with error bars showing
one standard error. (The error is not visible for k-means prototypes on Caltech
256, due to low variation between trials.) These results suggest that the activa-
tion function is not the cause of the poor performance for k-means prototypes.

CHAPTER 6. LEARNING BY CLUSTERING 104

Figure 6.8: Performance on multiclass datasets for k-means prototypes using the
standard activation function (gray), compared to that using a sparse, contrast
invariant activation function (hatched gray).

depend on the number of prototypes used (Figure 6.2).

Surprisingly, I found that this result did not depend on the number of exam-

ples that were used during clustering (Figure 6.6). Additionally, the result does

not appear to be caused by the use of an RBF activation function, as perfor-

mance suffered further when the activation function used the equivalent of a dot

product (Figure 6.7). Thus, the explanation for this poor performance is still

unclear, and is left for future work.

Chapter 7

Clustering with Feedback

Chapter 5 showed that task information can be very useful to learn a small set

of discriminative prototypes for an HMAX-like model. However, the method

considered, called feature selection, has a high computationally cost. Alterna-

tively, Chapter 6 showed that an alternative method, called clustering, has a low

computational cost, but fails to find discriminative prototypes.

In this chapter I propose and test a new method for prototype learning that

attempts to improve upon these existing approaches. The new method uses task

information in a scalable way to learn a small set of discriminative prototypes

from a large number of candidates. The method uses an approach based on

clustering, but integrates a notion of feature quality to ignore candidates that

are irrelevant to the task.

7.1 Background

In HMAX-like models, the approach of learning prototypes with task information

has generally been limited to that of feature selection, as discussed in Chapter 5.

105

CHAPTER 7. CLUSTERING WITH FEEDBACK 106

Perhaps the only other use of task information in the literature is the approach of

category-dependent imprinting, which was used by Serre et al. (2002). Here, the

model was applied to a Faces v. Background task, and prototypes were imprinted

only from “face” images. The authors report a small increase in performance,

compared with imprinting from both “face” and “background” categories.

Outside of HMAX-like models, a number of approaches have been suggested

to include task information during clustering. These approaches have been intro-

duced in the machine learning literature, and include methods such as Learning

Vector Quantization [105] and Information Loss Minimization [106].

7.2 Weighted Clustering

In this section, I introduce a novel way to learn prototypes using task feed-

back. This method extends the clustering approach, described in Section 6.1,

by integrating task information in the form of weights on the prototypes. I hy-

pothesized that the introduction of task feedback would significantly improve

the performance of prototypes learned by clustering.

As in other approaches, the method starts by generating prototypes from a

set of training images, that is, by recording the C1 activity that results from

applying Glimpse to randomly chosen image patches. Task information is used

to assign a weight to each prototype, which indicates its estimated contribution

to the model’s performance. A weighted version of clustering is applied to 1)

partition prototypes into groups and 2) create a new prototype from each group.

Each new prototype is synthesized by taking the weighted average of all members

of its group. This process is illustrated in Figure 7.1.

As before, clusters are chosen so that members of the same cluster are as

CHAPTER 7. CLUSTERING WITH FEEDBACK 107

Figure 7.1: Illustration in which prototypes are learned with feedback using
weighted clustering. (a) Image regions (shown as red boxes) are chosen at ran-
dom, and (b) prototypes are recorded from the model’s C1 activity. (c) Task
feedback is used to weight each prototype, with high, medium, and low weight
indicated by a green check mark, yellow question mark, and red “X”, respec-
tively. (d) The prototypes are partitioned into clusters. (e) One new prototype
is created from each cluster, given by the weighted average of the prototypes in
that cluster.

CHAPTER 7. CLUSTERING WITH FEEDBACK 108

similar as possible. In this case, however, clusters are robust to outliers with low

weight. Once a partition is chosen, each cluster is summarized by computing

the weighted average of all cluster members. This can be captured analytically

in the objective function

ObjW (P;C) =
k∑

j=1

n∑
i=1

αicij ‖xi − pj‖2 , (7.1)

where P is a set of prototypes, C is a set of cluster assignments, and xi is the ith

prototype, as in unweighted clustering. The additional term αi gives the weight

of the ith example patch, which is assumed to be non-negative. It is not assumed

that weights sum to unity.

As in Equation 6.1, the inner summation ranges over members of a given

cluster, and calculates the degree to which those members differ from the cluster’s

center. The penalty for this cluster is proportional to the degree of difference.

Unlike Equation 6.1, however, this penalty is scaled by the weight αi of each

prototype, such that deviations due to low-weight prototypes are penalized less

than those for highly-weighted prototypes. The outer summation combines the

penalties for all clusters.

To minimize Equation 7.1, I propose a simple modification to the k-means

algorithm. The modified algorithm is shown in Algorithm 7.1. Note that the

only difference between this and Algorithm 6.1 is the need to compute weights

in Line 2 and the use of a weighted average to update cluster centers in Line 3c.

7.2.1 Illustrative Example

To demonstrate Algorithm 7.1, I investigate its behavior on an artificial clus-

tering task with two-dimensional data. Here, training data is sampled from a

CHAPTER 7. CLUSTERING WITH FEEDBACK 109

Algorithm 7.1 Prototype learning by weighted k-means clustering.
Input: Number k of clusters, and set of training and testing images.

1. Select prototypes from training images, as in imprinting.

2. Compute weight αi for each prototype xi.

3. Partition prototypes into clusters:

(a) Choose initial cluster centers P.
(b) Reassign each prototype to the cluster with the nearest center, given

by

cij =

{
1 if j = argmin

j∗
‖xi − pj∗‖

0 otherwise.

(c) Update each cluster center according to the newly assigned proto-
types, given by

pj =
1∑
i cij

∑
i

αicijxi .

(d) Go to Step 3b unless the objective ObjW() in Equation 7.1 has con-
verged.

4. Evaluate Glimpse on testing images using cluster centers P as prototypes.

CHAPTER 7. CLUSTERING WITH FEEDBACK 110

combination of three distributions, composed of two isotropic Gaussian distri-

butions and a linear function with random noise. The goal is to estimate the

parameters of the Gaussian data, while minimizing the effect from samples of the

linear function. Thus, the linear function plays the role of image backgrounds,

while the two Gaussian distributions provide examples of “image foregrounds”.

Results are shown in Figure 7.2 for an increasing amount of background

data. In the plots, we can see that the unweighted k-means algorithm becomes

increasingly “distracted” by background data points, particularly as the training

set becomes dominated by such data. This is significant, as unconstrained nat-

ural image corpora often contain many more examples of image backgrounds,

compared with the amount of foreground data.

Next, I apply the weighted k-means algorithm to the most extreme case in

Figure 7.2, in which a 4:1 ratio of foreground to background points is used. As

the weight on background points is decreased relative to foreground points, we

expect the recovered distribution parameters to shift toward their true values.

Results are shown in Figure 7.3. As expected, the estimated means (shown as

red diamonds) approach their true values as the weight on background patches

increases. This demonstrates how non-uniform weighting can effectively com-

pensate for background distractors. As with other forms of k-means clustering,

I found that the algorithm was sensitive to the choice of initial cluster centers.

However, I found that poor results occurred for weighted k-means much less

frequently than for unweighted k-means.

CHAPTER 7. CLUSTERING WITH FEEDBACK 111

(a) M = 1
8N (b) M = N

(c) M = 4N

Figure 7.2: Results for unweighted k-means clustering on an artificial task, which
illustrates the effect of “background” data when clustering prototypes. Data
points are sampled from two “foreground” Gaussian distributions centered at
(−3, 1) and (4, 8), and a “background” linear function Y = 4 − X for normal
random variable X. The goal is to recover the parameters of the two foreground
distributions as the number M of background points is increased, while the total
number N = 2048 of foreground points is held constant. Points are colored (blue
and green) according to their cluster assignment. As more background points are
added, the cluster centers (red diamonds) are pulled away from the foreground
distributions.

CHAPTER 7. CLUSTERING WITH FEEDBACK 112

(a) αB = 1 (b) αB = 1
2

(c) αB = 1
10

Figure 7.3: Results for weighted k-means clustering on the artificial task of Figure
7.2c for different weights αB on the background points. The weight on foreground
points is held constant at 1.0. The estimated parameters of the foreground
distributions are shown (red diamonds) along with the algorithm’s initial cluster
centers (red triangles; see Line 1 of Algorithm 7.1). As the weight on background
points is decreased, the effect of those points is reduced. The result is a significant
improvement on the estimate of the foreground distributions.

CHAPTER 7. CLUSTERING WITH FEEDBACK 113

(a) No overlap, αi = 0.0 (b) Partial overlap, αi = .5 (c) Total overlap, αi = 1.0

Figure 7.4: Example of weights computed from the degree of overlap between
the prototype and the foreground object.

7.3 Methods

My experiments investigate the effectiveness of learning new prototypes when ini-

tial prototypes are drawn only from the foreground object. Specifically, this asks

whether better prototypes are learned when initial prototypes drawn from image

backgrounds are suppressed. This problem is approached using weighted clus-

tering, where weights indicate whether the prototype was drawn from the fore-

ground object. Specifically, weight is calculated as the fraction of the prototype—

or rather, the image region from which it was recorded—that overlaps the fore-

ground object. This is illustrated in Figure 7.4.

To compute these weights, we need to know which image pixels represent the

foreground, and which are from the background. Such detailed segmentations

are available for the Animals task, and were generated manually for the Cars

v. Planes task. In my experiments, a constant value of 0.1 was added to all

weights, which ensures that background prototypes (i.e., those drawn from the

image background) will not be ignored entirely. This is intended to provide more

examples of natural image statistics, while focusing the learner on examples of

the foreground objects. However, the model’s performance was qualitatively

unchanged when this constant was removed.

CHAPTER 7. CLUSTERING WITH FEEDBACK 114

Note that an entirely different source of task information was also investi-

gated. In that investigation, a prototype was weighted heavily if it was discriminative—

that is, if the prototype generated a feature that was useful for classification.

However, the results for that investigation were very similar to that reported in

Section 7.4.

The experiments used Glimpse with a sparse logistic regression classifier [86].

The implementation of prototype clustering used in Chapter 6 was modified

according to Algorithm 7.1. Unless otherwise noted, each experiment is repeated

in five independent trials, and the mean and standard error of the performance

is reported. In each trial, half of the images are chosen for training, with the

other half reserved for testing. The set of prototypes is then chosen from the

training images, and the classifier is trained on the resulting feature vectors.

Performance is reported as the accuracy on the set of test images. The datasets

used in these experiments are those for which an invariant representation (i.e., a

representation composed of C2 activations) was found to be useful, as described

in Section 4.2, and includes the Animals task of Serre et al. [2] and the Cars v.

Planes task of Pinto et al. [18].

7.4 Results

Results are shown in Figure 7.5, which reports performance for new 1,000 pro-

totypes learned from 10,000 initial prototypes. These results show no significant

improvement in performance when the learner is focused on the foreground ob-

ject. As before, the model’s scaling behavior is also analyzed by measuring the

performance for different number of prototypes, with results reported in Figure

7.6. This analysis shows that learning from image foregrounds often hurts per-

CHAPTER 7. CLUSTERING WITH FEEDBACK 115

Figure 7.5: Comparison of performance for k-means prototypes learned without
weights (gray) and with foreground weights (hatched gray). The vertical axis
shows the mean performance (accuracy) over five independent trials, each using
100 prototypes with sparse logistic regression. Error bars show one standard
error.

formance when Glimpse uses few prototypes. Thus, it appears that foreground

weights have not helped the learner find an improved object representation.

7.4.1 Informative Backgrounds

This experiment assumes that only image foregrounds are useful for classification.

However, it is possible that the poor results for learning from image foregrounds

in Figure 7.5 are due to the presence of discriminative image backgrounds. To

test this hypothesis, I ask whether prototypes drawn from the background are

more or less useful than those drawn from the foreground object. To measure

this, I generate prototypes, and record whether they overlap the object. Pro-

totypes are weighted by classifier feedback using sparse logistic regression, and

are said to be used by the classifier if their weight is non-zero. The event that

a prototype has any overlap with a foreground object is modeled as a random

CHAPTER 7. CLUSTERING WITH FEEDBACK 116

(a) Animals

(b) Cars v. Planes

Figure 7.6: Comparison of performance for different numbers of C2 features
using k-means prototypes learned without weights (solid) and with foreground
weights (dashed). Plots show mean performance (accuracy) over five indepen-
dent trials, with error bars showing one standard error. Plot (a) shows results
for the Animals task and plot (b) shows results for the Cars v. Planes task.

CHAPTER 7. CLUSTERING WITH FEEDBACK 117

variable, with probability P (fg). The event that a feature generated from a

prototype is used by the classifier is modeled as another random variable, with

probability P (used). The utility of foreground prototypes is measured as

Utility(fg) = log2

(
P (used | fg)
P (used | ¬fg)

)
, (7.2)

where P (used | fg) and P (used | ¬fg) are the probabilities that foreground and

background prototypes are used by the classifier, respectively. This measure is

zero if foreground and background prototypes are equally likely to be useful for

classification, and grows when foreground prototypes are more useful than back-

ground prototypes. A utility value of 1.0 indicates that foreground prototypes

are twice as likely to be useful, compared with background prototypes.

Figure 7.7 reports the utility of foreground prototypes for the two datasets in

Figure 7.5, where probabilities are estimated using 10,000 imprinted prototypes.

The results suggest that recording prototypes from foreground objects should

provide a significant benefit for the Cars v. Planes task, where foreground

prototypes were used twice as often as background prototypes. In contrast, the

benefit of foreground and background prototypes was nearly indistinguishable

for the Animals task.

These results are somewhat surprising. Although experiments in Section 4.2

suggested that an invariant representation is useful for performing the Animals

task, we see here that the prototypes composing this representation are often

drawn from image backgrounds. Therefore, this dataset may be less informative

for studies of object recognition than previously thought. Interestingly, these re-

sults agree with a previous study [83], which suggests that an HMAX-like model

relies on the presence of “blurry” image backgrounds to perform the Animals

CHAPTER 7. CLUSTERING WITH FEEDBACK 118

Figure 7.7: Utility of foreground prototypes for different datasets, where utility
is defined as in Equation 7.2. This measure is zero if foreground and background
prototypes are equally likely to be used for classification, with greater values
indicating a preference for foreground prototypes. Here, a prototype is used if
its feature is given a non-zero weight by the classifier, and is a foreground (fg)
prototype if it was recorded from any part of a target object.

Corpus Number Used
Animals 450

Cars v. Planes 110

Table 7.1: The number of prototypes given non-zero weight by the classifier,
from a total set of 10,000 imprinted prototypes.

task.

Table 7.1 reports the total number of prototypes that were used by the clas-

sifier for each dataset. Note that this number varies considerably across the

datasets, which appears to reflect the dataset’s inherent difficulty. Relative to

its behavior on the Cars v. Planes task, the classifier used four times more

prototypes for the Animals dataset. This suggests that the “animal” category

(or perhaps the “not animal” category) is harder to represent than rendered cars

and planes.

CHAPTER 7. CLUSTERING WITH FEEDBACK 119

7.5 Conclusions

In this chapter, I investigated a new method to learn prototypes from training

images when task information is available. The new method was created by

extending the clustering approach discussed in Chapter 6 to incorporate weights

on prototypes. This approach was intended to capture the low computational

cost of clustering, while using task information to learn prototypes that are

discriminative.

Surprisingly, the addition of task information had very little effect on the

performance of learned prototypes, with performance under the new approach

being similar to—or worse than—a simple unweighted clustering. A follow-up

experiment suggested that this poor performance is likely due to the method of

weighted clustering, rather than the source of task information. Thus, it appears

that weighted clustering is not effective for learning discriminative prototypes in

HMAX-like models.

Chapter 8

Conclusions

This work investigated an influential family of hierarchical visual models, which

have garnered significant interest in both the computer vision and neuroscience

communities. Such models are applied to the problem of object recognition, in

which the model must discriminate between different three-dimensional objects

(such as automobiles) based solely on the visual input. The task is performed by

exhaustively comparing patches of an image to a set of stored patterns, called

prototypes, and the results are fed to a statistical classifier that predicts the

category of object present. Prototypes are learned by imprinting patches from

arbitrarily chosen training images.

While the choice of prototypes is thought to be crucial to the model’s success,

we lack a comprehensive understanding of the mechanisms by which prototypes

mediate this success. This dissertation investigated those mechanisms, including

the impact of prototypes on model performance, the benefits and limitations of

adapting prototypes to new tasks, and the role of feedback in this adaptation.

The contributions of this dissertation include the following.

• A new hierarchical model is introduced (Chapter 3). A novel framework

120

CHAPTER 8. CONCLUSIONS 121

was created, which allows the expression of a wide range of hierarchical

visual models. This framework was used to implement a new visual model

called Glimpse, the performance of which was shown to be competitive

with existing HMAX-like models.

• Limitations in common datasets are identified (Chapter 4). I analyzed

a number of benchmark datasets that have commonly been used in ob-

ject recognition research, and find that many are inappropriate for testing

viewpoint-invariant object recognition. Instead, I found that high per-

formance on many of these datasets was possible by using only a simple

representation that lacks viewpoint invariance.

• The importance of imprinted shape is studied (Chapter 4). I investigated a

core assumption of HMAX-like models, namely that their success as widely

reported in the literature was due to the learning of prototypes by imprint-

ing. This was tested by comparing performance for imprinted prototypes

and prototypes generated in a purely random fashion. Surprisingly, I found

that performance was nearly identical for the two methods. While proto-

type learning is likely to be a crucial way to increase model performance,

this result argues that the method of imprinting—assumed to be central

to the model’s success—may be entirely unnecessary.

• The importance of feedback is demonstrated (Chapter 5). I investigated the

effect of feedback on model performance, and showed how feature selec-

tion can be used to choose a small set of discriminative prototypes. The

results include an improvement in model performance, and a reduction in

its computational cost.

CHAPTER 8. CONCLUSIONS 122

• Limitations in a common prototype learning method are found (Chapter 6).

The method of k-means clustering, often used in the hierarchical model lit-

erature, is shown to result in surprisingly poor performance in an HMAX-

like model. The performance for prototypes learned by k-means clustering

was found to be lower than those learned by imprinting.

• A feedback-driven method for prototype learning is introduced (Chapter

7). An extension of k-means clustering is described, which integrates task

feedback into the learning process. Few assumptions are made of the form

of feedback used, allowing the method to be applied in a wide range of

situations. Compared with feature selection, the method requires far less

computation and allows completely new prototypes to synthesized.

Chapter 9

Future Work

This work raises a number of important questions about the family of HMAX-

like models, which should be addressed in future work. The most important goal

is to construct a new theory, which describes how the family of HMAX-like mod-

els supports competitive performance on viewpoint-invariant object recognition

tasks. Such a theory should account for the results of Section 4.3. Specifically,

such a theory should explain how a randomly-constructed representation sup-

ports discrimination, despite its lack of shape specificity. Furthermore, such a

theory should be able to predict when, if ever, a learned representation will

out-perform random prototypes.

One source of inspiration for this theory may come from work on compressive

sensing [98], in which random measurements are used to capture and store signals

(such as visual or auditory signals) using a highly compressed representation.

An important restriction is that the signals must be sparse. Here, signals are

assumed to be generated by combining atoms of a dictionary1, and are called

sparse if each signal can be represented using a small (possibly different) subset
1For example, edge components form the atoms of one such dictionary for image data.

123

CHAPTER 9. FUTURE WORK 124

of those atoms.

The salient point in compressive sensing is the idea that random measure-

ments have little effect on the “similarity” between sparse signals; if two signals

are similar, then their random measurements will be similar. The questions that

should be asked include the following. First, does the C1 layer provide a sparse

representation—that is, is the C1 layer sparsely active—for natural images? This

is very likely to be true, since past studies [107] suggest that a representation

composed of localized edge filters does provide a sparse representation. Second,

do features computed with random prototypes preserve the similarity between

images? That is, do similar images result in similar feature vectors, if those

feature vectors are computed using random prototypes. Under what definition

of “similarity”? Third, how does a highly-nonlinear transformation, such as the

pooling operation at C2, affect the results of compressive sensing?

Another interesting area of future work is to understand the role of additional

layers of S-units in these models, which can be approached as an extension of the

investigation in Section 4.2. Biological systems rely on many layers of processing,

but it is unclear whether models such as HMAX derive any significant benefit

from using, for example, an S3 layer. On one hand, a prototype in a high model

layer can express more complex patterns than those in a low layer, since a given

S-layer is defined in terms of the patterns captured in the S-layer below. This

allows a deep model to use domain-specific patterns that are sparsely activated.

On the other hand, a prototype in a high model layer is defined with respect

to a larger image area than a prototype in a low layer, since each C-layer leads

to more invariance. Thus, I expect model depth to be limited by the resolution

of the input data (e.g., the number of pixels). Part of this future work should

include an investigation of the role of depth in this family of models.

CHAPTER 9. FUTURE WORK 125

Finally, the study of prototype learning, both with and without the use

of feedback, should be extended. The perplexing behavior for representations

learned by k-means will be investigated, with a focus on the ways in which

k-means prototypes differ from imprinted prototypes. In addition, I plan to

extend my results for feedback-driven learning by comparing weighted clustering

with alternative methods, such as supervised clustering [106], learned vector

quantization [108], and the concurrent optimization of classifier and prototype

dictionary as suggested by Boureau et al. [109]. Weighted clustering will also

be compared with the general problem of instance-weighted learning [110], as

discussed in the machine learning literature.

Bibliography

[1] M. Riesenhuber and T. Poggio, “Hierarchical models of object recognition

in cortex,” Nature Neuroscience, vol. 2, pp. 1019–1025, Nov. 1999.

[2] T. Serre, A. Oliva, and T. Poggio, “A feedforward architecture accounts

for rapid categorization,” Proceedings of the National Academy of Sciences,

vol. 104, pp. 6424–6429, Apr. 2007.

[3] K. Fukushima, “Neocognitron: A self-organizing neural network model

for a mechanism of pattern recognition unaffected by shift in position,”

Biological Cybernetics, vol. 36, pp. 193–202, Apr. 1980.

[4] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction

and functional architecture in the cat’s visual cortex.,” The Journal of

Physiology, vol. 160, pp. 106–54, Jan. 1962.

[5] T. Serre, G. Kreiman, M. Kouh, C. Cadieu, U. Knoblich, and T. Poggio,

“A quantitative theory of immediate visual recognition,” Progress in Brain

Research, Computational Neuroscience: Theoretical Insights into Brain

Function, vol. 165, pp. 33–56, 2007.

[6] T. Serre, L. Wolf, and T. Poggio, “Object Recognition with Features In-

spired by Visual Cortex,” CVPR, 2005.

126

BIBLIOGRAPHY 127

[7] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio, “Robust

object recognition with cortex-like mechanisms,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 29, pp. 411–426, Mar.

2007.

[8] S. J. Thorpe, D. Fize, and C. Marlot, “Speed of processing in the human

visual system.,” Nature, vol. 381, no. 6582, pp. 520–2, 1996.

[9] J. Mutch and D. G. Lowe, “Object Class Recognition and Localization Us-

ing Sparse Features with Limited Receptive Fields,” International Journal

of Computer Vision, vol. 80, pp. 45–57, Oct. 2008.

[10] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-

bard, and L. D. Jackel, “Backpropagation Applied to Handwritten Zip

Code Recognition,” Neural Computation, vol. 1, pp. 541–551, Dec. 1989.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998.

[12] Q. V. Le, M. A. Ranzato, R. Monga, M. Devin, G. S. Corrado, J. Dean, and

A. Y. Ng, “Building High-level Features Using Large Scale Unsupervised

Learning,” in Proceedings of the 29th International Conference on Machine

Learning, (Edinburgh, Scotland, UK), 2012.

[13] Y. Bengio, “Learning Deep Architectures for AI,” Foundations and Trends

in Machine Learning, vol. 2, pp. 1–127, Jan. 2009.

BIBLIOGRAPHY 128

[14] Y. Huang, K. Huang, L. Wang, D. Tao, T. Tan, and X. Li, “Enhanced

biologically inspired model,” in Proceedings of the 2008 IEEE Conference

on Computer Vision and Pattern Recognition, pp. 1–8, Aug. 2008.

[15] E. Krupka, A. Navot, and N. Tishby, “Learning to Select Features us-

ing their Properties,” Journal of Machine Learning Research, vol. 9,

pp. 2349–2376, 2008.

[16] W. Zhu and L. Zhang, “Object Recognition with Task Relevant Combined

Local Features,” in Proceedings of the International Conference on Intel-

ligent Computing, pp. 285–292, Springer Berlin / Heidelberg, 2008.

[17] N. Pinto, D. Cox, and J. J. Dicarlo, “Why is Real-World Visual Object

Recognition Hard?,” PLoS Computational Biology, vol. 4, Jan. 2008.

[18] N. Pinto, Y. Barhomi, D. D. Cox, and J. J. DiCarlo, “Comparing State-

of-the-Art Visual Features on Invariant Object Recognition Tasks,” in

Proceedings of the IEEE Workshop on Applications of Computer Vision

(WACV 2011), 2011.

[19] Y. Wu, N. Zheng, Q. You, and S. Du, “Object Recognition by Learning

Informative, Biologically Inspired Visual Features,” in Proceedings of the

IEEE International Conference on Image Processing – ICIP 2007, 2007.

[20] P. Moreno, M. J. Marín-Jiménez, A. Bernardino, J. Santos-Victor, and

N. P. D. L. Blanca, “A Comparative Study of Local Descriptors for Object

Category Recognition: SIFT vs HMAX,” in Pattern Recognition and Image

Analysis, pp. 515–522, Springer Berlin / Heidelberg, 2007.

BIBLIOGRAPHY 129

[21] Q.-S. Lian and Q. Li, “Object Recognition Based on Biologic Visual Mech-

anisms,” in Proceedings of the 2008 Congress on Image and Signal Pro-

cessing, pp. 386–390, IEEE, 2008.

[22] J.-W. Woo, Y.-C. Lim, and M. Lee, “Obstacle Categorization Based on

Hybridizing Global and Local Features,” in ICONIP 2009 (C. S. Leung,

M. Lee, and J. H. Chan, eds.), (Berlin, Heidelberg), pp. 1–10, Springer

Berlin Heidelberg, 2009.

[23] R. G. J. Wijnhoven and P. H. N. de With, “Advanced Concepts for Intelli-

gent Vision Systems,” in Advanced Concepts for Intelligent Vision Systems

2009 (J. Blanc-Talon, W. Philips, D. Popescu, and P. Scheunders, eds.),

pp. 410–421, Springer, 2009.

[24] S. Bileschi and L. Wolf, “Image representations beyond histograms of gra-

dients: The role of Gestalt descriptors,” in Proceedings of the 2007 IEEE

Conference on Computer Vision and Pattern Recognition, pp. 1–8, IEEE,

June 2007.

[25] P. Mishra and B. K. Jenkins, “Hierarchical model for object recogni-

tion based on natural-stimuli adapted filters,” in Proceedings of the 2010

IEEE International Conference on Acoustics, Speech and Signal Process-

ing, pp. 950–953, IEEE, 2010.

[26] K. Faez, S. Motamed, and M. Yaqubi, “Personal verification using ear and

palm-print biometrics,” in Proceedings of the 2008 IEEE International

Conference on Systems, Man and Cybernetics, pp. 3727–3731, IEEE, Oct.

2008.

BIBLIOGRAPHY 130

[27] Z. Yaghoubi, K. Faez, M. Eliasi, and S. Motamed, “Face recognition using

HMAX method for feature extraction and support vector machine classi-

fier,” in Proceedings of the 24th International Conference on Image and

Vision Computing New Zealand – IVCNZ’09, pp. 421–424, IEEE, Nov.

2009.

[28] W. Gu, C. Xiang, and H. Lin, “Modified HMAX models for facial expres-

sion recognition,” in Proceedings of the 2009 IEEE International Confer-

ence on Control and Automation, pp. 1509–1514, IEEE, Dec. 2009.

[29] S. P. Brumby, G. Kenyon, W. Landecker, C. Rasmussen, S. Swaminarayan,

and L. Bettencourt, “Large-Scale Functional Models of Visual Cortex for

Remote Sensing,” in Applied Imagery Pattern Recognition 2009 (AIPR

’09), 2009.

[30] D. Walther, L. Itti, M. Riesenhuber, T. Poggio, and C. Koch, “Attentional

Selection for Object Recognition — A Gentle Way,” in Biologically Mo-

tivated Computer Vision (H. H. Bülthoff, C. Wallraven, S.-W. Lee, and

T. A. Poggio, eds.), pp. 251–267, Springer, 2002.

[31] S. S. Chikkerur, T. Serre, C. Tan, and T. Poggio, “What and where:

A Bayesian inference theory of attention,” Vision Research, vol. 50,

pp. 2247–2233, May 2010.

[32] B. Han, X. Gao, V. Walsh, and L. Tcheang, “A saliency map method with

cortex-like mechanisms and sparse representation,” in Proceedings of the

ACM International Conference on Image and Video Retrieval - CIVR ’10,

(New York, New York, USA), p. 259, ACM Press, July 2010.

BIBLIOGRAPHY 131

[33] H. Wersing and E. Körner, “Learning optimized features for hierarchi-

cal models of invariant object recognition.,” Neural Computation, vol. 15,

pp. 1559–88, July 2003.

[34] W. Einhäuser, C. Kayser, K. Körding, and P. König, “Learning Multi-

ple Feature Representations from Natural Image Sequences,” in Artificial

Neural Networks - ICANN 2002, p. 788, 2002.

[35] P. O. Hoyer and A. Hyvärinen, “A multi-layer sparse coding network

learns contour coding from natural images,” Vision Research, vol. 42,

pp. 1593–1605, June 2002.

[36] R. Miikkulainen, J. A. Bednar, Y. Choe, and J. Sirosh, Computational

Maps in the Visual Cortex. 2005.

[37] E. T. Rolls and T. Milward, “A model of invariant object recognition in the

visual system: learning rules, activation functions, lateral inhibition, and

information-based performance measures.,” Neural Computation, vol. 12,

pp. 2547–72, Nov. 2000.

[38] T. Serre, Learning a Dictionary of Shape-Components in Visual Cortex:

Comparison with Neurons, Humans, and Machines. Phd thesis, Mas-

sachusetts Institute of Technology, Cambridge, Apr. 2006.

[39] T. Serre, M. Riesenhuber, J. Louie, and T. Poggio, “On the Role of Object-

Specific Features for Real World Object Recognition in Biological Vision,”

in Biologically Motivated Computer Vision (H. H. Bülthoff, C. Wallraven,

S.-W. Lee, and T. A. Poggio, eds.), pp. 209–218, Springer, 2002.

BIBLIOGRAPHY 132

[40] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vap-

nik, “Feature Selection for SVMs,” in Neural Information Processing Sys-

tems 2000, pp. 668–674, 2000.

[41] Andrew Y Ng, “Feature selection, L1 vs. L2 regularization, and rotational

invariance,” in Proceedings of the Twenty-First International Conference

on Machine Learning, (Banff, Canada), 2004.

[42] I. M. Guyon and A. Elisseeff, “An Introduction to Variable and Feature

Selection,” Journal of Machine Learning Research, vol. 3, pp. 1157–1182,

Mar. 2003.

[43] K.-L. Du, “Clustering: a neural network approach.,” Neural networks,

vol. 23, pp. 89–107, Jan. 2010.

[44] J. Louie, A Biological Model of Object Recognition with Feature Learning.

Masters, Massachusetts Institute of Technology, 2003.

[45] J. MacQueen, “Some methods for classification and analysis of multivariate

observations,” in Proceedings of the Fifth Berkeley Symposium on Mathe-

matical Statistics and Probability, vol. 1, pp. 281–297, Univ. of Calif. Press,

1967.

[46] P. Földiák, “Learning invariance from transformation sequences,” Neural

Comput., vol. 3, pp. 194–200, June 1991.

[47] L. Wiskott and T. J. Sejnowski, “Slow Feature Analysis: Unsupervised

Learning of Invariances,” Neural Computation, vol. 14, pp. 715–770, Apr.

2002.

BIBLIOGRAPHY 133

[48] W. Einhäuser, C. Kayser, P. König, and K. Körding, “Learning the invari-

ance properties of complex cells from their responses to natural stimuli,”

European Journal of Neuroscience, vol. 15, no. 3, pp. 475–486, 2002.

[49] M. W. Spratling, “Learning viewpoint invariant perceptual representa-

tions from cluttered images,” IEEE transactions on pattern analysis and

machine intelligence, vol. 27, pp. 753–61, May 2005.

[50] S. M. Stringer, G. Perry, E. T. Rolls, and J. H. Proske, “Learning invariant

object recognition in the visual system with continuous transformations.,”

Biological cybernetics, vol. 94, pp. 128–42, Feb. 2006.

[51] T. Masquelier, T. Serre, S. J. Thorpe, and T. Poggio, “Learning com-

plex cell invariance from natural videos: A plausibility proof,” tech. rep.,

Massachusetts Institute of Technology, Cambridge, MA, 2007.

[52] G. Wallis and E. T. Rolls, “Invariant face and object recognition in the

visual system,” Progress in Neurobiology, vol. 51, pp. 167–194, Feb. 1997.

[53] N. Li and J. J. DiCarlo, “Unsupervised natural experience rapidly alters in-

variant object representation in visual cortex.,” Science (New York, N.Y.),

vol. 321, no. 5895, pp. 1502–7, 2008.

[54] M. D. Thomure, M. Mitchell, and G. T. Kenyon, “On the Role of Shape

Prototypes in Hierarchical Models of Vision,” in International Joint Con-

ference on Neural Networks (IJCNN), 2013.

[55] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models

from few training examples: an incremental Bayesian approach tested on

BIBLIOGRAPHY 134

101 object categories,” in CVPR 2004, Workshop on Generative-Model

Based Vision, 2004.

[56] R. Fergus, P. Perona, and A. Zisserman, “Object class recognition by un-

supervised scale-invariant learning,” Computer Vision and Pattern Recog-

nition, vol. 2, pp. 264–271, 2003.

[57] D.-S. Pham and S. Venkatesh, “Joint learning and dictionary construction

for pattern recognition,” in Proceedings of the 2008 IEEE Conference on

Computer Vision and Pattern Recognition, pp. 1–8, IEEE, June 2008.

[58] M. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. LeCun, Unsupervised

Learning of Invariant Feature Hierarchies with Applications to Object

Recognition. IEEE, June 2007.

[59] R. Rigamonti, M. A. Brown, and V. Lepetit, “Are sparse representations

really relevant for image classification?,” in CVPR 2011, pp. 1545–1552,

IEEE, June 2011.

[60] T. Masquelier and S. J. Thorpe, “Unsupervised Learning of Visual Fea-

tures through Spike Timing Dependent Plasticity,” PLoS Computational

Biology, vol. 3, Feb. 2007.

[61] C. Thériault, N. Thome, and M. Cord, “Extended coding and pooling in

the HMAX model.,” IEEE transactions on image processing : a publication

of the IEEE Signal Processing Society, vol. 22, pp. 764–77, Feb. 2013.

[62] S. P. Brumby, L. M. Bettencourt, M. I. Ham, R. A. Bennett, and

G. Kenyon, “Quantifying the difficulty of object recognition tasks via scal-

ing of accuracy versus training set size,” in COSYNE, 2010.

BIBLIOGRAPHY 135

[63] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, “Self-taught

Learning: Transfer Learning from Unlabeled Data,” in Proceedings of the

Twenty-Fourth International Conference on Machine Learning, (Corvallis,

Oregon), AAAI Press, 2007.

[64] K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, and Y. LeCun, “What is

the best multi-stage architecture for object recognition?,” in Proceedings

of the 2009 IEEE 12th International Conference on Computer Vision,

pp. 2146–2153, IEEE, Sept. 2009.

[65] K. Kavukcuoglu, P. Sermanet, Y.-L. Boureau, K. Gregor, M. Mathieu,

and Y. LeCun, “Learning Convolutional Feature Hierarchies for Visual

Recognition,” in Advances in Neural Information Processing Systems 23

(J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta,

eds.), 2010.

[66] F. Rodriguez and G. Sapiro, “Sparse Representations for Image Classifi-

cation: Learning Discriminative and Reconstructive Non-Parametric Dic-

tionaries,” tech. rep., University of Minnesota, Minneapolis, Minnesota,

2007.

[67] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid match-

ing using sparse coding for image classification,” in Computer Vision and

Pattern Recognition, pp. 1794–1801, IEEE, June 2009.

[68] F. Perronnin, J. Senchez, and Y. L. Xerox, “Large-scale image catego-

rization with explicit data embedding,” in 2010 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, pp. 2297–2304,

IEEE, June 2010.

BIBLIOGRAPHY 136

[69] G. Griffin, A. D. Holub, and P. Perona, “The Caltech-256,” tech. rep.,

Caltech, 2007.

[70] S. M. Crouzet and T. Serre, “What are the visual features underlying rapid

object recognition?,” Frontiers in Perception Science, vol. 2, 2011.

[71] J. Ponce, T. Berg, M. Everingham, D. Forsyth, M. Hebert, S. Lea,

M. Marszalek, C. Schmid, B. C. Russell, A. Torralba, C. Williams,

J. Zhang, and A. Zisserman, “Dataset Issues in Object Recognition,” in

Toward Category-Level Object Recognition, pp. 29–48, 2006.

[72] Y. LeCun, D. G. Lowe, J. Malik, J. Mutch, P. Perona, and T. Poggio,

“Object Recognition, Computer Vision, and the Caltech 101: A Response

to Pinto et al.,” Mar. 2008.

[73] A. Torralba and A. A. Efros, “Unbiased look at dataset bias,” in CVPR

2011, pp. 1521–1528, IEEE, June 2011.

[74] N. Pinto, “Personal Communication.”

[75] J. Geusebroek and A. Smeulders, “The Amsterdam library of object

images,” International Journal of Computer Vision2, vol. 61, no. 1,

pp. 103–112, 2005.

[76] B. Leibe and B. Schiele, “Analyzing Appearance and Contour Based Meth-

ods for Object Categorization,” in International Conference on Computer

Vision and Pattern Recognition (CVPR’03), (Madison, Wisconsin), 2003.

[77] Y. LeCun, F. J. Huang, and L. Bottou, “Learning methods for generic

object recognition with invariance to pose and lighting,” in Proceedings

BIBLIOGRAPHY 137

of the 2004 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, 2004. CVPR 2004., pp. 97–104, IEEE, 2004.

[78] S. A. Nene, S. K. Nayar, and H. Murase, “Columbia Object Image Library

(COIL-100),” technical report, Columbia University, 1996.

[79] A. Oliva and A. Torralba, “Modeling the Shape of the Scene: A Holistic

Representation of the Spatial Envelope,” International Journal of Com-

puter Vision, vol. 42, pp. 145–175, May 2001.

[80] J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba, “SUN Database:

Large-scale Scene Recognition from Abbey to Zoo,” in IEEE Conference

on Computer Vision and Pattern Recognition, 2010.

[81] A. Torralba and A. Oliva, “Statistics of natural image categories,” Net-

work: Computation in Neural Systems, vol. 14, pp. 391–412, Aug. 2003.

[82] A. Torralba, “Contextual Priming for Object Detection,” Int. J. Comput.

Vision, vol. 53, pp. 169–191, July 2003.

[83] W. Landecker, M. D. Thomure, L. M. A. Bettencourt, M. Mitchell, G. T.

Kenyon, and S. P. Brumby, “Interpreting Individual Classifications of Hi-

erarchical Networks,” in Computational Intelligence and Data Mining -

CIDM 2013, Special session on Interpretable Systems in Machine Learn-

ing., 2013.

[84] “Source code for the Glimpse model.” http://web.cecs.pdx.edu/

~thomure/glimpse/.

[85] C. Bishop, Pattern Recognition and Machine Learning. Springer, Oct.

2006.

BIBLIOGRAPHY 138

[86] S. K. Shevade and S. S. Keerthi, “A simple and efficient algorithm for

gene selection using sparse logistic regression,” Bioinformatics, vol. 19,

pp. 2246–2253, Nov. 2003.

[87] D. Mladenić, J. Brank, M. Grobelnik, and N. Milic-Frayling, “Feature se-

lection using linear classifier weights: interaction with classification mod-

els,” in Proceedings of the 27th Annual International ACM SIGIR Confer-

ence on Research and Development in Information Retrieval, 2004.

[88] P. Burt and E. Adelson, “The Laplacian Pyramid as a Compact Image

Code,” IEEE Transactions on Communications, vol. 31, pp. 532–540, Apr.

1983.

[89] D. Forsyth and J. Ponce, Computer Vision: A Modern Approach. Prentice

Hall, Aug. 2002.

[90] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,”

International Journal of Computer Vision, vol. 60, pp. 91–110, Nov. 2004.

[91] D. J. Heeger, “Normalization of cell responses in cat striate cortex.,” Visual

neuroscience, vol. 9, pp. 181–97, Aug. 1992.

[92] O. Schwartz and E. P. Simoncelli, “Natural signal statistics and sensory

gain control.,” Nature neuroscience, vol. 4, pp. 819–25, Aug. 2001.

[93] “Source code for the HMAX and SLF models.” http://cbcl.mit.edu/

software-datasets/pnas07/.

[94] N. Pinto, Z. Stone, T. Zickler, and D. Cox, “Scaling up biologically-

inspired computer vision: A case study in unconstrained face recognition

BIBLIOGRAPHY 139

on facebook,” in CVPR 2011 Workshop on Biologically-Consistent Vision,

pp. 35–42, IEEE, June 2011.

[95] A. Saxe, P. W. Koh, Z. Chen, M. Bhand, B. Suresh, and A. Y. Ng, “On

random weights and unsupervised feature learning,” in NIPS 2010 Work-

shop on Deep Learning and Unsupervised Feature Learning, 2010.

[96] Y. Freund and R. Schapire, “Experiments with a new boosting algorithm,”

in Proceedings of the Thirteenth International Conference on Machine

Learning, pp. 148–156, 1996.

[97] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust

face recognition via sparse representation.,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 31, pp. 210–27, Feb. 2009.

[98] J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. Huang, and S. Yan, “Sparse

Representation for Computer Vision and Pattern Recognition,” Proceed-

ings of the IEEE, vol. 98, no. 6, pp. 1031–1044, 2010.

[99] S. S. Chikkerur, C. Tan, T. Serre, and T. Poggio, “An integrated model

of visual attention using shape-based features,” tech. rep., Massachusetts

Institute of Technology, Cambridge, MA, June 2009.

[100] A. Coates and A. Y. Ng, “Learning Feature Representations with K-

means,” in Neural Networks: Tricks of the Trade (G. Montavon, G. B.

Orr, and K.-R. M uller, eds.), Springer, 2nd ed., 2012.

[101] S. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on

Information Theory, vol. 28, pp. 129–137, Mar. 1982.

BIBLIOGRAPHY 140

[102] D. Sculley, “Web-scale k-means clustering,” in Proceedings of the 19th

international conference on World wide web - WWW ’10, (New York, New

York, USA), p. 1177, ACM Press, 2010.

[103] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-

plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,

“Scikit-learn: Machine Learning in Python,” Journal of Machine Learning

Research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[104] T. Serre, M. Kouh, C. Cadieu, U. Knoblich, G. Kreiman, and T. Poggio,

“A Theory of Object Recognition: Computations and Circuits in the Feed-

forward Path of the Ventral Stream in Primate Visual Cortex,” tech. rep.,

Massachusetts Institute of Technology, Cambridge, MA, 2005.

[105] T. Kohonen, “Improved versions of learning vector quantization,” in 1990

IJCNN International Joint Conference on Neural Networks, pp. 545–550,

IEEE, 1990.

[106] S. Lazebnik and M. Raginsky, “Supervised learning of quantizer codebooks

by information loss minimization.,” IEEE transactions on pattern analysis

and machine intelligence, vol. 31, pp. 1294–309, July 2009.

[107] D. J. Field, “Relations between the statistics of natural images and the

response properties of cortical cells.,” Journal of the Optical Society of

America. A, Optics and image science, vol. 4, pp. 2379–94, Dec. 1987.

[108] P. Schneider, M. Biehl, and B. Hammer, “Distance learning in discrimina-

tive vector quantization.,” Neural computation, vol. 21, pp. 2942–69, Oct.

2009.

BIBLIOGRAPHY 141

[109] Y.-L. Boureau, F. Bach, Y. LeCun, and J. Ponce, “Learning mid-level fea-

tures for recognition,” in Computer Vision and Pattern Recognition 2010,

pp. 2559–2566, IEEE, June 2010.

[110] N. Karampatziakis and J. Langford, “Online Importance Weight Aware

Updates,” in Proceedings of Uncertainty in Artificial Intelligence (UAI-11),

(Corvallis, Oregon), pp. 392—-399, AUAI Publishers, 2011.

