
Situate: An Agent-Based System for Situation Recognition

by
Max Henry Quinn

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in

Computer Science

Dissertation Committee:
Melanie Mitchell, Chair

Ameeta Agrawal
Dan Hammerstrom

Feng Liu

Portland State University
2021

Abstract

Computer vision and machine learning systems have improved significantly in re-

cent years, largely based on the development of deep learning systems, leading to

impressive performance on object detection tasks. Understanding the content of im-

ages is considerably more difficult. Even simple situations, such as “a handshake”,

“walking the dog”, “a game of ping-pong,” or “people waiting for a bus”, present sig-

nificant challenges. Each consists of common objects, but are not reliably detectable

as a single entity nor through the simple co-occurrence of their parts.

In this dissertation, toward the goal of developing machine learning systems that

demonstrate properties associated with understanding, I will describe a novel system

for performing visual situation recognition. Given a description of a situation and a

small labeled training set, the system, called Situate, learns object appearance models

as well as a probabilistic model capturing the situation’s expected spatial relation-

ships. Given a new image, Situate uses its learned models and an array of agents

to engage in an active search of its input to find the most consistent correspondence

between the model of the situation and the content of the image. Each agent develops

a possible correspondence between the model and the input, while Situate allocates

computational resources to the agents such that promising solutions are developed

early, but alternative correspondences are not ignored.

I will compare Situate to a more traditional computer vision approach that relies

on the detection of constituent objects of a situation, as well as to a related image-

retrieval system based on “scene graphs”. I will evaluate each method on the situation

recognition task and in the context of image retrieval. The results demonstrate the

value of a feedback system between image content and a model of that content.

i

Acknowledgements

Completing this work would not have been possible without the support of my

friends and family. In particular, I thank my partner Deb Healy, my parents Bill

Quinn and Suzy Q, and my sister Amy. They have all been supportive and patient

beyond reason.

I would also like to thank my advisor, Melanie Mitchell, for her support and

for her ability to bring kind and generous students into her fold. In particular, Will

Landecker, Mick Thomure, and Jordan Witte have all been dear friends and invaluable

colleagues at every step.

ii

Contents

1 Introduction 1
1.1 Background . 4
1.2 Situate and situation recognition . 9
1.3 Walk-through of an agent evaluation 14
1.4 Related work . 17

1.4.1 Methods related to object recognition and localization 18
1.4.2 Tasks related to situation recognition 25

2 Function of a Single Situate Agent 35
2.1 Structures and procedures . 35

2.1.1 Implementation and parameter setting 38
2.2 Evaluation of the initial Situate agent 47

2.2.1 Sources of improvement . 52

3 Improving the Situate Agent 57
3.1 Classifier improvements . 57

3.1.1 IOU regression . 64
3.1.2 Bounding box regression . 66

3.2 Support functions . 73
3.2.1 Internal support . 77
3.2.2 External support . 79
3.2.3 Combined internal and external support 88

3.3 Evaluation of the updated Situate agent 90

4 Managing Multiple Situate Agents 95
4.1 Multi-Agent Approach . 95

4.1.1 Differences from MCTS . 103
4.2 Evaluation of grounding performance 106

5 Applications and Additional Situations 108
5.1 Situate for retrieval . 108
5.2 Additional Situations . 114

6 Discussion and Future Work 124

A Additional Experiments 133
A.1 Full Situation Localization and Retrieval 133

iii

List of Figures

1.1 Several examples of the “dog-walking” situation. 9
1.2 Several examples of atypical instances of the “dog-walking” situation 13
1.3 The state of a Situate agent during evaluation 15
1.4 The state of a Situate agent during evaluation (continued) 16

2.1 Examples of bounding boxes that localize objects with varying quality 39
2.2 The relationship between classifier response and localization quality . 45
2.3 The distribution of external support scores 46
2.4 Localization quality for several situation recognition methods 49
2.5 Significance of differences in localization quality for several methods . 50
2.6 Localization quality for several lesioned versions of Situate 54
2.7 Significance of differences in localization quality for lesioned Situate . 56

3.1 Examples of low quality Workspaces generated by Situate agents . . . 59
3.2 Correlation between classifier output and ground truth IOU scores . . 61
3.3 The expected value of increases in IOU as a function of differences in

SVM classification scores . 63
3.4 The probability of an increase in IOU as a function of differences in

SVM classification scores . 64
3.5 The probability of an increase in IOU as a function of differences in

estimated IOU . 65
3.6 The expected value of increases in IOU as a function of differences in

estimated IOU . 65
3.7 The difference in IOU before and after bounding box regression using

training data with varying ground truth IOU 68
3.8 The probability and expected value of changes in IOU using two ver-

sions of bounding box regression . 69
3.9 The probability and expected value of changes in IOU using multiple

bounding box regression models in combination 70
3.10 Object localization quality for SVM and IOU estimation versions of

the Situate agent . 72
3.11 Significance of the differences in localization quality between classifi-

cation methods . 72
3.12 Significance of the differences in localization quality between classifi-

cation methods (continued) . 73
3.13 Estimating odds ratios using the AUROC of the IOU estimator . . . 80
3.14 The relationship between predicted localization scores using contextual

evidence and actual localization quality 87

iv

3.15 The relationship between situation localization quality and the number
of calls to the classifier for the original and updated Situate agent . . 91

3.16 The object localization quality for the two versions of the Situate agent
and Faster-RCNN on the dog-walking situation 92

3.17 Examples of Workspaces with high confidence that did not effectively
localize the objects of a situation that was present in the image . . . 93

3.18 Examples of Workspaces with low confidence of a situation that was
present in the image . 94

4.1 Characteristic errors made by Situate agents 97
4.2 Example of Situates multi-agent evaluation of an image 101
4.3 Object grounding quality comparison between Faster-RCNN, a single

Situate agent, and the multi-agent implementation of Situate 107

5.1 ROC and PR curves for image retrieval of the dog-walking situation
using Situate, Faster-RCNN and IRSG 111

5.2 ROC and PR curves for image retrieval of the dog-walking situation
using Situate, Faster-RCNN and IRSG with challenging negative images113

5.3 Images for which Faster-RCNN produced high situation scores for the
ping-pong situation . 116

5.4 Images for which Situate produced high situation scores for the ping-
pong situation . 117

5.5 Images for which Faster-RCNN produced high situation scores for the
handshaking situation . 118

5.6 Images for which Situate produced high situation scores for the hand-
shaking situation . 119

5.7 Localization quality for Situate and Faster-RCNN on the ping-pong
situation . 120

5.8 Localization quality for Situate and Faster-RCNN on the handshaking
situation . 120

5.9 ROC curves for image retrieval using Situate and Faster-RCNN on the
ping-pong and handshaking situations 121

5.10 Failures to correctly ground the handshaking situation by Faster-RCNN
and Situate . 122

5.11 Failures to correctly ground the ping-pong situation by Faster-RCNN
and Situate . 123

A.1 Localization quality of the full situation bounding box for the dog-
walking situation . 134

A.2 Highest scoring instances of the full situation detected by a full-situation
localization system . 135

A.3 High scoring bounding boxes for negative instances of the dog-walking
situation generated by the full situation localization system 136

v

A.4 Low scoring bounding boxes for positive instances of the dog-walking
situation generated by the full situation localization system 137

vi

List of Tables

3.1 A comparison of bounding box sampling methods, scoring methods,
and the discriminative capacity of density values 83

4.1 Psuedocode for Situate’s agent management method. 105

vii

Chapter 1

Introduction

This dissertation addresses the problem of “visual situation recognition”. This task

requires a system to identify several objects in an image that have a particular rela-

tionship to one another. An illustrative example is “dog-walking”, wherein an image

contains a person walking a dog, a dog, a leash, and clutter, such as buildings, trees,

cars, or other people. A correct solution to the problem consists of a binary indi-

cator of whether or not an input contains the situation, and labels and sufficiently

precise specifications of the image regions that contain the objects of the situation.

An example of the situation recognition task can be found in Figure 1.1.

Despite significant strides in machine learning systems in recent years, situation

recognition is an example of a problem that remains difficult, and is illustrative of

several challenges that I anticipate will become increasingly significant as the field

develops in coming years. My proposed work is meant to explore possible tools for

addressing some of these anticipated challenges and to use the problem of visual

situation recognition as a test bed.

• Machine learning systems will need to provide evidence used to make decisions.

The broad adoption of machine learning systems has come quickly, but there

remains a long standing concern over the opaqueness with which decisions are

made and how to understand errors. For critical tasks, which range from control

systems for vehicles to removing users from a social media platform, depending

on the priorities of the user, understanding how decisions are made makes it

1

possible for users of machine learning systems to take responsibility for those

decisions, as well as to identify the source of errors and to address them. Situa-

tion recognition emphasizes approaches that address this concern by requiring

that the responses from a system provide supporting evidence for a decision by

identifying constituent parts, including parts that are difficult to identify with-

out the use of context and inference (such as the leash object in a dog-walking

situation).

• The decision tasks assigned to machine learning systems will become more com-

plex. Instead of identifying individual objects, the relationships between objects

will become increasingly important. Current approaches to recognition rely on

massive data sets on which to train, the existence of which cannot be relied upon

when the object or situation of interest is defined by complex or rare interac-

tions between objects. For problems that will be important moving forward,

we may need to leverage understanding interactions rather than just observing

instances during the learning phase. The task of situation recognition requires

solutions that take relationships into account, as much of the clutter in an input

may be made up of object types that can be relevant to the situation, but are

not involved for the particular input. For example, Figure 1.1 shows examples

of the dog-walking situation where the clutter includes other people that are

not involved in the dog-walking situation.

• Machine learning systems will need to provide richer responses. As it stands, the

outputs of classifiers are usually trained to provide binary responses, indicating

inclusion or non-inclusion of an instance in a category. Outside of training,

the actual responses are generally presented as probabilities, where values close

to zero or one are easy to interpret, but middling values have an ambiguity.

When a human responds that they are unsure, we generally expect that they

2

can provide additional information, either with respect to what was confusing

or what additional information would make the decisions clearer. This lets us

know how to proceed with whatever task required the decision. If a person

can’t read a sign, it might be because it’s too far away, or it might be because

it’s in a language that the reader does not know. These situations are differ-

ent, and likely require a different response. However, classifiers don’t respond

with explanatory information. There are many reasons for failed classification,

such as significant noise in an input or an input being from outside of known

categories.

The main contribution of this dissertation is the demonstration of a prototype

system, called Situate, that is meant to solve problems like situation recognition,

where relationships between objects matter, and responses must include a record of

the evidence used to make a decision. Situate is a system designed to be extended

such that it can integrate structured, prior knowledge with patterns learned from

data, and will eventually provide conditional responses with caveats of the form “this

is an instance of the query given the replacement of condition A with condition

B”. That is, it will be able to generalize from known situations to related, but

previously unobserved, situations. For example, if Situate knows the situation “dog-

walking” to consist of a dog, leash, and a person walking, but also can identify people

riding bicycles, a possible response to a “dog-walking” situation query might include

something like “yes, this is an instance of the query given the replacement of a person

walking with a person riding a bike”.

To build an understanding of an input, Situate utilizes a collection of agents; each

representing a hypothesis regarding the content of the input and a series of resulting

predictions. The agents’ predictions can be evaluated using classification systems

and the findings can be compared against expectations about the situation that is

3

contained in a graph and informed by labeled training data. Finally, the hypotheses

can develop into a structure that functions as both a decision and an explanation.

By utilizing multiple agents, Situate can compare multiple interpretations of an input

and respond with the one that it is most confident in.

1.1 Background

Much of machine learning research and attention in the past several years has focused

on “deep learning,” roughly understood as the use of multi-layered artificial neural

networks for a variety of discrimination tasks. The success of deep learning systems is

somewhat surprising because these models are essentially the same as those proposed

as early as the 1960s, and studied with fervor during the 1980s [23]. The difference

between current models and their earlier counterparts is largely a) the ability to take

advantage of GPUs for massively parallel floating point operations, b) the use of an

activation function that makes the networks especially compatible with GPUs, c)

the use of a stochastic training mechanism called “dropout,” which trains a subset

of the network’s nodes during each iteration of a long training process, and d) the

availability of massive data sets upon which to train. These changes are relatively

simple (in terms of algorithms), but have led to a profound increase in effectiveness.

However, at their core, these networks are feed-forward functions that map from

an input to highly constrained outputs. This structure applies a fixed set of linear

pattern detection functions and simple non-linear activation functions that work well

for recognition tasks, but struggle with what we would recognize as reasoning tasks.

When considering inputs of variable length, neural networks can struggle as their

topology defines how much of the input can be processed at one time. When the

difficulty of input instances vary, neural network use their full architecture for every

input. Furthermore, because feed-forward networks are trained using error back-

4

propagation, because the topology of the network needs to be able to process the

most difficult of its likely inputs, and because back propagation needs more data as

the network increases in complexity, very large data sets and training periods are the

norm.

The limitations of feed-forward networks have not prevented researchers from

utilizing deep networks in solving interesting reasoning problems. This is usually

done by a) somewhat awkwardly adjusting the networks to encode more complex

outputs, or b) using the deep network as a component in an assembly of systems. In

both cases, the systems tend to be very specialized. A significant example of how deep

networks are used in systems that need to make complex decisions is AlphaGo, the

first artificial intelligence system to defeat a high-level human Go player. This system

used deep learning, but not by mapping board states to moves likely to be made by a

good player. Selecting moves in Go is particularly difficult because there are a large

number of legal moves at any time, and players are able to consider many moves in the

future while playing. Players are able to do this because the vast majority of moves

are clearly not viable, so can be eliminated from their consideration; and frequently

the game falls into a sequence where many turns are easily predicted before the board

state again requires serious consideration.

A purely feed-forward neural network approach would require large collections of

network nodes to consider possible moves for a particular board state, some large

number of layers to make an evaluation of that board state, and then the structure

repeated to consider subsequent moves that might follow. Looking ahead more moves

would be expressed in the depth of the network. Feed-forward networks have a con-

stant evaluation time, which is a function of the number of nodes in the network,

which means the vast majority of computation time would be spent on moves and

sequences that should be easily rejected.

5

Instead of a purely feed-forward architecture, AlphaGo’s deep network classifica-

tion of board-states can be interpreted as “generally good” or “generally bad”. The

space of possible moves is explored using Monte Carlo Tree Search, a stochastic system

that uses the approximation of board-state quality to focus computational resources

in promising directions and deemphasize less promising directions [3, 32]. This com-

bination of specialized classification systems and additional structure addressed the

particular limitation of purely feed-forward networks for planning long sequences of

moves.

Combining the classification ability of deep networks with additional structure is

also the approach used by Situate for the problem of situation recognition. In addition

to wanting to navigate complex hypothesis spaces that make situation understanding

challenging, we would like Situate to have properties that will be important for ad-

dressing the aforementioned challenges for machine learning. Some of the properties

that we hope to foster include:

Understandable decisions

One of the ways that a classifier can fail is to provide a confident but wrong

answer. Most classifiers operate as a “black-box”, producing a classification

without an interpretable indication of how the classification was made or what

evidence the system used to support the erroneous classification. This makes it

difficult to trust classifications and makes it difficult to know what to change

to improve the system. If systems expose their decision making process in an

understandable way, humans will be able to address the problem, by correcting

properties of the training set that led to errors, enforcing explicit rules, or

accepting the error as something that does not require explicit correction.

Meaningful confidence reporting

Another way that classifiers can fail is to provide an inconclusive response.

6

Users often interpret these responses as “low confidence,” but the contributing

factors to a low confidence decision are left unclear. The system may have

interpreted an input instance as an edge case between known categories, may

have seen an instance as a poor example of a known category, or the instance

may have been from an unknown category. What a human or system does with

the instance may depend on these factors, but the information is not typically

available. Classifiers that provide additional information about the final state

of a decision can address this limitation.

The ability to integrate human prior knowledge

Often classification is a combination of strict rules and something more like sub-

jective decision making. For example, harassment in social media posts might

be recognized by the inclusion of any of a set of specific words or sequences, but

something more like sentiment analysis may also indicate harassment. When

humans want to provide this sort of information to a machine learning system,

it is often done through curation of massive data sets. This makes it difficult

to know if the rules that we hope the machine learning systems are learning are

actually being learned as strict, rather than just approximated in most situa-

tions.

Consider the problem of recognizing the dog-walking situation. It requires an

enormous amount of data to train classifiers to recognize dogs and people. How-

ever, once the object of detection is something more complex, such as the re-

lationship between dogs and people in an image, it is less clear that available

data sets are large enough to allow for a network to learn a) to detect people,

b) to detect dogs, c) to detect leashes, and d) to encapsulate the variance in

configurations that we recognize as “dog-walking”. Even if the data is available,

the time spent re-learning constituent objects is largely wasted, as classifiers for

7

these objects exist.

An ideal system would allow for the efficiency and reliability of rule specification,

but with access to the classification ability of neural network-based systems.

We could specify that dogs and people are both present and recognizable via

classifiers trained on those object types specifically, are near one another, are

usually walking in the same direction, and have a leash between them. This

could be expressed in a concept graph requiring little change to the object

classifiers involved. By allowing a human to define the structure of a situation,

the machine learning system is able to bypass what would likely be a long

retraining process.

A flexible trade-off between run-time and response quality

When using a machine learning system to make a decision, the completion of

the decision making process is binary, complete or incomplete. If provided with

more run time to make a particular decision, the system does not improve its

response (by doing something like ruling out additional alternative explanations

for observations), and if less time is provided, it will not be able to provide a

partial response (such as a low confidence, preliminary classification). Ideally, a

system would have a running estimate of its response that would become more

confident over time, allowing the time spent on a problem and the confidence of

the response to be variable depending on the importance of the decision being

made.

Flexible adherence to classification criteria

Although the response to a classification task may be negative, it is a valuable

property of human cognition that we are able to see that small deviations from

our prototype would allow for inclusion of an instance into a category. We

interpret with flexibility, and can communicate that information. For example,

8

Figure 1.1: Several examples of the “dog-walking” situation. Each image contains
one dog-walker, one dog, and a leash connecting the two. Clutter is made up of other
people, cars, trees, and other everyday objects. (Best viewed in color)

consider Figure 1.2. If asked if these images depict people walking dogs, an

optimal response might be akin to “No, but they are close in the following

way...” or “Yes, given the following relaxations...”.

Situate takes an agent-based approach to solving complex problems. Much of its

architecture is based on the “Copycat” program [16], a system developed by Melanie

Mitchell and Douglas Hofstadter that made analogies between abstract, symbolic

“situations”. Situate uses neural networks to interface real data and a symbolic space.

It also has similarities to Monte Carlo Tree Search, which shifts the distribution of

computational resources toward partial solutions based on their estimated quality.

The architecture of Situate helps avoid the difficult encoding problems associated

with genetic algorithms, and is compatible with desirable features described above

(such as flexible decision making and the inclusion of prior knowledge) that are not

a natural part of Monte Carlo Tree Search.

1.2 Situate and situation recognition

Situate is an agent-based system for recognizing visual situations, where situation

refers broadly to a named concept that relates to one another a collection of objects

and their properties. An agent refers to a structure that contains information about

the input that influences how the agent operates. Situate uses multiple agents that

9

each store different information about the input and therefore behave differently from

other agents. Situate allocates computational resources to the agents based on the

quality of their findings. This allows Situate to consider multiple interpretations of an

input, and to provide insight into the final decision by making available information

gathered by other agents, thus providing a record of alternative interpretations that

were rejected.

Visual situation recognition is a task where an image is provided to a system that

generates a numerical score indicating its confidence that the situation is depicted in

the image, as well as providing the evidence that was used to satisfy the situation

requirements.

10

The situation recognition problem is: given an input and a situation definition,

determine if the content of the input satisfies the situation definition. Further-

more, provide a situation grounding, a structure indicating the evidence that

appropriately supports a positive decision. For visual situation recognition, the

input is an image and the situation grounding consists of bounding boxes that

localize the constituent objects of the situation.

The situation definition is a graph that can specify: included objects, proper-

ties of objects, and relationships between objects. In the case of “dog-walking”,

the simplest situation specification requires that there be a person, a dog, and a

leash, and that the person and dog be connected by the leash.

The evidence for the decision consists of a set of bounding boxes that localize

the constituent objects and satisfy a quality threshold defined by a ratio between

intersection and union of the bounding box predicted by the system and a human-

defined ground truth bounding box. More precisely, for ground truth bounding

box Bgt and a predicted bounding box Bp,

IOU(Bgt, Bp) =
area(Bgt ∩Bp)

area(Bgt ∪Bp)
.

An object that is correctly labeled and is specified by a bounding box with an

IOU score with the ground truth box over .5 is considered sufficiently detected. a

aThe .5 intersection over union threshold is used commonly in localization tasks. For exam-
ple: [29].

The primary example situation used while developing Situate was the visual sit-

uation “dog-walking”, wherein a dog and a person are connected by a leash. It has

been a useful example situation as it demonstrates several of the challenges that make

11

situation detection distinct from simple object detection, including frequent distrac-

tor objects that are similar to one of the situation objects (people) and an object

that is difficult to recognize without context (leash). Figure 1.1 shows examples of

the dog-walking situation.

Situation recognition, in itself, is a challenging task, requiring the recognition of

constituent objects, their properties, and relationships. The variability in properties

and the combinations of objects that make up relationships leads to a large number

of possible interpretations of any input, only a few of which may lead to the correct

detection of the situation of interest. Figure 2.1 shows an example of the dog-walking

situation, as well as a sufficient detection and several insufficient detections of the

situation. There are several ways in which a detection can fail, including the detection

of an object that might have the same label as an object in the situation, but which

is not actually involved in the situation (as can be seen in Figure 2.1d).

Situation recognition is meant to be a problem that cautiously approaches issues

of understanding in machine learning. Some of the properties we associated with

understanding a problem and an input include the ability to provide evidence sup-

porting a response, the confidence the system has in that response, and the ability to

provide flexible responses. For example, we would like Situate to leverage the simi-

larity between the dog-walking situation and some closely related situations, such as

the non-prototypical instances of “dog-walking” shown in Figure 1.2, and to express

what relaxations of the situation definition are required to accept the input as an

instance of a particular situation.

Situate approaches the problem by trying to construct solutions, rather than eval-

uate all possible solutions. It does this by finding relevant objects and using informa-

tion about the situation to direct the search for related objects and properties that

can be assembled into a known situation. This approach allows Situate to expand

12

Figure 1.2: Several examples of atypical instances of the “dog-walking” situation,
where the situation specification does not strictly apply. For each of these images,
we would like Situate to recognize the similarity to “dog-walking” and to be able to
indicate what relaxations would allow for the instance to be identified as such. The
strength of the required relaxations (dog-walker→ dog, dog-walker→ person on bike,
dog → two dogs, dog → cheetah) should influence how close the input is to being
seen as an instance of “dog-walking”. (Best viewed in color)

on findings quickly, making it possible to find positive cases quickly, and to avoid

exhaustive searches.

Situate uses a pool of agents, each having a state (called the Workspace) that con-

tains its beliefs about the input, a method for generating hypotheses about the input

(called the situation model), and access to methods for evaluating hypotheses (such

as a set of image classifiers). Each agent tries to build a solution based on the infor-

mation it has, and Situate allocates computational resources to those agents based

on how promising their partial findings are, and how much progress they are mak-

ing. Agents that are productive and have promising findings are allocated additional

resources early, hopefully finding a solution quickly. Agents that do not continue

to make progress are deemphasized in the resource allocation process. In the case

of visual situation recognition, the most computationally expensive action is a call

to an object classifier. A single call to a classifier and any necessary updates to an

agent’s Workspace make up a single update iteration. For this reason, computational

resources, calls to a classifier, and iterations are used somewhat interchangeably.1

1In practice, there are differences between iterations, calls to the classifier, and computational
resources. Each iteration consists of a call to the classifier and potentially an update to the agent’s

13

1.3 Walk-through of an agent evaluation

Situate manages multiple agents, each of which have their own state, have their own

sampling priorities, and may produce different situation groundings. The method for

allocating resources to agents is discussed later in chapter 4. Before describing the

structures and methods of Situate in detail, it can be helpful to see what it does in

practice by seeing what a single agent does. Figures 1.3 and 1.4 show the state of

a Situate agent at several points during its evaluation of an input. It shows objects

detected, how it focuses on specific image regions as its Workspace develops, and an

example solution.

Workspace and associated structures, but also may not involve any update. Additionally, Situate
agents keep a record of recent calls to the classifier so that, if a call is sufficiently similar to an earlier
call, the results of the earlier call are returned instead. This reduces the computational cost of calls
to the classifier, but are still counted as iterations. The assumption that calls to the classifier make
up the majority of the computational cost associated with an iteration is true given the classifier
being used and the cost of updating the model of the situation when the Workspace changes, but
may not be true if different classifiers and models of the situation were involved.

14

Figure 1.3: Column (a) shows an input image and the prior distributions for the
objects in the dog-walking situation. The prior distributions include the location
distribution (here represented as a gray-scale image with white indicating regions
where the center of the bounding box is likely to occur), shape distribution, and size
distribution for each of the objects in the situation.

Situate makes predictions by sampling bounding box parameters from the sit-
uation model. Column (b) shows a sampled bounding box for the leash object. The
sample appears in blue on the image and spatial location distribution. The sample’s
shape and size are represented with a blue dot on the shape and size distribution
curves. The sampled image region is sent to the appropriate classifier for evaluation.

If the classifier response is over a threshold, the object is added to the agent’s
Workspace. Column (c) shows a red bounding box for the dog-walker class that has
been added to the Workspace. The bounding box appears on the image, the spatial
location distribution, and the shape and size distributions. With an addition to the
Workspace, the situation model updates its expectations about the other objects in
the situation. Notice that the expected locations for the dog and leash bounding
boxes have narrowed. (Best viewed in color)

15

Figure 1.4: Columns (d) and (e) show a later state in the evaluation as more
objects have been found and the situation model has further narrowed down on likely
parameters of bounding boxes for objects in the image.

Situate continues to sample from these distributions repeatedly. As the distri-
butions have narrowed, the samples are more likely to be small deviations from what
has already been added to the Workspace. This allows the contents of the Workspace
to be updated with higher quality bounding boxes for the constituent objects. This
higher quality is a function of both the confidence of the classifier and consistency
between objects (in terms of the likelihood of their bounding box parameters with
respect to the situation model). Column (f) shows the final state of the Workspace.
Each of the objects of the situation appear to have been localized quite well. The
dog-walker and leash have been localized sufficiently to satisfy the .5 IOU threshold
requirement, but the dog object has not been (as the bounding box is a bit too large
and produced an IOU of .39 with the ground truth bounding box). This example
result highlights the difficulty of the situation recognition task even for relatively
simple examples of the situation.(Best viewed in color)

16

1.4 Related work

The situation recognition task is related to common vision tasks in machine learn-

ing. Like image classification, in which images are labeled with a binary indicator of

whether or not a particular object type is present in an image, situation recognition

is concerned with mapping the content of images from pixels to something more sym-

bolic. However, situation recognition is also concerned with the relationships between

the objects represented in the image. Automatic image captioning, a task in which

natural language descriptions of the contents of an image are generated, is also inter-

ested in both the content and the relationships between objects in images. However,

Situation recognition differs from image captioning in that it limits the problem to

symbolic relationships that are expressed graphically, rather than intermingling the

problem with natural language, its generation, and its evaluation.

Some computer visions tasks overlap substantially with situation recognition, but

are often quite a bit more specialized, which can make the tasks more immediately

applicable to problems that exist for the fields that generated them, but also can lead

to methods that are hard to generalize and apply elsewhere. For example, the action

recognition task tries to identify the action that a person is engaging in, often relating

to other objects, or being defined by body position. The actions to be recognized could

be expressed as a situation recognition graph relating a person’s body parts to one

another and to other objects, but because the action recognition task is almost always

related to the human body, solutions often tend toward modeling the human body

quite specifically.

There are several tasks and methods that relate to the situation recognition task

and to Situate in ways that I believe are worth noting. Below, I discuss several such

tasks and methods, and their similarities to situation recognition and Situate.

17

1.4.1 Methods related to object recognition and localization

Object localization

For the object localization [9] task, the input consists of a label and an image

that may or may not contain an object to which the label would be appropriately

applied. A correct output specifies the location of the object in the image. The

structure of the specification can vary, but commonly it is a bounding box that

contains the object with a sufficient overlap with a human-provided ground-

truth bounding box. A common measure of quality (intersection over union)

and threshold for sufficient localization (.5) matches the standard for correct

evidence in the visual situation recognition task as defined.

The difference between situation recognition and repeating the object localiza-

tion task for each object in a situation is that situation recognition requires the

selection of the correct instances of objects in the situation, which is indicated

by the relationships between objects.

Like much of the work related to semantics in images, attention in computer

vision, and automatic image labeling; Situate uses object localization as a start-

ing point, but includes additional selection criteria and search mechanisms that

are task specific, such as in [19].

The usefulness of a purely object localization approach to detecting the entirety

of a situation, represented as the minimal bounding box that contains all of

the objects of the situation, is briefly evaluated in chapter A.1, although the

evaluation metrics are discussed in chapters 2.1.1 and 5.

Region Convolutional Neural Network (R-CNN)

A successful and commonly used method for object localization is based on

creating a large set of potential bounding boxes for objects and then sending

18

image regions specified by those bounding boxes to an object classifier. The set

of bounding boxes may be the result of a complex preprocessing step, or may be

from a large set of predetermined bounding boxes that are not a function of the

image content. The system then returns the bounding boxes associated with the

highest classifier confidences. There is variation between these systems in the

form of a) the method used for proposing bounding boxes and b) the classifier

used to evaluate the associated image regions. R-CNN established this pairing

of mechanisms and was briefly the gold standard for image localization [12]. It

combined an existing proposal mechanism called “selective search” [34] with an

existing deep neural network for classification [21], as well as a bounding box

regression system, which uses convolutional neural network features to tune the

parameters of the bounding box to more accurately localize a detected object.

Subsequent projects integrated the method for generating a collection of bound-

ing box proposals and the method for classifying those boxes by using the same

deep convolutional network for both phases. Faster-RCNN [28] does this by

applying a deep convolutional network to an input image, but stopping before

features from everywhere in the image have been combined and classified, pro-

viding a set of useful features that retain some region specificity. A set of regions

are defined and evaluated with respect to the feature activations that lie within

their receptive fields. The features are used to generate an objectness score.

These scores are used to select boxes likely to contain objects. The rest of the

classification process is then applied to those boxes that have high scores. This

produces a confidence value for each of the boxes for one of the known object

types.

After the bounding boxes have been classified and scored, R-CNN and Faster-

RCNN use bounding box regression to tune the parameters of the box for the

19

selected object type. Bounding box regression, as described in [12], and in turn

referencing P. Felzenszwalb, et al. [10], uses a series of regressors that predict the

difference between a proposed bounding box ba and the ground truth bounding

box bgt for an object in terms of several parameters. The regression targets are

these differences, expressed as follows:

∆x = (xgt − xa)/wa

∆y = (ygt − ya)/ha

∆w = log(wgt/wa)

∆h = log(hgt/ha).

Where xg indicates the x position of box bg, xa indicates the x position of

box ba, and so on. Given these differences, an improved bounding box can be

constructed as follows:

b∗x = xa + wa∆x

b∗y = ya + ha∆y

b∗w = wae
∆w

b∗h = hae
∆h .

To predict the ∆ values, a linear regressor is trained using ridge regression [15]

to map from the convolutional neural network (CNN) image features extracted

from the image region defined by box ba to each of the regression targets. Data

used to train the regressors consists of bounding boxes that are similar to ground

truth bounding boxes, but differ slightly in their parameterization. Only boxes

with an intersection over union score greater than .6 are used for training, which

20

is to say, boxes that are enclosing their objects of interest fairly well.

After proposed bounding boxes are adjusted, R-CNN does not re-compute the

classification score for the proposed boxes, meaning the bounding box regression

process is only intended to make small adjustments to the width and height of

the bounding boxes, rather than changes significantly change the shape or loca-

tion. The bounding box regression used in Faster-RCNN differs from the above

described procedure in minor ways, such as having a larger set of regressors

from which to select depending on the box’s shape, size, and the initial object

classification.

R-CNN and its descendants return as many instances of recognized objects as

surpass a confidence threshold. To use R-CNN methods for situation recogni-

tion, each constituent object needs to be searched for and an instance of the

object must be selected. For comparison purposes, the selection criteria I used

was to select the most confidently detected instance for each constituent object

of the situation. Then, the geometric mean of those confidences are combined

to produce a single decision value called a situation score.

Overfeat

Overfeat introduced the integration of localization and classification into a sin-

gle, end-to-end system [31]. Images are fed into a single, deep convolutional

network and a large number of bounding boxes are produced. The system uses

the accumulation of bounding boxes to localize objects, rather than by culling

the large set down to a few bounding boxes to evaluate. Overfeat also performs

positive classification on multiple object categories at once. By classifying many

object types, confusion between object types can be reduced. The intuition is

that the correct classification often produces higher confidence than an incor-

rect classification. This allows Overfeat to bypass a “background” class, but

21

requires a very large amount of labeled training data. Essentially, Overfeat

needs to have a model for each object type that might appear in the input to

avoid false detections.

R-CNN and variants are used more often than Overfeat (in terms of citations

and other systems that use one or the other as a pre-processing step), this basic

pipeline remains the state of the art for object localization with convolutional

neural networks. An input image is passed through a system that produces

bounding boxes (often the same CNN used for classification). These boxes are

reconciled in some way that limits how many of them are considered. Each

region is given a classification score.

Active search

An alternative to the feed-forward approach to detection is active search, which

is the sequential analysis of inputs. When the input is a single image, there is

an analysis loop that investigates a region, results from that investigation are

stored, the stored information is used to select the next region for analysis, and

the loop continues until some stopping criteria is met. Situate fits firmly into

the active search category.

Much of the active search literature is associated with robotics research, as

the loop of active search fits naturally with the updating state of the robot

and updating inputs to its sensors. Active search has regained attention in

the general computer vision field in recent years due to the expected benefits

of integrating contextual information into vision tasks, as well as expanding

general interest in computer vision for robotics. The performance of active

search systems is often considered in terms of the number of regions evaluated

before some sort of decision can be made [1, 13].

The above methods utilize variations on a “belief map,” where locations on the

22

map represent the current belief that the object of interest is located there. After

evaluating a proposal, the map is updated. Updates are not just the evaluation

of the location searched, but regions around that location. For example, if the

system is looking for doors on buildings, and it detects features consistent with

a window, it may increase the belief that there may be doors next to or below

the detected window. The maximum over the map is used to select the next

location to be evaluated. The evaluation takes into account the image features

of the window, as well as “context,” which uses previously observed regions

in the image and estimated displacement vectors between those regions and

possible locations for the target object. Gonzalez-Garcia et al. modeled the

estimated displacement vectors for the object of interest during training using

a random forest [1, 13].

In addition to using active search with related objects to locate objects of inter-

est, active search has been used to improve the localization quality of bounding

boxes. Caicedo and Lazebnik show that a reinforcement learning approach can

be used to update a bounding box for an object [2]. Evaluation of active search

methods are often reported in terms of detection accuracy for an object of in-

terest as a function the number of regions analyzed, a method that we also use

to evaluate Situate.

Like Overfeat, Situate avoids using a “background” class, but does so in a way

that is specific to the situation recognition task. Situate is trained with knowledge of a

small number of object types. Background objects can then be confused for objects of

interest, as they cannot be attributed to their correct classes. However, if they do not

have contextually supporting objects, they are rejected as not a part of the situation

of interest. There is a benefit to this approach in that the amount of training data

required for the situation recognition task specifically is dramatically reduced when

23

compared to Overfeat-like systems (as only relevant objects are learned). Instead

of the 1000 classes used in Overfeat, Situate uses only the objects included in the

Situation of interest (although nothing prohibits the inclusion of additional object

types for a more thorough labeling).

Like the active search methods discussed, Situate uses a method for accumulat-

ing context that informs what the system pursues. However, Situate integrates the

situation structure when deciding where to “look”. That is to say, the contextual

evidence that Situate will leverage is provided by a user, or generated as a part of a

separate process, rather than from purely bottom up evidence. This is not always an

advantage, as one might want to specify only the target of the search and have no

input on the process, but separating the two sources of information has advantages.

• First, if there is limited training data for the whole situation, the components

can be learned and the relations specified. For example, atypical situations that

specify objects that can be identified, and relations that are common between

other objects, can be used to define a search. Something like a person walking

a cat where cat replaces dog, as people walking cats is uncommon, but people

walking dogs is relatively common. Essentially, this opens up the system to

explicit knowledge transfer.

• Second, context can be learned separately and used as a known situation, but

the known situations that are reasonable for the system to use can be audited, as

they will not be obfuscated by being embedded within a neural network. This

issue is of particular importance as the methods by which machine learning

systems make decisions are being increasingly scrutinized by those affected by

those decisions 2.

2Metz, Cade “We Teach A.I. Systems Everything, Including Our Biases”, The New York Times,
Nov. 11, 2019

24

1.4.2 Tasks related to situation recognition

Methods for recognizing and localizing individual objects have coalesced into a rela-

tively consistent pipeline, meaning that much of the work related to Situate is related

in one of two ways: first, by similarities in either the definition of tasks beyond sim-

ple object recognition and localization; or second, with respect to the approach to

integrating object detection into a more complex system.

In identifying what makes these systems distinct and interesting, the important

features seem to be: the construction of tasks, the applications for which systems

were originally defined, and their applicability to closely related tasks. Below are

several tasks that are motivated by an interest in multi-component classification or

situation and context based tasks. I believe that some of these tasks are essentially

subsets of situation recognition as I’ve defined it, as they can be expressed in terms

of objects and a simple graph of relationships.

Action recognition

Action and pose recognition have been tasks of interest for some time, often

as part of a pipeline that includes motion capture, pose estimation, and action

recognition. Much of the research in action recognition uses video inputs and

makes significant use of matching video sequences in frequency space. However,

a subset of action recognition tasks, static action recognition, uses still images

and is more similar to the goals of Situate. Static action recognition is gen-

erally associated with estimating the pose of the human body specifically, and

associating it with actions such as walking, running, or athletic activities [14].

Recent work in static action recognition has been focused on applying a number

of well known deep learning models to existing data sets. L. Wang et al. found

state of the art results by combining a deep network that focuses on the person

25

of interest with a network that processed the full scene. The networks were

combined by using a linear combination of the scores from each network [36].

We believe our formulation of situation recognition can account for action recog-

nition in still images, as body position can be expressed in terms of a graph of

body parts and relationships between them, but have not directly applied Situ-

ate to traditional action recognition tasks. We would be interested in exploring

it in the future. The approach of combining networks that process the input at

different scales and are linearly combined was shown to be useful in identifying

actions in images, but the approach does not seem to be generally applicable in

understanding more complex combinations of objects and relationships between

them. However, some of the more traditional approaches of estimating pose,

which involves identifying the components of the body and then classifying the

configuration, is actually quite similar to our general approach toward situation

recognition.

Referring expressions

A referring expression is a phrase that specifies a particular instance of an

object in an image. Usually, the object is not unique based on simply a label,

so requires additional information to uniquely identify it. For example, given

an image that contains two people, one of whom is walking a dog and the other

is sitting on a bench, referring expressions of interest might be “the person

walking the dog” or “the person sitting on the bench”.

The referring expression task generally goes in the direction of expression to

localization. That is, given a referring expression, localize the object of the ex-

pression. The general shape of solutions to these problems involves identifying

objects with labels that occur in the expression, then identifying relational ex-

pressions, and then finding objects that most strongly represent the expression.

26

The identification of objects is performed as in other object localization methods

I’ve discussed, using one of the standard convolutional neural networks.

To score the relational term, there may be separate networks trained for the

term when associating two arbitrary objects, and when associating objects that

are frequently associated by the term, depending on how frequent the relation

and objects are in the training corpus. In either case, the smallest region of the

image that contains both of the objects being considered is cropped and sent

to the appropriate relational classifier. The confidence of this classifier, as well

as the confidences of the component classifiers, are combined to generate a final

score for the object set.

Possible pairs of objects in the image are scored, and the highest scoring pair

is returned as the predicted subject of the referring expression.

Referring expression tasks are interesting and share a lot of the challenges that

are interesting about our formulation of situation recognition. Both include

multiple objects and relations. However, the free-form nature of referring ex-

pressions led it to intersect with natural language processing, and the enormous

number of possible relations has meant that the highest performing methods re-

port low accuracy, even when restricted to very simple expressions that include

only two objects[25].

Additionally, and unfortunately, it appears that the semantics of the expressions

have less influence on the final model accuracy than one would hope. Cirik et

al. [5] investigated the functionality of several state-of-the-art referring expres-

sion recognition systems by providing original and randomly permuted referring

expressions. The permuted expressions caused the systems to select the correct

object only slightly less frequently. For example, the top scoring system selected

the correct object for 68% of trials with a permuted referring expression rather

27

than 71% of the time with the original expression. In fact, when the entire

referring expression is removed and a system returns objects simply in order of

general salience, the object of the referring expression is identified in the top

two responses in 73% of trials. This led the authors to conclude that there is

significant photographic bias in the standard datasets (such as Google-RefExp

[24]).

Our goal with the situation recognition task is to step away from the complex-

ity of the referring expression task, to restrict the problem to clearly defined

relationships that we express in graphical form, and to include the support that

led to the response in the evaluation, making it easier to verify that the system

is doing what we think, and to allow us to diagnose the behavior of the system.

Graph-based Image Retrieval

Image Retrieval using Scene Graphs [19] describes a system (which I will refer to

as IRSG) for retrieving images from a database using a scene-graph as the query.

The scene-graph contains objects (such as “man”), attributes of objects (such as

“tall”), and relationships between objects (such as man “holding” leash). When

a query graph is submitted, IRSG tries to ground that graph to images in its

database. The images that produces the strongest groundings are returned.

The system that constructs the grounding for an image consists of visual clas-

sifiers for objects and traits, and Gaussian mixture models for relationships.

The training data consists of a large set of images with exhaustive labeling

of objects, traits, and relationships. A neural network is trained to recognize

each object type and trait. A Guassian mixture model (GMM) is trained for

each relationship in an object-agnostic manner, as well as for frequently occur-

ring object-relationship-object sets. For example, there may be visual classifiers

for “man” and “horse” and a GMM for “man-riding-horse”, but no GMM for

28

“horse-riding-man” (although there is a GMM for “x-riding-y” for arbitrary

objects “x” and “y”).

The grounding is constructed and scored by 1) generating bounding boxes for

objects in the image using Faster-RCNN, 2) scoring those boxes with respect

to the trait classifiers, and 3) scoring possible groundings of the graph using a

conditional random field (which integrates the object score from Faster-RCNN,

the trait score, and the likelihoods from the relevant Gaussian mixture models).

This system is comparable to Situate in its intention and is the most applicable

to the situation recognition task. The most notable difference between Situate

and IRSG is that Situate is a dynamic system. Image regions that may never

be considered by IRSG (for being insufficiently object-like) can receive atten-

tion in Situate due to their relationship to detected objects. This particular

dynamic is observed in the initial implementation of Situate, and may account

for differences in performance between Situate and IRSG observed in chapter

5.1.

Since the introduction of scene graphs, there has been continued research inter-

est in the topic. Image data sets that include scene graphs that can be used for

training as well as for question-answering tasks have been developed [17], and

scene graphs have been used in combination with generative vision systems to

modify images via modification of their scene graph [18].

Automatic Image Captioning

A task that has received significant attention in the past several years is auto-

matic image captioning, wherein an appropriate natural language description of

the the content of an image is generated. The task has an obvious application

in improving accessibility for people with limited vision, potential applications

for search, and holds a special appeal due to its similarity to the Turing test.

29

The basic structure of captioning systems are generally similar to one another.

Given an image, a visual classification system identifies some combination of ob-

jects, object traits, object relationships, and context. Those findings are stored

in an intermediate representation. Then, natural language sentences are gen-

erated that correspond to the intermediate representation. The intermediate

representation might contain elements that explicitly correspond to named ob-

jects and traits or may be a more abstract space that is generated using human

generated captions [37].

Evaluating the quality of captions generated by different automated systems

presents challenges that are familiar in other speech generation fields, such as

chat-bots and language translation systems. Human evaluation of the quality of

automatically generated text can ascribe more understanding than is actually

present in the output. The long recognized Eliza effect [16] seems to predispose

humans toward seeing intelligence and complexity where there is little.

Automatic methods for scoring automatically generated captions are adapted

from language translation systems, such as the BLEU score. These methods

score by comparing the output of the automated system to a reference text

generated by humans. This score consists of counting the number of n-grams

shared between the captions [26]. Limitations generally relate to the lack of a

notion of semantic similarity between words, which can lead to captions with

lucky sequences of filler words outscoring semantically good translations that

differ in specific vocabulary 3.

However, in the case of image captioning, additional difficulties arise. Simply

reproducing captions from training images based on their intermediate repre-

3Sellam, Thibault “Evaluating Natural Language Generation with BLEURT”,
Google AI Blog May 26, 2020 https://ai.googleblog.com/2020/05/
evaluating-natural-language-generation.html

30

https://ai.googleblog.com/2020/05/evaluating-natural-language-generation.html
https://ai.googleblog.com/2020/05/evaluating-natural-language-generation.html

sentation similarity to a query image competes with complex, recurrent neural

network-based language models with respect to BLEU scores. Other language

models can produce more unique captions (that are not found in the training

data), and are evaluated more highly by human evaluators [8].

What I take from this is that, although automatic image captioning shares some

of the goals of the Situate project with respect to understanding images, the re-

ality is that evaluating what a captioning system has discovered about an image

via its caption output is complicated by the opacity of convolutional neural net-

works and by the information (and biases) that might be embedded in language

models. A structured intermediate representation, like Situate’s Workspace,

could help to disentangle some of those issues for captioning systems.

Integration of symbolic knowledge and classification

In recent years there has been increasing recognition that reasoning at the sym-

bolic level is important for machine learning, but also that it may not develop

naturally from deep neural networks as they are usually constructed. To what

degree symbolic reasoning requires entirely new structures rather than being

something that can be coaxed out of neural networks is an active area of re-

search. Situate sits on a far end of this spectrum, with explicit graphs that

represent object types, and Workspaces that store parameters of those objects

that are determined to be of interest (that is, the bounding box parameteriza-

tions). On the other end of the spectrum is research into network dynamics that

might be more interpretable and might develop such structures based on cost

functions alone. If a particular group of nodes in a neural network can be iden-

tified as being related to a particular object type, then it might be possible for a

network to begin operating on instances of objects and their parameterizations.

Of particular interest are Capsule Neural Networks[30]. These networks use

31

collections of nodes, called capsules, which recognize an object as being of a

type that the capsule is sensitive to, as well as determining a parameterization

for the instance. The terms of the parameterization are not explicit, but can

be transmitted to other capsules. Capsule Neural Networks are designed to be

trained end to end, which is often a desirable property but means they are slow

to train and lack an explicit correspondence between parts of the network and

object types.

Many of the above tasks can be expressed in terms of a specific graph and a

constrained set of images, but the approaches represented often rely on the specifics

of those graphs and (I think unintentionally) on the biases that are present in their

most common data sets. By being a bit more general in the construction of the task

and by including evaluation of the support used to generate decisions, the situation

recognition task emphasizes finding solutions that include the desirable properties

discussed in chapter 1.

Of particular interest is the issue of interpretability. Interest in interpretability in

machine learning seems to be a perennial topic, often regaining attention after major

advances in the capabilities of machine learning systems, and a renewed concern over

the obfuscated machinations of those systems.

When biomimetic computer vision was at its peak interest, just before the deep-

learning revolution, Thomure et al. found that core elements of one of the most

studied networks could be replaced with random sub-networks that had undergone

no training of any kind, with little loss in efficacy [33]. Landecker et al. found

that the regions of an image that were actually contributing to decisions were often

totally non-overlapping with the region of the image that a reasonable person would

consider critical [22]. These works demonstrated that our assumptions about what is

happening inside of networks is often not correct, nor are our intuitions about what is

32

happening during training, despite resulting in interesting tasks being accomplished

relatively well.

Amid the deep learning revolution, there is similar interest in understanding what

is happening inside of the most effective systems on particular tasks. A popular ap-

proach to understanding visual classification networks has been to construct pseudo-

inverse images that maximally activate a classifier. These have produced interesting

results, but do not address the issue of how decisions are actually being made in the

other direction.

An alternative approach to understanding how a system works, rather than a

post-hoc analysis of a black box, is through imposing constraints on the operation of

the system. This approach is similar to the general concept of regularization, which

is the use of penalty terms during optimization procedures that bias solutions toward

those that demonstrate a heuristic notion of how the system should work. For ex-

ample, the idea that a good intermediate representation for a network will contain

most of the information necessary for reconstructing an input while using less data

(presumably by dropping noise and irrelevant information) motivates the sparsity

constraints used when training auto-encoders. Similar relationships between regular-

ization expressions and intentional bias can be found in support vector machines and

regularized regression techniques.

The requirement in the situation recognition task that systems generate a decision

as well as a set of bounding boxes and relationships that specifies constituent objects is

conceptually similar to regularization, as it is a constraint that directs systems toward

more desirable solutions, but differs in that it is a constraint on the formulation of the

task rather than a classifier training heuristic. This expresses that solutions will need

to remain consistent with some prior expectations regarding reasonable approaches

that will be trusted by users.

33

By defining the task broadly, taking an image and a graph as inputs, situation

recognition can encapsulate several interesting, related tasks, but does not lend itself

to the highly specialized solutions that do not generalize.

In the next chapter, I will describe the functions involved in a single situate agent,

describe how the agent develops a solution to the situation problem, describe how

it was initially implemented, and evaluate the performance of that agent in identify

the objects that make up a situation when presented with a positive instance of

the situation. This chapter will demonstrate that Situate agents find solutions to

Situation recognition tasks and that the situation model contributes to finding those

solutions, but will also demonstrate that there limitations to the agent, but that those

limitations are interpretable due to the structured results generated by the situation

recognition task.

Chapter 3 describes and demonstrates improvements that I made to the initial

Situate agent in several ways, including: improvements to the object classifier, the

bounding box generation process, and the support functions. Despite those improve-

ments, chapter 3 also demonstrates the failure states of a single agent searching for

the correspondence between the situation structure and an input image, failure states

that are largely corrected when multiple agents evaluate an image jointly.

Chapter 4 describes how Situate manages multiple agents, including how resources

are allocated amongst them and how solutions are selected when agents find multiple

possible solutions. This chapter also evaluates this full, multi-agent version of Situate

using the same tasks as previous chapters, and compares it against a greedy method

using Faster-RCNN boxes and against IRSG.

Chapters 5 and 6 evaluate Situate on image retrieval tasks, evaluate Situate on

additional situations, and discuss future work.

34

Chapter 2

Function of a Single Situate Agent

In this chapter I describe the functions associated with a single Situate agent. Situate

uses a multiple agents when evaluating an instance of the situation recognition task,

where each agent gathers information, adjusts its expectations based on findings,

and develops a possible solution to the situation recognition problem based on those

expectations independent of one another. Multiple agents are involved because initial

findings can lead agents in unproductive directions and because there may be multiple

reasonable solutions to the instance of the situation recognition task. Selecting from

among multiple possible solutions, as well as allocating resources among agents, is

handled by Situate. This leaves the agent to focus on constructing solutions to the

situation recognition task at hand.

2.1 Structures and procedures

A Situate agent develops a solution to the situation recognition task by adding

information to (and occasionally modifying information in) a structure called its

Workspace. The agent’s Workspace is a list containing specifications and labels for

bounding boxes that the agent believes are relevant to the situation recognition task

being performed.

Information is added to an agent’s Workspace by generating and evaluating hy-

potheses regarding elements of the situation. These hypotheses are something like

“there is a dog in a bounding box of dimensions b centered at location l.” When a

35

hypothesis is supported by the evaluation, information is added to the Workspace.

For situation recognition in images, the hypotheses consist of an object label for one

of the situation objects, a location coordinate for the center of the object, and a

width and height for a bounding box. The evaluation is performed by sending the

region of the image defined by the bounding box to an image classifier. The classifier

responds with its confidence that the object is present in the specified location. If

that confidence is sufficiently high, the bounding box specification, label, and classi-

fier confidence are added to the Workspace. In figures 1.3 and 1.4, the hypotheses are

depicted as blue bounding boxes overlaying the input image with the hypothesized

object type in white text.

Agents generate their hypotheses via sampling from a situation model. The sit-

uation model is initialized with prior distributions over the parameters defining the

situation. As Situate runs, the situation model is conditioned based on what has

been found and added to the Workspace. For the visual situation recognition task,

the situation model relates the bounding box parameters for all objects in the sit-

uation. Figures 1.3 and 1.4 do not show the full situation model distribution, as it

is high dimensional, but do show the distribution projected onto the x and y center

coordinate dimensions for each object type (where white indicates high likelihood

and black indicates low likelihood), as well as onto the bounding box shape and size

dimensions, respectively. Situate models the shape of a bounding box in terms of its

log aspect ratio, and the size of the bounding box as the log ratio of the bounding

box area to the image area.

To generate a hypothesis for evaluation, the conditioned situation model is marginal-

ized so as to sample parameters related to a single object of the situation, and a sample

is drawn. This generates a hypothesis (bounding box) about the input that can be

evaluated by a classifier.

36

To evaluate the hypothesis, the classifier is used to produce a value called internal

support. This value indicates how much the hypothesis is supported by the evidence

provided by the specific parameters that make up the hypothesis in isolation. External

support is then calculated, which expresses how compatible the hypothesis is with

information already stored in the Workspace and is a function of the likelihood of

the sample given the situation model. For visual situation recognition, this is the

likelihood of a particular bounding box location, shape, and size given the other

known objects. The basic form of the external support function is something of the

form

external support(hypothesis,Workspace) = f(P (hypothesis|Workspace))

where f is a function with the range (0, 1).

The internal and external support are combined to produce the total support. The

total support is a function of the internal support and the external support with a

range of (0, 1). The total support function is meant to express the confidence in a

particular situation object given both the direct evidence and the contextual evidence.

If the total support for a hypothesis surpasses the predefined threshold, the hy-

pothesis is considered supported and the Workspace is updated to reflect the updated

beliefs about the input. The updated Workspace causes the situation model to update

with new conditioning information, which in turn changes the hypotheses generated

during subsequent iterations. This is represented in figure 1.3(c), where a person is

added to the Workspace, and the expected locations of the dog and leash are updated

to reflect the conditioned situation models for each. Figure 1.3(d) shows the addition

of a second object to the Workspace, and the updated situation models. Notice that,

once several objects are detected, the expectations become very focused.

This process is repeated until a termination condition is met. The termination

37

condition may allow for additional iteration after all objects have been detected,

allowing for refinement or substantial changes in the Workspace (as depicted in figures

1.4(e) and (f)). However, once that condition is met, Situate returns 1) the bounding

boxes and labels from the Workspace of the agent in which it has the most confidence

(i.e., the situation grounding), and 2) the situation support, a single value indicating

how confident Situate is that the returned Workspace meets the situation definition.

How Situate manages multiple agents is discussed in chapter 4.

2.1.1 Implementation and parameter setting

Situate’s image classifiers and situation model both require training, and the meth-

ods used to combine them use a fair number of parameters. Although an end to end

training procedure with a single optimization target is a valuable feature in a classifi-

cation system, Situate’s structure means that trained components can be assembled

without retraining each component. This means that components can be understood

and trusted in isolation, supporting the goals of understandable decisions and the

integration of prior knowledge.

During early exploration with Situate, I found that poor parameterizations can

lead Situate to failure states, making it impossible to evaluate the system as a whole

or the quality of individual components. Therefore, the components were combined

up from the bottom up, starting with the classifier, then the situation model, then

parameters that combine the classifier and situation model to make decisions, and

finally the logic of how to allocate resources to agents and termination conditions.

Data and validation set

During the exploration process, I used the Portland Simple Dog-walking dataset,

which includes a set of 500 natural images of people walking dogs. Each of these

images contains one dog, one dog-walker, and one leash connecting a person to

38

(a) (b)

(c) (d)

Figure 2.1: Figure 2.1a shows an example of a dog walking situation with human
generated ground truth bounding boxes (in blue) from the Portland Simple Dog-
walking dataset. The boxes tightly enclose the dog, the person walking the dog, and
a leash connecting them. A successful detection requires an appropriate situation
grounding, that is, a correct localization and labeling of each constituent object.
Figure 2.1b shows an example of bounding boxes (in red) that would be considered
a successful situation detection, as each bounding box has a label that matches the
ground truth label and an intersection over union ratio (IOU) with the ground truth
box greater than or equal to .5. Figure 2.1c shows a set of bounding boxes (in red) that
represent failed situation detections, as the dog-walker bounding box has an IOU of
.33 with the ground truth box, which is under the required threshold of .5. Although
there are several people in the image, detecting a person that is not walking the dog
(as in figure 2.1d) also would result in a failed detection. The challenge of finding
tight bounding boxes, as well as the correct objects when several similar objects are
present in the image, contribute to the challenge that the situation recognition task
poses to object localization systems that do not account for the relationships between
objects. (Best viewed in color)

39

the dog, and may have distractor objects, including other people. Each image

has an associated label file that includes human supplied coordinates for each

of the situation objects. The coordinates tightly crop objects with axis-aligned

bounding boxes.

From the 500 images, 100 images were reserved for testing at a later time. They

were not included in the exploratory phase or parameter setting experiments.

From the remaining 400 images, 100 were used as a validation set, used to

compare parameterizations. This left 300 images for training. This is far fewer

training examples than are generally used for training a system top to bottom.

However, this has proven sufficient for Situate as it uses an assemblage of pre-

trained neural networks (which are “tuned” with the available data, but do not

need to be fully trained) and low-complexity models for the situation model.

Classifiers

The classifier at the core of Situate is a combination of an off-the-shelf convolu-

tional neural network (CNN) for feature extraction and a traditional classifier.

Many CNNs, including the one used in Situate, are trained discriminatively to

recognize a large number of objects. However, much of the resulting neural net-

work structure is tuned to the statistics of natural images in general, with the

discrimination between objects occurring at a late stage (high layer) in the net-

work. This means that the networks do not need to be fully re-trained for every

object type to be effective, instead allowing for tuning to our particular collec-

tion of objects of interest, where “tuning” here means training a new classifier to

map the state of a late layer of the CNN to a class indicator value. Essentially,

we replace the existing final layers of the network with a new classifier.

I compared networks described in [4] combined with a linear support vector

machine (SVM) for object recognition. I used implementations of the networks

40

found in MatConvNet [35]. For each of the object types in the dog walking situ-

ation, I extracted the tightly cropped object of interest from each of the training

images, as well as image crops that did not contain any of the situation objects

but were of similar shape and size to the cropped objects of interest. These

images served as a background category. An SVM was trained to distinguish

between each of the object categories and the background category (that is, one

SVM per object category). The trained network was then applied to similarly

generated crops from the validation image set. For each image crop, distance

to the margin was used as a decision variable and the area under the receiver

operating characteristic curve (AUROC) value was calculated. The AUROC is

a single value that summarizes the efficacy of a classifier and will be described

in more detail later.

I found that most of the convolutional neural networks produced similar dis-

crimination quality for our small evaluation set, so I used the network that was

simplest and fastest. This turned out to be the network based on AlexNet [21],

the same network at the core of R-CNN and that kicked off the intense interest

in deep networks for computer vision several years ago. AlexNet was trained

to recognize 1,000 object types from the ImageNet data set. The network is an

assemblage of convolutions, local pooling, and eventually a densely connected

neural network with many hundreds of thousands of neurons. I replaced the

final layers of the neural network, which make the final classification decisions,

with alternative classifiers that were trained on data for the situation recogni-

tion task. I discriminatively trained an SVM for each of the constituent objects

of the situation using 300 positive training examples and 300 negative training

examples from the Portland Simple Dog-walking dataset. The positive train-

ing examples were tightly cropped instances of the target object. The negative

41

examples were regions from the same images, that contained none of the ob-

jects of interest, with crops that matched the size and shape of the positive

examples. I trained an SVM for each of the object types. I used 100 additional

images from the Portland Simple Dog-walking dataset to generate a similar set

of positive and negative examples, which I then used to estimate the quality of

the resulting classifiers. The dog-walker classifier had an AUROC of .98, the

dog classifier had an AUROC of .98, and the leash classifier had an AUROC

of .90. These each indicate a reliable classifier for the task of discriminating

between well cropped instances of their target objects and background images,

although the dog and dog-walker classifiers are substantially better than the

leash classifier.

This method for building the classifiers is re-evaluated in chapter 3.2.1.

Situation model

The situation model relates the parameterizations of situation objects to one

another. I experimented with possible divisions of parameters of objects (such

as one distribution that relates object sizes and another that relates object

locations), however, I eventually settled on a single high dimensional normal

distribution, as it allowed the system to find the meaningful correlations without

too much interference. Then, the situation model for the dogwalking situation,

which consists of three objects, is:

Dsituation = N(xdog, ydog, pdog, qdog, xdog−walker, ydog−walker,

pdog−walker, qdog−walker, xleash, yleash, pleash, qleash),

where N is a Gaussian distribution, xobject is the center coordinate of the bound-

ing box for an object on the x-axis of the image, yobject is the center coordinate

42

of the bounding box for an object on the y-axis, pobject is the log ratio of the

area of the bounding box to the area of the image, pobject is the log aspect ratio

of bounding box for an object, and qobject is the log ratio between the area of the

bounding box and the area of the image. The x and y positions both appear

appropriately modeled by a Gaussian distribution, as do the log area and aspect

ratios of each object.

During evaluation, the input is searched by sampling parameters for a bounding

box from the situation model. Bounding box parameters are sampled for a

single object, so the situation distribution is conditioned based on detected

objects represented in the Workspace, and parameters for other objects are

marginalized out. An example of this process can be found in figure 1.3.

The simplicity of a Gaussian distribution and the simple relationships that can

be captured is both a benefit to the model and a detriment. We assume that

there may be many training examples for constituent objects of a situation, but

relatively few examples of the full situation, a simple model that can capture

the trends in the situational information is preferable. However, there are also

relationships between parameters that are not served well by the simplicity. For

example, a normal model cannot recognize that the edges of one object might

always be contained within the bounds of other objects.

Internal support function

Internal support relates output of an image classification system to other infor-

mation available to Situate for deciding what should be added to the Workspace.

The initial construction was intended to approximate the probability that the

IOU between a proposed bounding box and a ground truth bounding box was

43

over .5. That is

Sinternal(c(box, im)) ≈ P (IOUgt(box, im) > .5)

for an internal support function Sinternal and the classifier output for an image

crop c(box, im). I used a standard SVM as the classifier, with Platt scaling

to convert the distance to the margin (a unitless output from the SVM) to a

probabilistic value indicating the likelihood that the bounding box has an IOU

greater than .5.

Figure 2.2 shows the relationship between the classifiers predicted probability

of an IOU greater than .5 and the actual probability. Although the predictions

are actually fairly poor, the resulting relationship is monotonic and smooth,

which is encouraging.

External support function

External support indicates the level of agreement between a situation object and

the other objects in the Workspace. This agreement is based on the density of

the box parameterization with respect to the situation model conditioned on

the current set of objects in the Workspace.

My approach to scaling is discussed more in a later chapter, but the basic

approach involves moving from the range (0, inf) of the raw densities to the range

(0, 1) by using a wrapping function. The wrapping function is the combination

of a log function, a logistic function, and appropriate scaling parameters. Then,

the external support function y of the raw density x and the parameter vector

t is

y(x|t) = t0 +
t1

1 + e−t2×(x−t3)
.

44

Figure 2.2: The above plot shows the relationship between the SVM classifiers

predicted probability of an IOU greater than .5 and the actual probability using a set

of validation crops.

The parameters were initially set using bootstrapping. After a solid guess on

parameters, letting Situate run on a few training images, and recording sample

densities that occurred, I found values for t that minimized the square error be-

tween the above function and the empirical cumulative distribution function of

the density values. That is, the vector t was set such that y(xi) = |{x|x∈X,x<xi}|
|X| .

Figure 2.3 shows a visual representation of this process and the result.

Total support function

Total support combines internal and external support for a particular object

for the purpose of making a final decision about what that object should be

included in the Workspace. Total support could be a prediction of the IOU

score for proposed boxes, or it could be the probability that a bounding box,

given a Workspace, has an IOU greater than our threshold of .5. As the internal

45

Figure 2.3: The distribution of raw densities from the situation model are condensed

near zero and have a long tail of high values associated with a distribution conditioned

on several objects in the Workspace. The wrapping function constrains the range to

[0,1], making the values more interpretable and easier to use as a component in the

total support function.

and external support scores are bounded in [0,1], it seemed reasonable to start

with linear combinations of the internal support score, external support score,

a bias term, and a mixing term. That is,

Stotal(sinternal, sexternal) = t0 + t1sinternal + t2sexternal + t3sinternalsexternal

where sinternal and sexternal are the internal and external support scores, respec-

tively.For these initial evaluations of the Situate agent, I set the bias and mixing

terms to 0 and the internal and external support weights to .5. Alternative for-

mulations are discussed in a later chapter.

Situation score

Situation score is a single value that expresses Situate’s confidence that a

46

Workspace contains the situation of interest. It can be thresholded to pro-

duce a binary response, or used to order confidence of a number of images for

purposes of retrieval. I used the geometric mean of total support values based

on the probabilistic interpretation of total support.

2.2 Evaluation of the initial Situate agent

I constructed the following experiments to verify that the Situate agents’ method of

sampling regions of an image and updating expectations would lead to appropriate

solutions to situation recognition problems. My specific hypotheses were:

• The situation model will lead to a higher number of situation detections than

an otherwise equivalent system that uses uniform, static distributions to sample

bounding boxes (i.e., a control method).

• Situate agents will more accurately localize constituent objects of the situation

(on the basis of IOU) than the control method.

• Localizations of situation objects will occur using fewer resources (in terms of

calls to the visual classifier) than the control method.

To evaluate the above hypotheses, I compared several modified versions of the

Situate agent and a method based on Faster-RCNN.

Situate agent is a single Situate agent as described above. The agent was run for

300 iterations with no other stopping condition.

Control is a heavily lesioned version of the Situate agent that did not use a situation

model at all. It sampled bounding boxes using a uniform distribution over log

shape (the box width over the box height) and size ratios (the box area over the

47

image area). The center location for the bounding box was sampled uniformly

from image regions for which the bounding box would lie entirely within the

image. The underlying visual classifiers were unchanged. The training data

was otherwise used only to define upper and lower bounds for box parameters

(without setting different bounds for individual object types). This version was

also run for 300 iterations.

Situate - stop is a variant of the Situate agent that had an early stopping condition.

As soon as all situation objects had been added to the Workspace with a total

support value greater than or equal to .5, the system stopped searching the

image and returned the Workspace. This variant was included to establish

some expectations about appropriate resource allocations and to determine how

stopping early might affect the resulting situation groundings.

Faster-RCNN method uses Faster-RCNN to identify the highest confidence in-

dividual bounding boxes for each object type. This method was included to

represent a straight-forward approach that uses common deep learning tools. It

does not have a complex attentional system nor does it use information about

the relationship between objects available in the training data. When using

Faster-RCNN to perform situation recognition tasks in this paper, I refer to it

as the Faster-RCNN method, but it should be noted that this is a simple appli-

cation that uses the results of Faster-RCNN, and is not a part of the original

specification of Faster-RCNN.

Faster-RCNN works by using a fixed collection of boxes of several sizes and

shapes, laid out in a grid pattern over an input image. Image features are

extracted from the image using a deep convolutional neural network. The fea-

tures within the bounds of each box are used to evaluate the objectness of the

contents. Boxes with a sufficiently high objectness score are classified using a

48

multi-class classifier, which use the already extracted neural network features

as inputs. The bounding boxes are then adjusted using a bounding box regres-

sion system, which maps the parameters of the box, the class of the object,

and image features to modified bounding box parameters. Finally, non-max

suppression is applied, wherein bounding boxes that overlap significantly with

other boxes assigned to the same object class are removed. There is no notion

of iterations in this model, as the entire image is evaluated.

Each method was run on 100 images from the Portland Simple Dog-walking

dataset that were not involved in the training or parameter setting experiments, or

for the fine tuning of Faster-RCNN. I did not run any of the methods on images that

did not contain the situation of interest. The initial evaluation only considered how

well each method was able to localize the objects of a situation when that situation

is present.

Figure 2.4: Each plot shows the number of instances of objects that were detected
at different IOU thresholds. For example, the first plot shows that the control method
using faster R-CNN localized 80% of the dog-walkers in the data set with an IOU
value of at least .1, and approximately 50% with an IOU of at least .5. We can see
that this control method localizes several objects better than the Situate agent, and
that the “leash” object is substantially more difficult to localize than other objects
for each method. The final plot shows the number of images for which all objects
were localized at the specified threshold. (Best viewed in color)

49

Figure 2.5: Each of the above plots show the the significance of a hypothesized

difference in localization quality between two methods and for each object type use

the 1-sided t-test. For example, the first plot shows the confidence that Situate

was able to localize objects better than the control method. The x-axis shows the

hypothesized improvement in localization provided by Situate and the y-axis shows

the probability that the observed difference was actually a result of chance (i.e., the

null hypothesis that Situate is not better than the control).

I found that both of the Situate agents (with and without early stopping) are per-

forming significantly better than the control. The difference in average IOU values

between the Situate agent and the control for dog-walker, dog, and leash objects that

were supported at the .05 confidence level were 0.2, 0.13, and .08, respectively. The

difference in performance between the Situate agents with and without the stopping

condition is approximately .05 at the 95% confidence level for the dog and dog-walker

objects, but is not supported for the leash object.

Figure 2.4 shows the localization results for the initial version of the Situate

agent, the agent with the early stopping condition, the control, and the Faster-RCNN

method. Figure 2.5 shows the significance of the differences between variants of the

Situate agent.

• The Faster-RCNN method is substantially better at localizing several of the

situation objects than the Situate agent.

• Comparing the Situate agent to the sampling-based control method, we can see

that the inclusion of the situation model improves individual object localization

for all object types. With a 95% confidence, the effect sizes, in terms of expected

IOU, were approximately .1 for the dog and leash objects, and .2 for the dog-

50

walker object.

• The leash object was far more difficult for each method to localize, and was a

clear limiting factor for the overall situation detection quality.

• Situate agents with an early stopping condition still perform better than the

control, but the quality degrades substantially when compared to Situate agents

allowed to run for a higher number of iterations. Stopping early did hurt per-

formance. However, the mean number of evaluations made by the agent with

the stopping condition was 174.6, substantially fewer than the 300 evaluation

steps made by the agent without the early stopping condition.

Also of note (although not visible in the figures) is that the Situate agents with-

out the early stopping condition continued to make changes to their Workspace

up until the 300 iteration limit. This suggests that there might be a benefit to

increasing the number of iterations available, but also suggests that the agent

is taking a long time to settle on a stable Workspace and that no longer making

updates to the Workspace may not be a reliable indicator that the agent is

finished with its work. I’ll touch on this issue in the next chapter where I work

to improve the agent.

The Faster-RCNN method outperformed the Situate agent in localizing several of

the object types. Factors that may have contributed to this include:

• Faster-RCNN evaluates all image regions. When a Situate agent identifies a

region that is sufficiently similar to the object of interest, the system narrows

its attention. This may lead to some regions remaining unsearched.

• Faster-RCNN returns the best scoring region even if that region is identified

as a poor representation of the object of interest. Situate only adds regions to

51

a workspace if they exceed a confidence threshold, both with respect internal

and total support. In the positive-only evaluation used here, this may benefit

Faster-RCNN, but may also lead to a higher false positive rate in other settings.

This will indeed be the case in later analyses.

• Faster-RCNN uses bounding box regression, a method used to refine bounding

boxes using intermediate features from its convolutional neural network. Situate

relies on its iterative sampling method to find similar bounding boxes to those

in the Workspace. Although bounding box IOU scores and classifier scores are

reasonably assumed to be positively correlated in a general sense, the variance

in that relationship is not clear, making the reliance on sampling to improve

bounding box quality suspect.

The uniform sampling control method did not perform as well as I expected. I

assumed that, given many iterations, reasonable bounding boxes would be found

in the image for each object of interest. That did not appear to be the case, and

suggested a few possible problems.

• Many more iterations may be required for uniform sampling to produce good

localization.

• The thresholds on classifier scores may have been set too high, leading to false

rejections.

• The fall-back behavior for Situate should evaluate all regions of the image.

Relying on repeated sampling is a poor way of doing that.

2.2.1 Sources of improvement

Figure 2.5 shows that the situation model contributed to higher detection quality over

the control. However, it is not clear what, specifically, about the situation model was

52

accountable for the improvement. It may have been a) the more tuned box parameter

model, b) the focus on specific regions of the image after conditioning occurs, or c)

the contribution of external support to classifying bounding box proposals.

To clarify how the situation model led to improved results, I ran an additional

experiment with a variety of lesioned versions of the Situate agent.

Situate and Control remain as described above.

Situate - internal support only functioned as described above, but did not use

external support in the total support calculation. The situation model was still

used to direct sampling locations, and was conditioned on Workspace entries as

usual.

Situate - no conditioning used only the marginalized version of the situation model.

The box parameters and locations were based on the training data, but when

an object was added to the Workspace, the distributions did not change.

Figure 2.6 shows results from the modified Situate agents. The agent from Situate

- no conditioning used the modeled box parameters from the training data, includ-

ing size, shape, and location, but does not update based on objects added to the

Workspace. Figure 2.7 shows that this version performed significantly better than

the control for each object type, with effect sizes at the 95% confidence level of ap-

proximately .04, .09, and .17 for the leash, dog, and dog-walker objects, respectively.

This demonstrates the significant benefit to sampling from a tuned distribution over

the control.

Adding the situation model back in, but only using internal support for classifica-

tion, produces Situate - internal support only. Figure 2.7 shows that this version was

no better at detecting the dog-walker object than Situate - no conditioning. Digging

53

Figure 2.6: These versions of the Situate agent were run for 300 iterations each and

differed with respect to how the situation model was utilized. Situate and control are

as they were in the previous experiment. Situate - internal support only used a total

support function that only uses the classifier and not the external support. Situate

- no conditioning used the situation model to generate boxes with parameters based

on the training data, but the relationships between objects had no influence.

into the sequence of detections a bit, I found that the dog-walker was the most com-

mon object to be detected first by a wide margin, which means that the dog-walker

object was usually detected prior to conditioning. Figure 2.7 shows that there may

be a benefit for the dog object (although it is just shy of statistical significance). For

the leash object, the benefit was significant, although the effect size was small.

There was no significant difference between the Situate agent and the lesioned

Situate - internal support only agent. This indicates that the external support value

was not making a meaningful contribution from a classification perspective. Example

workspaces in figure 3.1c suggest why this may have been. The scaling of the external

support function led to a very limited range of values that rarely would have been

the deciding factor in meeting the threshold for admission to the Workspace.

Taken together, it appears that the situation model’s contributions came from

the modeling of bounding box parameters and from the conditioning of the situation

model for finding some objects, but that there was not a clear benefit associated with

54

the external support value used by the individual Situate agent to make classification

decisions.

55

Figure 2.7: These plots show the significance levels of differences in the mean

intersection over union scores between methods for several objects of interest. I

used the 1-sided t-test to compare Situate and each lesion against the control, as

well as several additional comparisons. Situate and each lesioned version performed

significantly better than the control, but the effect size was small for the lesion with

no conditioning from the situation model. The test between Situate and Situate -

internal support only showed no significant drop in performance for any object type.

The bottom row, middle and right column plots show us that removing the situation

structure does not apparently hurt detection of the dog-walker, is on the cusp of

significance for the dog, and is significant for the leash object.

56

Chapter 3

Improving the Situate Agent

In this chapter I continue to focus on the individual Situate agent and discuss im-

provements made to most of its core components, including: the visual classifier at

the core of the agent, the method by which bounding boxes are iteratively improved

to more accurately localize situation objects, and the support functions that are used

to integrate visual and contextual information.

In the previous chapter, there was evidence supporting the hypothesis that the

situation model appropriately directed the Situate agent toward regions likely to

contain objects of interest, but it also demonstrated that the exhaustive method of

searching for situation objects using Faster-RCNN was still more effective than the

single Situate agent, even at localizing an object that should benefit from contextual

information. However, reviewing the final Workspaces generated by a Situate agent

revealed common failure modes, modes which motivated most of the changes described

in the rest of this chapter. At the end of this chapter, I will compare the initial Situate

agent, as described in the previous chapter and henceforth referred to as Situate agent

v1, to the improved Situate agent, described in this chapter and referred to as Situate

agent v2, and to the Faster-RCNN method.

3.1 Classifier improvements

Figure 3.1 shows a number of final Workspaces, generated by the Situate agent v1,

that failed to fully localize the objects of the situation in a variety of instructive ways.

57

Those Workspaces demonstrate how relying on the Situate agent’s iterative sampling

procedure to detect objects, improve bounding boxes, and select from multiple pos-

sible objects of a situation was unreasonable and should have some more explicit

procedures involved. In this section I expand on the Situate agents’ performance of

the following tasks:

• estimating the true IOU value (IOUgt) of a bounding box using regression rather

than using binary classification to predict whether the IOU is greater than .5

• improving object localization quality by using an explicit method for making

adjustments, and

• selecting the correct objects of interest in an image by improving the external

support function.

When implementing the Situate agent v1, I made several assumptions about the

iterative sampling procedure’s ability to detect objects and improve bounding boxes.

Those assumptions included:

• An increase in classifier score would lead to an increase in the actual intersection

over union between a proposed bounding box for an object and the ground truth

bounding box. That is, f(y) > f(x) =⇒ IOUgt(y) > IOUgt(x) for bounding

box proposals x and y and image classifier function f .

• A bounding box with a high density with respect to the situation model would

be more likely to be a correct localization than a bounding box with a low

density. That is,

d(y) > d(x) =⇒ p(IOUgt(y) > .5) > p(IOUgt(x) > .5)

for probability density function d.

58

(a) (b)

(c) (d)

Figure 3.1: Each of these Workspaces were generated by Situate agents for images

that contained the dog-walking situation. To the right of each figure are the support

values associated with each constituent object (internal, external, and total), as well

as the ground truth IOU score for each bounding box (gt). Several categories of error

are apparent.

• In figures 3.1a and 3.1b the classifiers have high confidence in the localizations,

but the objects are only roughly localized. Depending on how noisy the classifier

scores are, there may be little room for bounding boxes with higher IOU scores

to produce meaningfully higher classifier scores.

• Figure 3.1c shows a failure to select the correct instance of an object. The

external support function should bias the agent toward selecting a person near

the dog, but the external support value is very high, suggesting a problem with

scaling the score.

• The Workspace in figure 3.1d shows an example of an unreliable classifier. Di-

agonal lines or edges are commonly confused for the leash object, which is a

tendency that Situate should account for.

(Best viewed in color)

59

• The sampling space of potential bounding boxes would include all possible

bounding boxes, meaning that, eventually, the correct objects of the situation

would win out over incorrect objects of the situation.

Given these assumptions, the method by which the Situate agent v1 would build a

situation grounding in its Workspace was as follows:

• Starting from an empty Workspace, a bounding box proposal produces a clas-

sifier output that is sufficient to add an object a to the Workspace.

• The situation model is updated for other objects (say, b and c), but not updated

for object a.

• Once objects b or c (or both) are added to the Workspace, the situation model

for object a is updated, focusing the agent’s attention on to a narrow parameter

space for object a, leading the agent to sample a better parameterization for

the bounding box for object a, which would replace it in the Workspace.

The replacement of parameters for object a relied on f(y) > f(x) =⇒ IOUgt(y) >

IOUgt(x).

Recall that my selection for the classifier in the Situate agent v1 was a combination

of a neural network for feature extraction and an SVM for classification. To train

the SVM, image regions for the dog-walker class, as well as distractor regions that

did not contain the dog-walker, were extracted from 300 images from the Portland

Simple Dog-walking dataset. This produced 300 positive crops and 1200 distractor

crops. Image features were extracted from those image regions using the previously

discussed convolutional neural network [4]. A standard linear support vector machine

(SVM) was trained to separate the positive feature vectors from the distractor vectors.

I used Platt scaling to convert the SVM margins to probabilities [27]. The resulting

classifier was able to distinguish crops containing dog-walkers from distractor crops

60

0 0.5 1 1.5
classifier score

0

0.2

0.4

0.6

0.8

1

tru
e

IO
U

classifier/ground-truth correlation

corr: 0.80137

Figure 3.2: The output of the SVM classifier correlated with the ground-truth IOU

values of bounding boxes fairly well, but the scores tend to be either close to zero or

one. This creates a “signal to noise” problem when trying to determine if an increase

in classifier output score is likely indicative of an increase in IOU score.

taken from a 100 image validation set with an area under the ROC curve of .94,

which is to say, the neural network and classifier combination was able to perform

the discrimination task with few errors.

In order to see how well the trained SVM classifier could predict IOU scores, I

applied the classifier to image regions with intermediate IOU values. These crops

were extracted from validation images by varying the shape, size, and location of

ground truth boxes. This set of bounding boxes was then sub-sampled to create

a set with uniformly distributed ground truth IOU scores. I applied the trained

classifier to these crops. The correlation coefficient between the ground truth IOU

score and the classifier output was ≈ .80. Figure 3.2 shows a scatter plot with

the IOU scores and the classifier scores for each crop from the validation images.

Although the trend is clear, it also shows that small changes in the classifier output

do not reliably indicate a corresponding change in the IOU score, suggesting that

while f(y) > f(x) =⇒ IOUgt(y) > IOUgt(x) is true in the aggregate, it may not be

reliably true for any particular y and x.

61

Next, to get a sense of how reliable the assumption is that f(y) > f(x) =⇒

IOUgt(y) > IOUgt(x) for any single instance of an object, I took a large number

of bounding boxes around a human in a single image from the validation set. I

constructed a set of bounding boxes X such that the entries were of uniform ground

truth IOU. Then, for each individual x ∈ X, I found the probability that another

crop y ∈ X with a higher classifier score also has a higher ground truth score. That is,

P (IOUgt(y) > IOUgt(x)|f(y) > f(x)) for each x in X and for all y ∈ (X \ x). Figure

3.3(a) shows a scatter plot of the ground truth IOU for each x and its associated

probability P (IOUgt(y) > IOUgt(x)|f(y) > f(x)).

Averaging the probability of improvement for xs with similar classifier scores

(shown in red in the figure) initially suggested that improvement was quite reliable,

but this obfuscated a problem. Given a reasonably good localization of an object,

there are many bounding boxes that are significantly worse than the current local-

ization, a few that are a minor improvement, and vanishingly few are a significant

improvement. For instance, for a number of arbitrarily selected individual images

in our training set, a correctly sized and shaped bounding box for the dog-walker,

evaluated in uniform steps over the image, has 0 IOU in 85% of cases and an IOU less

than .25 in about 95% of cases. This means that, when calculating the probability of

improvement in figure 3.3(a), this distribution was biased toward large improvements.

Small, iterative adjustments provide a more reliable improvement. Figures 3.3(b)

and (c) show the probability of an increase in IOU given a small increases in the

classifier score. The samples in figure 3.3(b) use score increase limited to within .1 (of

the unitless IOU scores). The plot shows that the probability of an increase in IOU

is relatively low (usually below .55). When considering score increases within .2 of a

proposal (figure 3.3(c)), the probability of improvement increased a small amount.

62

Figure 3.3: The probability that a new bounding box with a higher SVM classifier
score actually has a higher IOU value depends on the difference in those scores. (a)
shows a scatter plot of the SVM classification score versus the probability that a
bounding box with a higher classification score has higher ground truth IOU score,
i.e., P (∆IOU > 0|∆f > 0). This plot assumes that the expected IOU score of a
resampled bounding box is uniformly distributed over [0, 1]. Under this assumption,
resampling has a good chance of finding a bounding box with a higher estimated IOU.
In reality, most bounding boxes will be worse than the current bounding box, and
differences in the estimated IOU will be small. For example, if we have a bounding
box with an estimated IOU of .2, it is doubtful that our first resampled bounding
box will have an IOU of .9. It is more likely that it will have an estimated IOU of .1
or .3. Subfigures (b) and (c) show us the likelihood of an improved IOU score given
changes in classifier score less than .1 and less than .2, respectively. In these cases,
the probability of improvement in IOU is low or negligible. (Best viewed in color)

Figure 3.4 considers the same issue from the perspective of the expected value of

the change in IOU given the same changes in the classifier scores (rather than the

probability of an improvement, irrespective of magnitude). The expected change was

near zero for even moderate changes in classifier output.

These figures demonstrate is that treating binary classifiers as if they are perform-

ing regression is foolish. Although the classifiers performed well on the discrimination

task and the correlation between classifier output and IOU was reasonable, using the

classifier output to rank individual bounding boxes was a misapplication of the SVM,

and that f(y) > f(x) =⇒ IOUgt(y) > IOUgt(x) is not correct for many x and y.

63

Figure 3.4: Similar to what we saw in figure 3.3, the expected value of replacing a
bounding box with a bounding box with a higher SVM score produces, on average, a
small increase in actual IOU. (Best viewed in color)

3.1.1 IOU regression

Because Situate agents are using classifier scores for direct quality comparisons, it

would be wise to use something that explicitly estimates the metric of interest. For

the Situate agent v2, I replaced the SVM classifier with a ridge regression model that

estimates the IOU of a bounding box proposal with the underlying object of interest.

To do this, I used a more robust training set that included boxes at all IOU values

(specifically, the same box generating method used to evaluate the SVM response to

intermediate IOU scores). The true IOU scores were used as the target output, rather

than the binary indicator of whether or not the IOU score was greater than .5

With this method, the correlation between the IOU estimate and the actual IOU

for crops from the validation set was .85 (versus .8 with the SVM). To evaluate

the degree to which f(y) > f(x) =⇒ IOUgt(y) > IOUgt(x) is a reliable claim with

the new model, I applied the same analysis as was used to evaluate the SVM. The

scatter plots in figure 3.5, again, show the classifier score (now an explicit estimate of

the IOU score) plotted against the probability that an image region that generated

a higher score also had a higher actual IOU score. Figure 3.5(a) used all bounding

boxes with a higher estimated IOU than the bounding box of interest to calculate the

64

Figure 3.5: Replacing the SVM with the IOU estimator produces relatively similar
results to using the SVM, but with generally higher probability of an improvement
given the same difference in scores. Some of this effect may be related to the challenge
of scaling outputs from the SVM classifier. (Best viewed in color)

Figure 3.6: The IOU estimator is also associated with a higher expected change
in ground truth IOU given the same increase in scores. Again, some of this effect is
related to scaling, but in practice, Situate will be making replacement decisions based
on differences in scores, so more consistency in the relationship between classifier score
and ground truth IOU should make that easier. (Best viewed in color)

probability. Figures 3.5(b) and (c) used bounding boxes with estimated changes in

IOU between 0 and .1 and between 0 and .2 greater than an existing bounding box

to calculate the probabilities of improvement. Figures 3.5(b) and (c) showed that, for

bounding boxes estimated to have had a low to moderate initial IOU score (between

.1 and .6 or so), a higher estimated IOU had between a .6 and .7 chance of leading

to a higher actual IOU. Figure 3.5 showed the expected value of the change in IOU.

65

3.1.2 Bounding box regression

The Situate agent v1 used repeated sampling to improve the localization quality of

detected objects. This approach was appealing largely based on its simplicity, but

adding some complexity to the agent behavior improves localization quality signifi-

cantly.

After the Situate agent v2 has applied the CNN to an image region, the output of

the CNN is used to estimate the IOU of its bounding box with the underlying object

(as described above). That output of the CNN (specifically, the network activations

of the layer immediately prior to the classification layer) remains useful in estimating

a correction to the bounding box that will more accurately enclose the object in the

image. This process, called Bounding box regression, uses the output of the CNN

with the current shape and location of a bounding box to predict the parameters of

the correct bounding box. It does this by using four independent regressions from

the intermediate representation from the CNN and bounding box parameters to the

following values:

∆x =
Bx − B̂x

B̂w

∆y =
By − B̂y

B̂h

∆w = log(Bw/B̂w)

∆h = log(Bh/B̂h)

where B = (x, y, w, h) is a bounding box, x, y are the coordinates of the center

of the bounding box, and w, h are its width and height. The terms express the

differences between the current bounding box B̂ and the ground truth box B. The

differences between center points are scaled by the bounding box dimensions to keep

66

each term independent of image size, and the ratios are passed through a log function

to normalize them, making them more amenable to modeling. Again, I used ridge

regression to build the individual models. The bounding box regression models are

applied to get ∆∗x,∆∗y,∆∗w,∆∗h, a set of estimates that can be used to invert the

above functions to get B∗ , an approximation of the ground truth bounding box B.

That is, B∗ is defined as:

B∗x = ∆∗x× B̂w + B̂x

B∗y = ∆∗y × B̂h + B̂y

B∗w = e(∆∗w) × B̂w

B∗h = e(∆∗h) × B̂h

Previous work used this method with training data restricted to bounding boxes

with a high ground truth IOU[28]. The authors of Faster-RCNN used training data

restricted to bounding boxes with an IOU greater than .6, and was only applied to

boxes that already had a high confidence of containing an object of interest. Thus,

the adjustments were generally small and the resulting bounding boxes were not

re-evaluated by a classifier to update the confidence value of the classification.

The decision to use bounding box regression for only small adjustments in Faster-

RCNN, as described in [28], was due to Faster-RCNN’s use of a dense covering of

all image regions with multiple bounding box sizes and shapes, leading to a high

similarity between a ground truth bounding box and its most similar entry in the

initial search. However, in Situate, bounding box proposals are generated using a

sampling procedure, so the bounding boxes will more often need significant improve-

ments. Noting this, I updated the bounding box regression method to make more

substantial adjustments. I built bounding box regression models trained with data

67

Figure 3.7: Each point represents the ground truth IOU of a bounding box before
applying bounding box regression (x-axis) and after (y-axis). Points above the red
line represent an improvement in IOU after applying the method. The left plot shows
the result of applying the regression after having been trained on bounding boxes
with initial IOU scores greater than .1. The right plot shows the results after training
the model with bounding boxes with IOU scores greater than .6. The magnitude (and
direction) of change is clearly related to the IOU of the input. (Best viewed in color)

from several ranges of IOU values, including IOU values greater than .1 and IOU val-

ues greater than .6. Figure 3.7 shows scatter plots of the ground truth IOUs of a set

of box proposals and the result of applying the bounding box adjustment procedure

described above.

The left plot in figure 3.7 shows changes in the quality of bounding boxes using

the bounding box regression system trained with crops of uniform IOU from .1 to 1.

It shows that quite a few low-IOU proposals were greatly improved by applying the

procedure, as well as a majority of high-IOU proposals that were made substantially

worse. The right plot shows results from the system after being trained with bounding

boxes from the narrower range of IOUs from .6 to 1. The associated improvements

were modest, but the adjustments rarely led to a reduction in localization quality.

Figure 3.8 shows the probability of improvement and the expected value of the change

68

Figure 3.8: The left figure shows the probability of an improved IOU score when
bounding box regression is applied to bounding boxes with different initial IOU scores.
The right figure shows the expected value of the change in IOU after applying bound-
ing box regression. Bounding box regression models were trained with broad training
data (with initial IOU scores ranging from .1 up to 1) and with narrower training
data (with initial IOU scores ranging from .6 to 1). Although the probability of im-
proving an initially poor bounding box is similar for using both training methods, the
expected value is much greater when using the model trained on a broader range of
training data. When applied to already good bounding boxes, the method with the
broad training set resulted in a poor outcomes. (Best viewed in color)

in IOU for both models.

The model trained on a broad collection of training images provided a more sub-

stantial benefit when applied to bounding boxes with a low IOU, and the more nar-

rowly trained model provided a more substantial benefit when applied to higher IOU

bounding boxes. Conveniently, our IOU estimator does a good job of identifying which

category a bounding box proposal falls into, so I constructed a combined system that

applies each model selectively.

Figure 3.9 shows the result of selectively applying one of the bounding box re-

gression models based on the estimated IOU of the input. I refer to the resulting

model as the bounding box adjustment two-tone model. The threshold at which the

models are selected is based on the optimal threshold for the training data. If the

69

Figure 3.9: The hybrid method of applying bounding box regression, where one of
the two bounding box regression models is used based on the estimated IOU of the
initial bounding box, performs similarly to the better of the two individual models
at each starting IOU value. The difference results from the error in estimation of
the actual initial IOU value, leading to the occasional selection of the sub-optimal
bounding box regression model. (Best viewed in color)

two-tone model was able to correctly identify whether the object had been localized

with an IOU above or below the threshold, the performance of the two-toned model

would track the maximum performance of the two sub-model exactly. The two-toned

model’s performance is slightly below this only due to the occasional over or under

estimate of the IOU of bounding boxes that are near the threshold. However, the two-

toned model has a higher expected improvement per evaluation than either individual

model.

The bounding box adjustment logic is activated by the Situate agent v2 when a

sample has an internal support value over a fixed threshold. The bounding box ad-

justment model is applied to the qualifying bounding box and the resulting bounding

box is re-evaluated by the Situate agent.

Initial experiments with this bounding box adjustment logic showed an occasional

looping behavior, where a bounding box would satisfy the adjustment threshold,

70

Situate would generate an updated box, the updated box would have little or no im-

provement in estimated IOU, but would again satisfy the bounding box adjustment

logic and lead to a sequence of unproductive update attempts. I corrected the be-

havior by including a generation counter. When bounding box adjustment logic is

called, the counter is compared to a fixed limit. If the counter is under the limit, a

new bounding box is generated, it inherits the generation count from the origin box

and increments it. If it is equal to or greater than the limit, no adjusted bounding

box is generated. I set the limit to five generations for all following experiments.

Figure 3.10 shows that bounding box regression produced a clear improvement in

localization for the dog-walker and dog objects. The IOU regression classifier seemed

to do little to improve over the SVM classifier on its own, but IOU regression, in

conjunction with the bounding box regression system, may have had a minor benefit

over the SVM with bounding box regression. There was little to no improvement on

leash objects for any method, suggesting that tuning the bounding box quality was

not the primary issue for that object type. Figures 3.11 and 3.12 show paired t-tests

that compare the result of running a Situate agent with the SVM classifier and the

IOU estimator, with and without bounding box regression.

The SVM classifier and the IOU estimator both improve on the SVM classifier

alone to a significant degree for the dog and dog-walker objects. The difference in

quality between the IOU estimator with bounding box adjustment and the SVM

classifier with bounding box adjustment are less clear. I used the combination of the

IOU estimator and bounding box regression system for subsequent experiments.

71

Figure 3.10: The above curves show the object localization quality for a Situate

agent using the SVM classifier, the IOU estimator, and each when bounding box

regression was included.

Figure 3.11: The above curves show the significance of differences between combina-

tions of classifiers and the bounding box adjustment method at different hypothesized

differences in the ground truth IOU of localized objects using paired t-tests. These

three curves show the significance of improvements over the SVM classifier used in

the Situate agent v1. The IOU estimator alone does not have a significant improve-

ment for any of the object types. The SVM classifier with bounding box adjustments

improves over the SVM alone to a small degree for the dog and dog-walker objects,

but not for the leash. The IOU estimator with bounding box adjustment improves

over the SVM for the dog-walker object, and do a greater degree for the dog object.

72

Figure 3.12: The above curves show the significance of differences between select

combinations of the IOU estimator and the SVM classifier with and without bound-

ing box adjustment. The IOU estimator with bounding box adjustment improves

most substantially over the IOU estimator alone for the dog object. The SVM with

bounding box adjustment improves on the IOU estimator alone for each object type,

but for very small hypothesized differences. The IOU estimator with bounding box

adjustment improves on the SVM classifier with bounding box adjustment with low

confidence for only the dog object.

3.2 Support functions

Previously I described Situate’s internal support function, which scales the output

of its classifiers to estimate the quality of proposed bounding boxes, and external

support function, which gives a single value that expresses how compatible proposed

bounding boxes are with Situate’s model of the situation. Having support functions

that produce interpretable values helps a user diagnose possible mistakes being made

by agents and lets agents prioritize the correct objects to include in Workspaces. To

these ends, the support functions should do the following:

• apply useful scaling to the values that come from the classifier,

• emphasize the selection of the correct objects in the Workspace, and

• integrate this information into a single, interpretable value.

Considering the reliability of classifiers and trust in general makes it natural to con-

sider the relevant Situate functions from a Bayesian perspective. It may clarify the

73

specific differences between Situate and Bayesian networks, as well as providing some

scaffolding upon which to improve the internal and external support functions used by

the Situate agent v1. Defining some terms will help reasoning through the situation

recognition problem:

• bx are the parameters for a bounding box with object label x.

• cx is the output of the classifier trained to detect object x applied to the region

defined by bx.

• lx is the proposition that the bounding box bx has localized its object of interest

with IOU greater than .5.

• by, cy, and ly are similarly defined for object y.

Several important correspondences are relatively clear. For a situation consisting

of objects x and y:

Situation score (for a situation consisting of objects x, y) ∼ p(lx, ly|cx, cy, bx, by)

Total support for object x ∼ p(lx|bx, cx, ly, by, cy).

That is, the notion of situation score is similar to the probability that objects x and

y have been successfully localized given the parameters of their bounding boxes and

the associated classifier scores. Total support (for an object in the Workspace) is

similar to the probability of the correct localization of an object given the rest of

the information in the Workspace, and assuming that all other included objects are

correctly localized.

When working on the support functions for Situate, I made a few assumptions

regarding how Situate uses its classifiers, the prior belief that an image contains the

74

situation of interest, and the space of possible situation groundings for an image.

Those assumptions include:

• cx is conditionally independent of bx, y, by, and cy given lx. That is to say, other

objects, their bounding box parameters, and other classifier outputs do not

influence the output of a classifier applied to an image region. If the presence

of the object is accepted, the other parameters are not affected by the visual

classifier output.

• For situation detection, priors for propositions lx and ly are low, but not van-

ishingly so. The prior expectations for lx and ly are not the prior for the object

being present in an image in the data set, but for the probability that an ar-

bitrary bounding box has a sufficient overlap with the ground truth bounding

box for its object of interest. From the perspective of an individual agent, the

situation is assumed to be present in the image.

• The background distribution of all possible box parameters bx as approximately

uniform with respect to location, aspect ratio, and area ratio. The actual set

of all bounding boxes over an image is not quite uniform in this way, but once

very tall and very wide boxes are removed, and very small and very large boxes

are removed, it is not a bad approximation. The conditional distributions for

p(bx|lx) are assumed to be and are modeled as normal distributions.

Looking at the total support function for objects in the Workspace, and given the

above assumptions, we see that our division of total support into a combination of

internal support and external support comes out naturally.

75

p(lx|bx, cx, ly, by, cy) =

=
p(lx, bx, cx, ly, by, cy)

p(bx, cx, ly, by, cy)
(by definition)

=
p(cx|lx, bx, ly, by, cy)p(lx|bx, ly, by, cy)p(bx, ly, by, cy)

p(cx|bx, ly, by, cy)p(bx, ly, by, cy)
(factoring)

=
p(cx|lx, bx, ly, by, cy)p(lx|bx, ly, by, cy)

p(cx|bx, ly, by, cy)
(canceling)

=
p(cx|lx, bx, ly, by, cy)p(lx|bx, ly, by, cy)

p(cx|lx, bx, ly, by, cy)p(lx) + p(cx|¬lx, bx, ly, by, cy)p(¬lx)

(marginalizing over lx)

=
p(cx|lx)p(lx|bx, ly, by, cy)

p(cx|lx)p(lx) + p(cx|¬lx)p(¬lx)
(by conditional independence of cx given lx)

=
p(cx|lx)p(lx|bx, y, by, cy)

p(cx)
(recombining p(cx))

=
p(lx|cx)p(lx|bx, ly, by, cy)

p(lx)
(applying Bayes’ rule)

The p(lx|bx, y, by) term tracks our notion of external support, as does the p(lx|cx) term

for our notion of internal support.

76

3.2.1 Internal support

We saw in the evaluation of the Situate agent v1 that detecting the location of the

leash in an image was quite a bit more difficult than detecting the dog or dog-walker

2.4. We also saw that the classifier for the leash object was less able to discriminate

leash crops fro background crops than the dog-walker and dog classifiers based on the

difference in their AUROC values 2.1.1. This indicated to me that it would be worth

being explicit about how much we trust the classifier and integrating that level of

trust into the behavior of the Situate agent.

Starting from the term p(lx|cx), we can rearrange terms a bit to find p(cx|¬lx)/p(cx|lx).

p(lx|cx) =
p(cx|lx)p(lx)

p(cx)
(Bayes’ rule)

where

p(cx) = p(cx|lx)p(lx) + p(cx|¬lx)p(¬lx). (marginalizing)

Then

p(lx|cx) =
p(cx|lx)p(lx)

p(cx|lx)p(lx) + p(cx|¬lx)p(¬lx)

=

(
1 +

p(cx|¬lx)
p(cx|lx)

p(¬lx)
p(lx)

)−1

.

77

The term p(cx|¬lx)/p(cx|lx), an odds ratio, expresses the relationship between the

classifier’s output when the target is present and when it is not present. Notably,

the term is independent of p(lx), which means that it is a property of the classifier

unrelated to how often the target of classification is present in a particular data set,

making it similar to the ROC curve analysis commonly used to evaluate classifiers,

rather than a precision/recall analysis.

The AUROC value that summarizes the ROC curve can not be used to perfectly

reproduce an ROC curve, but given a few assumptions, such as the normality of

distributions of decision values for positive inputs and for negative inputs, and equal

variances between those distributions, you can come close. Similarly, the AUROC

value can be used to approximate the odds ratio above. The odds ratio can be

approximated with a function of the form:

p(lx|cx) ≈
(

1 + ef(cx,AUROC,log(
p(¬lx)
p(lx)

)

)−1

.

Figure 3.13 shows the log odds and p(lx|cx) curves generated by using the odds ratio

p(cx|¬lx)/p(cx|lx) (with both probabilities based on Normal distributions fitted to

data gathered during classifier training) and curves generated using an approximation

that uses the AUROC of the classifier. The approximation leads to similar p(lx|cx)

predictions. The notable exception is that the dog and dog-walker estimates are

estimated to be the same, as they have essentially the same AUROC values, where

the p(lx|cx) should be higher for dogs than for dog-walkers at the same classifier

confidence. I expect that what is being obfuscated here is that the dog-walker classifier

is highly activated by positive instances of dog-walkers, but is also activated by the

frequent background humans in the negative data, whereas the dog classifier may be

less activated by positive instances of dogs and has fewer confusing background image

regions. That over-estimate of the likelihood of a localization of a dog-walker should

78

be corrected in Situate with the use of external support.

3.2.2 External support

External support is intended to support two properties of Situate. The first is the

selection of the correct object when there are multiple instances of an object involved

in a situation. For example, selecting the person walking the dog when there are

several people present. The second is to provide supporting information when the

classifier is known to be unreliable for a particular object type. For example, the

leash object, which appears as a simple line and is often confused with background

regions of images, can be identified more reliably given contextual objects.

During the evaluation experiments for Situate agent v1, it was not clear that ex-

ternal support value was accomplishing these goals. Some of the ambiguity came from

the scaling of the support values, which were almost always near zero or near one.

The original function that scaled external support was parameterized to minimize the

error between the external support score and the empirical cumulative distribution

function of the density values. I intended for this to create an intuitive relationship

between the external support values and the underlying statistics. However, in prac-

tice, there is little difference between an external support score in the 10th percentile

of external support scores and in the 50th percentile, as all values in this range provide

little discriminative information. The support values that did provide discriminative

information were very near the 100th percentile.

To get a clearer view of whether or not there was useful information being obfus-

cated by the poor scaling of the external support scores, I performed an additional,

small investigation. I sampled a large number of bounding box proposals for each

training image in the Portland Simple Dog-walking dataset using several different

sampling methods. The methods included a) a uniform model, b) Situate’s per-object

79

Figure 3.13: The upper left plot shows the log odds ratios for each object class
when p(cx|lx) and p(cx|¬lx) are modeled as normal distributions using the training
data for the respective objects. These ratios produce the probability estimates in the
lower left plot. The plot in the upper right quadrant shows the results of estimating
the odds ratios as a linear function of the AUROC score for each classifier. The lower
right plot shows the result of using the function to estimate probabilities of correct
localization. This process shows that these probabilities can be estimated reasonably
well using a simple function that takes only the AUROC. (Best viewed in color)

80

normal model of bounding box parameters, and c) the conditioned situation model

using the ground truth for two of the situation objects to condition for the third.

For each of those collections of samples, I calculated the density of each sample with

respect to the other models. For example, I calculated the densities for each sample

drawn from the uniform distribution given the normal model and the conditioned

normal model. Table 3.1 shows results from that experiment. From it I drew several

conclusions.

• The situation model provides good discrimination power when we

assume uniform density over all possible bounding boxes. If we suppose

a uniform sampling of bounding boxes, where all possible bounding boxes are

given equal likelihood, then the density values with respect to our situation

models will indeed provide a good signal for identifying bounding boxes that

are likely to have a high ground-truth IOU. We gather this from the reasonably

good AUROC values in the “uniform sampling, normal density” and “uniform

sampling, conditional density” rows of table 3.1.

• If more information is available to the situation model, the average

quality of samples improves. The goal of Situate is not to process all possible

bounding boxes and eliminate the chaff. Situate uses the situation model to

focus its sampling such that the samples it does draw are likely to be good. We

see that the situation model contributes to accomplishing this goal by comparing

the mean IOU and p(IOU(x) > .5) for uniform sampling, normal sampling, and

conditioned sampling rows. As the information available to the situation model

increases from none, to object specific, to conditioned on other objects, the

average IOU increases substantially for each object type. Conveniently, this

analysis also gives us concrete values for p(lx) for each object and sampling

method.

81

• When the same model is used to draw samples and to score them,

there is little discriminatory power. That is, if Situate is drawing samples

from a particular distribution, say, the unconditioned normal distribution for

dogs, then scoring those samples with external support based on that same un-

conditioned normal distribution for dogs does not provide useful information.

This, unfortunately, nearly nullifies the benefit of using density as a discrimina-

tive signal (when the samples being compared are from the same distribution).

Rows “normal sampling, normal density” and “conditional sampling, condi-

tional density” show that the AUROC values drop to nearly the guessing rate

of .5.

• When there is a mixture model used in sampling and evaluation,

the density has some discriminitive power. In practice, the distributions

used in the situation model change during the evaluation of an image, so the

sampling sources are mixed, and the function with which Situate is evaluating

external support updates. A rough approximation of this can be seen in row

“combined normal and conditional methods”, where a mix of sampling sources

and density calculations are combined, and the AUROC indicates reasonably

good discriminative power. Samples drawn during an actual run of a Situate

agent produce a similar distribution.

These statistics demonstrate that there is useful, discriminative information in the

density values when the situation model used to evaluate them has more information

available to it than was available when the sampling occurred. However, the AUROC

scores indicate that the discriminative potential is limited. An alternative scaling

mechanism should at least help Situate to utilize the discriminative potential that is

there and make the external support scores more interpretable. Toward that end, I

looked into the Bayesian correlate of external support, p(lx|bx, ly, by, cy). Before that,

82

dog-walker dog leash all
uniform sampling, normal density

mean IOU 0.051 0.023 0.022 0.032
p
(
IOU(x) > .5

)
0.004 0.002 0.002 0.003

AUROC 0.859 0.781 0.898 0.822
normal sampling, normal density

mean IOU 0.107 0.040 0.039 0.062
p
(
IOU(x) > .5

)
0.037 0.006 0.003 0.015

AUROC 0.596 0.653 0.641 0.683
normal sampling, conditional density

AUROC 0.838 0.943 0.934 0.882
conditional sampling, conditional density

mean IOU 0.320 0.234 0.193 0.249
p
(
IOU(x) > .5

)
0.249 0.088 0.053 0.130

AUROC 0.588 0.636 0.657 0.669
combined normal and conditional methods

mean IOU 0.146 0.084 0.073 0.101
p
(
IOU(x) > .5

)
0.082 0.025 0.015 0.041

AUROC 0.821 0.855 0.857 0.847

Table 3.1: Several methods of sampling box proposals and scoring them based on their
density are compared in the table above. Bounding boxes were sampled using Situate’s
“uniform” method, its unconditioned normal model, and its conditioned normal model
(where the conditioning used ground truth parameters for the other objects in the scene).
For example, to generate bounding boxes for the dog object, samples were drawn from
the uniform model, the normal distribution over dog bounding box parameters, and for a
normal model conditioned with the ground truth parameters for the dog-walker and leash
objects in the image. For each sampling method, the average IOU of the samples with the
ground truth object of interest were recorded, as was the probability of samples having an
IOU greater than .5. The density of each sample was calculated with respect to several
distributions. For each sampling method and density calculation pair, the AUROC value
was calculated to characterize the pair’s capacity to discriminate between bounding boxes
with a ground truth IOU above or below the .5 threshold.
There are two notable patterns. First, more complex sampling models lead to higher mean
IOU for the sampled boxes, which is to say, the better models do indeed lead to better
samples. Second, the AUROC values are high when the complexity of the density model is
higher than the complexity of the sampling model, but is low when the density model and
sampling model are the same. Together, these suggest that using a more complex model
improves the quality of the samples, but that the density of the samples with respect to
that model are going to provide minimal discriminative value.

83

an additional assumption:

• The probability that a particular object has been localized is independent of

what other objects have been identified in the image. That is, p(lx|ly) = p(lx).

In the past, computer vision systems have used terms like p(lx|ly) as a co-

occurrence term that tracks how often different objects occur in an image to-

gether [11]. Co-occurrence terms have been shown to be useful for correcting

object labels, but they are not something currently used in Situate. However,

the probabilities of object localizations do change when the parameterizations

of bounding boxes are considered.

84

p(x|bx, y, by, cy)

=
p(lx, bx, ly, by, cy)

p(bx, ly, by, cy)
(definition)

=
p(bx|lx, ly, by, cy)p(lx, ly, by, cy)

p(bx, ly, by, cy)
(factoring)

=
p(bx|lx, ly, by, cy)p(lx)p(ly, by, cy)

p(bx, ly, by, cy)
(independence of lx, ly)

=
p(bx|lx, ly, by, cy)p(lx)p(ly, by, cy)

p(bx|ly, by, cy)p(ly, by, cy)
(factoring)

=
p(bx|lx, ly, by, cy)p(lx)

p(bx|ly, by, cy)
(canceling)

=
p(bx|lx, ly, by, cy)p(lx)

p(bx|lx, ly, by, cy)p(lx) + p(bx|¬lx, ly, by, cy)p(¬lx)
(marginalizing over lx)

=
1

1 + p(bx|¬lx,ly ,by ,cy)

p(bx|lx,ly ,by ,cy)
p(¬lx)
p(lx)

(dividing by p(bx|lx, ly, by, cy)p(lx))

= (1 + eψ)−1

where

ψ = log
(
p(bx|¬lx, ly, by, cy)

)
+ log

(
p(¬lx)

)
− log

(
p(bx|lx, ly, by, cy)

)
− log

(
p(lx)

)
.

85

This is similar to the scaling function used for the original external support func-

tion (a logistic function of log
(
p(bx|lx, ly, by)

)
), but with different constants, found

through a more principled approach, and includes the p(bx|¬lx, ly, by, cy) term. The

p(bx|ly, by, cy) term exposes the difficulty in using density values for discrimination in

Situate. Marginalizing p(bx|ly, by, cy) with respect to lx produces p(bx|¬lx, ly, by, cy),

which is the distribution of bounding box parameters for boxes that do not contain

the object of interest. When actually used in Situate, p(bx|¬lx, ly, by, cy) is essen-

tially identical to p(bx|ly, by, cy) (the sampling distribution), which is itself a model

of p(bx|lx, ly, by, cy), as it is trained on bounding boxes that do contain the object

of interest. With p(bx|¬lx, ly, by, cy) and p(bx|lx, ly, by, cy) being essentially the same,

we end up with no discriminative power at all. This is likely why we saw little dis-

criminative power when we used the same distribution for sampling and for density

calculations in Figure 3.1.

However, the external support value does remain important, if for no other reason,

because it provides higher scores for proposals that were generated while informed by

context over those that were generated without context. To construct a useful scaling

method, I used the above probabilistic approach, but assumed a uniform distribu-

tion for the negative instances of bounding boxes, which made p(bx|¬lx, ly, by, cy) a

constant, and produced a function much like the original scaling function for exter-

nal support. Figure 3.14 shows the relationship between predicted p(lx|bx, ly, by) and

IOU values. Although these estimates are not particularly accurate, it shows that the

function has predictive power. Additionally, the scaling is easily interpretable and is

similarly scaled to our internal support values, making their combination a bit more

straightforward.

86

Figure 3.14: (a) The first row of figures shows the distribution of predicted proba-

bilities of IOU greater than .5. Between half and three quarters of samples resulted in

0 external support (depending on the object type). (b) The second row of plots show

the relationship between the predicted probabilities and the mean IOU of sampled

boxes, grouped by predicted probabilities. The probability predictions themselves

are not very accurate (not shown), but the resulting IOU scores are monotonic. The

scatter plots in the final row (c) show that these relationships are a trend, and not

necessarily trustworthy for each individual comparison.

87

3.2.3 Combined internal and external support

The combination of the output of the classifier with contextual information produces

the total support value, which expresses the degree to which an observation appears

to be reliable. In the discussion at the start of this section, I looked at total support

from the perspective of the probability of an object being correctly localized given

the classifier output and all information available in the Workspace, that is,

p(lx|bx, cx, ly, by, cy) =
p(lx|cx)p(lx|bx, ly, by, cy)

p(lx)
.

In practice, this version of total support is quite incompatible with Situate’s Workspace.

Once an object has been added to the Workspace, the contextual information becomes

profoundly important to the addition of any additional objects. If that initial object

is an incorrect detection, it is nearly impossible to correct or for the Workspace to

progress. Instead, an additive combination of the internal and external support is

preferable, but leaves the issue of which terms to use and how to combine them.

There are a number possible inputs to the total support function, including:

• cx, the output of the IOU estimator,

• AUROCobj, the training AUROC for the IOU estimator for the object of inter-

est,

• p(lx|cx) using distribution estimates gathered during training, and

• p(lx|bx, ly, by).

In addition to expressing how reliable an observation is, the combination of inter-

nal and external support should also accomplish several additional goals, including:

• Total support should be a point of interpretability for post-hoc analysis,

88

• A classifier with an AUROC score of .5 should be given no weight, as it provides

no discriminative power,

• A perfect classifier should still be influenced by external support, as external

support determines which objects should be included in a Workspace when there

are several instances of an object type,

• There should always be at least one object type for which internal support

alone is sufficient to add it to the Workspace without additional contextual

information.

To explicitly satisfy the above requirements, I constructed a linear combination

of internal support (Sint,obj) and external support (Sext,obj) that uses a mixing term

based on the AUROC values of the classifiers for the objects of the situation:

Stotal,obj(Sint,obj, Sext,obj, φ) = wext,obj(φ)Sext,obj + wint,obj(φ)Sint,obj

where

• wext,obj(φ) = wext,min+ |objects|×(wext,ave−wext,min)×(1−φobj)/(Σobj(1−φobj))

• wext,min is minimum external support weight for a situation object,

• wext,ave is the average external support weight over all situation objects,

• φobj = 2(AUROCobj − .5),

• φ is a vector of φobj for each object in the situation,

• wint,obj(φ) = 1− wext,obj(φ),

• Sint,obj = cobj, the output of the IOU estimator for object obj, and

• Sext,obj = p(lx|bx, ly, by) for object x and Workspace objects y.

89

The φ term scales trust in the classifier linearly based on its reliability as measured

by the AUROC score. Each object type has a minimum external support weighting

and internal support can’t become ignored entirely based on a fixed average external

support score.

3.3 Evaluation of the updated Situate agent

I evaluated the Situate agent v2 using the same set of evaluation images from the Port-

land Simple Dog-walking data set used previously when evaluating Situate agent v1.

In this experiment, I alloted each agent (Situate agents v1 and v2) a higher number

of calls to the image classifier, increasing the limit from 300 to 1,000. This additional

resource allocation was meant to let the agents run until they had developed a stable

Workspace that did not change substantially. Figure 3.15 shows the relationship be-

tween the number of calls to the classifier and the quality of Workspaces generated

by Situate agents v1 and v2. The Situate agent v2 developed Workspaces relatively

quickly. The Situate agent v1 benefited substantially from the additional computa-

tional resources, adding more objects to its Workspace and improving the quality of

those localizations, but did so over many more calls to the classifier.

Figure 3.16 shows the grounding results for the Situate agent v1, the Situate agent

v2, and the top scoring bounding boxes for each situation object type using Faster-

RCNN. The Situate agent v2 detects the correct person with an IOU greater than .5

in approximately 80% of images and localizes the dog at about the same rate, but

still fails to sufficiently localize the leash object in more than about 20% of images.

This does not represent an improvement over the Situate agent v1 for the person or

leash objects, but is a substantial improvement for the dog object.

What mistakes are the agents making that lead them to poor groundings? Figure

3.17 shows examples of groundings that had a high final situation score but had

90

0 100 200 300 400 500 600 700 800 900 1000
iteration

(calls to classifier)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pr
op

or
tio

n
of

 a
ge

nt
s

w
/

G
M

(IO
U G

T(o
bj

s)
 >

 .5
iterations vs p(geometric mean (IOUGT) > .5)

Situate agent v1
Situate agent v2

Figure 3.15: While the agents were running on the evaluation images, I recorded

the geometric mean of the ground truth IOU values for each of the objects rep-

resented in the Workspace (and included the value .01 for objects that were not

represented in the Workspace). This plot shows the proportion of the agents (each

running on one image from the evaluation set) that have a geometric mean value

greater than .5. Although this value is not equivalent to the number of agents

that have produced correct solutions, it is a good proxy for the quality of Workspaces.

The Situate agent v1 makes changes to its Workspace even after many itera-

tions, continuing to improve at a steady rate through the first 500 calls to the

classifier. The Situate agent v2 develops its good Workspaces fairly quickly, with

about 40% of agents having developed a good Workspace within about 100 calls to

the classifier (of the 55% of agents that will eventually do so).

91

Figure 3.16: The object localization quality for the two versions of the Situate agent

and Faster-RCNN are similar to one another for the dog-walker and leash objects at

the .5 IOU threshold (although differ a bit for less tightly localized bounding boxes).

The localization quality of the Situate agent v1 improves substantially with additional

calls to the classifier. The Situate agent v2 improves on v1 in detecting the dog object.

very low ground truth scores for one or more objects. That is to say, these images

are examples of what leads the Situate agent v2 to have high confidence in a poor

response. There is a frequent tendency to localize an object that is of the correct

type but is an incorrect instance (i.e., an incorrect person in the image). When this

happens, the final Workspace generated by the agent tends to remain incomplete or

to include bounding boxes that do not contain an object of interest, but for which

the low internal support score was bolstered by high external support. There is no

mechanism by which the agent backs away from initial detections and redirects its

attention for the other regions in the image.

Figure 3.18 shows examples of the dog-walking situation that produced the lowest

situation scores from the Situate agent v2. Here, we again see what appears to be

the agent committing an erroneously detected object to the Workspace and then

floundering. The initial objects committed to the Workspace were not the highest

scoring examples of their object types in the image, but once committed, the Situate

agent v2 failed to develop its Workspace.

The above errors demonstrate the tension between the goal of developing a Workspace

92

Figure 3.17: The above Workspaces were generated by the Situate agent v2 and
were given high situation scores, but had very low ground truth scores for one or
more situation objects. These examples demonstrate the tendency of the Situate
agent v2 to localize incorrect instances of objects of the correct type and to accept
low quality instances of contextually recognizable objects, rather than to identify the
correct instances of objects. (Best viewed in color)

quickly by committing objects to the Workspace as soon as possible and goal of devel-

oping good Workspaces that start with good examples of constituent objects. Once

poor examples are committed to the Workspace, the agent is essentially in a local

optimum with respect to situation score, and is not able to improve. Although it is

a failure mode, the results in figures 3.16 and 3.15 show that the Situate agent v2 is

at least able to arrive at this failed state more quickly than the Situate agent v1. For

this reason, the Situate agent v2 will be used moving forward. In the next chapter I

will describe how Situate allocates resources such that failed agents do not continue

to receive resources and remaining resources are used to search for alternate solutions.

93

Figure 3.18: The above Workspaces were generated by the Situate agent v2 and
were given the lowest situation scores from among positive instances of the dog-
walking situation. These examples demonstrate, like in Figure 3.17, the tendency of
the Situate agent v2 to commit to incorrect instances of objects and to accept low
quality instances (or outright hallucinations) of other objects. (Best viewed in color)

94

Chapter 4

Managing Multiple Situate Agents

In this chapter I will discuss how Situate uses multiple agents to perform the situation

recognition task. The use of multiple agents allows multiple possible solutions to

an input to be considered while allowing the individual agents to pursue solutions

greedily. I will describe the mechanisms by which the multi-agent approach addresses

some of the issues identified in the previous chapters, the implementation challenges

associated with the approach, the solutions to those challenges, and will compare

the full multi-agent implementation of Situate to an individual Situate agent and to

Faster-RCNN.

4.1 Multi-Agent Approach

In previous chapters, I discussed the individual Situate agent and how it uses an

updating Workspace to detect objects of interest related to a situation. An individual

Situate agent often fails to identify the correct objects of a situation for two related

reasons:

Failing to detect objects important to the situation

Results from previous chapters included multiple examples of agents that failed

to identify objects that were important to the situation. Often these objects

appeared in low-likelihood locations in the input or in regions that were not of

interest based on the current contents of the Workspace. In both cases, these

failures seems to be due to insufficiently exploring the entire input.

95

Failing to detect relevant examples of objects of the situation

Other examples of failed situation groundings included well localized instances

of objects that are of a type included in the situation, but were not the correct

instance (such as localized people in dog-walking images that were not walking

the dog). The agent then expended its resources searching around the already

localized object and failed to recognize other instances of the object. This occurs

because the only way to replace an object in the Workspace is to commit a

higher confidence instance, but the confidence may not be higher for the correct

instance absent supporting contextual evidence.

Figure 4.1 shows two examples of these failures and the incorrect final Workspaces

that result.

• In figure 4.1a, the dog was correctly localized, and there were two people that

could have been reasonably identified as the dog-walker. The incorrect person

was detected, and the Workspace was finished with an incorrect leash detection.

At this point in the evaluation, the other person (on the right) would not have

higher total support than the detected person because the person on the right

side of the image would be less compatible with the erroneous leash detection.

Likewise, the correct leash detection would not have higher total support than

the existing erroneous leash due to the location of the detected person. Situate

would just expend any remaining processing resources without changing the

Workspace. That is to say, Situate has found a local optima that will not be

escaped with any single change to the Workspace.

A better use of remaining computational resources might been to consider other

possible sets of objects. Those alternative Workspaces may or may not have

resulted in a higher situation score than the one that did result, but the alter-

native Workspaces should be considered.

96

(a)

(b)

Figure 4.1: The upper image contains two reasonable options for the dog-walker, one
of which was selected and committed to. The resulting workspace looks reasonable,
but the alternative was never evaluated. Even if it were, the fact that there were
two reasonable responses was not communicated by Situate in its output. The lower
image shows multiple reasonable options for the dog-walker. The person selected did
not lead the agent to find an instance of the situation, but the agent also never moved
on from its initial detection of a person. (Best viewed in color)

97

• In figure 4.1b, the person that was detected focused the agent’s attention to a

constrained image region. A Workspace that started with the other person was

never considered by the agent, and, as the other person may have had lower

internal support than the detected person, would not have replaced it in the

Workspace. The agent expended its remaining resources searching for a dog

that was not present in the location suggested by its Workspace.

Using multiple agents, Situate addresses these issues by a) searching more of the

image for possible starting objects for a Workspace, and b) allowing detected objects

to lead to multiple Workspaces through a forking procedure. However, this approach

creates issues related to resource allocation and redundancy that Situate needs to

address, as multiple agents exploring from similar Workspaces adds nothing, and

expending resources on agents with poor Workspaces before developing promising

Workspaces delays possible findings. Therefore, resource allocation to Situate agents

should accomplish several goals:

• Unproductive agents should be recognized so avoid wasted resources.

• Resources should not be allocated to multiple agents that have substantially

similar Workspaces.

• Promising agents should have resources allocated to them early so that solutions

can be developed quickly. Remaining resources should be utilized to develop

alternative responses.

My method for accomplishing these goals came by way of borrowing from the

game tree traversal method Monte-Carlo tree search. Game trees are structures that

represent turn-based games, usually with multiple players and perfect information

(like chess, checkers, or Go), where nodes represent a possible state of the game,

98

edges connect game states that result from available moves in the game, and the goal

is to find a sequence of moves that lead to a “winning” game state.

Games with a limited number of moves and a short duration can be exhaustively

evaluated, but others have a sufficiently large number of available moves and possible

board states that exhaustive evaluation is unfeasible. In this situation, strategies for

evaluation game trees are generally based on heuristic methods that score potential

moves by estimating how likely they are to lead to a winning game state. The

features that relate game tree traversal to Situate are the sequential nature of building

solutions, the large number of possible changes to the solution state at each step,

and the inability to evaluate the quality of a state without some sort of subsequent

investigation.

Monte-Carlo tree search (MCTS) has become especially well known due to its

success related to the game Go, a game notable for being particularly challenging due

to the number of available moves from each game state and the difficulty in estimating

the quality of a game state. MCTS is a heuristic method that addresses both of these

issues through sampling and simulation [7].

MCTS uses stochastic selection of available moves and repeated “play-outs” of a

game from the resulting game state to estimate the quality of the move. A play-out

consists of a series of randomly selected legal moves that result in either a win or a

loss. The ratio of play-outs that result in a win serves as an estimate of the quality of

the game state. That estimated quality of the game state is used to bias the selection

of game states toward states that are promising, which improve the quality of the

estimation. Eventually, the estimating stops and MCTS commits to the move that

produced the highest quality game state, now having been repeatedly tested. This

combination of stochastic move selection and repeated play-outs means that MCTS

delays committing to a move until it has exhausted its allotted iterations, and biases

99

the allocation of those resources toward its most promising options.

MCTS accomplishes its task in a manner that generally satisfies the aforemen-

tioned goals for our agent management system.

• Unproductive game states do not receive many play-outs due to their low sam-

pling probability.

• Game states are uniquely represented in a well constructed game tree, meaning

redundant play-outs are never applied to duplicates.

• Promising board states are the most likely to be sampled, meaning the quality

of those states are evaluated as early as possible.

Situate manages its agents in a manner that is largely similar to MCTS. Rather

than spending computational resources on playing-out board states, computational

resources (here, iterations) are allocated to agents to investigate the input from the

context of their Workspaces. That allocation is done in proportion to the current

situation score of the agent’s Workspace. Hence, promising Workspaces are likely to

be evaluated early, producing reasonable solutions quickly. After a fixed allocation

of iterations have been expended, the agent is retired. These agents are no longer

used for evaluation, but serve as markers of Workspaces that have been sufficiently

evaluated and should not be inadvertently recreated.

Table 4.1 provides psuedocode for Situate’s agent management system and figure

4.2 provides an example of the resulting Workspaces after Situate has been applied

to an image.

The root of the graph in figure 4.2 shows the input image and several objects

detected during an initial object search. The initial object search consists of an

application of Faster-RCNN to identify objects that have sufficient internal support

to be included in an otherwise empty Workspace. Each of those detected objects are

100

Figure 4.2: Situate performs an initial search for relevant objects. Each detected
object is used to generate an initial Workspace that is assigned to a Situate agent.

Situate samples from among the agents, which in turn search the input for
additional objects to update their Workspaces. Updated Workspaces are compared
to those of other agents to prevent redundancy.

Once agents have reached their termination conditions, Situate returns the
Workspace with the highest situation score. (Best viewed in color)

101

used to initialize a separate Workspace and are assigned to their own agents (agents

1 through 3 in this example).

Situate then selects an agent through a weighted sampling procedure and the input

is searched from the perspective of the selected agent’s Workspace. If something is

found and added to the Workspace, then a new agent is generated with the new

Workspace. For example, suppose that agent 3 is sampled and that it locates the dog

at the center of the image. The Workspace from agent 3 and the dog will produce

a new Workspace. It will be compared to the other Workspaces known to Situate.

If the new Workspace appears to be unique, agent 3a will be generated with the

new Workspace. The existing agent, agent 3, remains as an available agent to be

selected by Situate but has a low probability of being sampled due to agent 3a’s

higher situation score. The Workspace in agent 3a narrows its search for a leash

object to a location that does not contain a leash. After searching for some number

of iterations, agent 3a will be retired by setting its probability of being sampled

by Situate to zero. Once an agent is retired, it remains known to Situate to avoid

generating new agents that replicate its work.

The set of remaining agents includes: agent 1, agent 2, and agent 3. Suppose that

agent 2 is selected and it locates the person in the left of the image, generating agent

2a. Then suppose agent 1 detects the dog at the center of the image. The resulting

Workspace would be substantially similar to the Workspace of agent 2a, so no new

agent would be generated.

Once all agents have expended their alloted computational resources (or have

met another termination condition), Situate returns the Workspace with the highest

situation score. In this case, the Workspace contained in agent 3a. Returning the

other Workspaces can confirm to a user that Situate did consider alternative objects

and combinations of objects.

102

4.1.1 Differences from MCTS

There are important differences between exploring unstructured data and evaluating

game states that lead to a few notable differences between how Situate manages

agents and how MCTS selects moves.

• There are no play-outs in Situate. Situate uses agents to investigate its input

through sampling and scores the samples in the context of a Workspace. Ta-

ble 4.1 refers to the evaluation performed by a Situate agent, as described in

previous chapters, as evaluate.

• Board states have an estimated probability of leading to a winning board state,

and that estimate is used to bias the distribution of “play-outs”. In Situate,

there are no such winning game states, but Workspaces do have a situation

score, which is used to bias the distribution of computation resources in the

form of iterations allocated to an agent.

• Without discrete moves, it is not as obvious when two states are so similar that

they are essentially doing redundant work. This means that Situate needs a

method for identifying very similar Workspaces. The measure I constructed

uses the same .5 IOU threshold used in other contexts to check the similarity

between individual objects in the Workspaces. If each object in a Workspace

has a correlate in the other Workspace, and each pair of objects has a .5 IOU

score between them, then the Workspaces are considered to be “almost equal”.

This approximate measure allows Workspaces to be identified as substantially

similar before iteratively refining bounding boxes. In table 4.1, the ≈ symbol

stands in for this rough equivalence.

• The quality of the estimate of a game state continues to improve from additional

play-outs even after the game state has received significant attention. There are

103

limited benefits associated with expending additional resources on a Workspaces

after bounding box adjustment has completed and a good number of samples

have been drawn from its context. To address this difference, I set a fixed

number of iterations after which, if an agent has not produced a new Workspace,

the agent is retired. The specific number of iterations remains a parameter

(called retire threshold in table 4.1).

• Most games have a fixed starting board state, so rather than evaluating the

same set of early moves each game, a set of good early moves can be stored.

This set helps to constrain the complexity of the early game. The appropriate

set of “early moves” for Situate is to do a cursory scan of the input. This lets

Situate identify clearly detectable objects and can provide an assurance that all

image regions are examined at least once.

A straightforward method for doing this is to simply pre-process the image with

Faster-RCNN and to include high confidence bounding boxes as initial entries in

the Workspaces of Situate agents. Other methods could also be used, including

simply starting with a pre-defined grid of bounding boxes that cover the image.

Regardless of method, this process is referred to as initial object detection in

table 4.1.

104

input: im : image, s : (situation structure, visual classifiers, situation model)

output: w∗ : workspace

initialize

Detections← initial object detection(im, s)

Workspaces← ∅
Workspacesinactive ← ∅
for each d ∈ Detections

if d.support > detection threshold

wnew.objects[0]← d

Workspaces←Workspaces + wnew

for each w ∈Workspaces

w.evaluation queue← {d ∈ Detections|d.type 6= w.objects[0].type}

Run

for each i ∈ 1 to total iterations

w ←Workspaces.select()

wnew ← w.evaluate(im, s, eval iterations)

w.iterations since update ← w.iterations since update +
eval iterations

collisions← {w ∈W ∪Winactive|w 6≈ wnew}
if collisions = ∅

W ←Workspaces + wnew

w.iterations since update← 0

else if w.iterations since update > retire threshold

Workspacesinactive ←Workspacesinactive + w

Workspaces←W − w

if Workspaces = ∅, break

W ←Workspaces + Workspacesinactive

w∗ ←Workspaces[argmax(w.support for w ∈Workspaces)]

return w∗

Table 4.1: Psuedocode for Situate’s agent management method.

105

4.2 Evaluation of grounding performance

To evaluate the situation recognition quality of the multi-agent implementation of

Situate, I applied it, as well as an individual Situate agent and the method based on

Faster-RCNN, to the set of 100 testing images withheld from the Portland Simple Dog-

walking dataset. Both the multi-agent implementation of Situate and the single agent

were allowed a maximum of 1,000 calls to the image classifier (although in reality,

the average number of calls to the visual classifier varies substantially for multi-agent

Situate, as some images do not contain any confidently localized object during the

initial object detection step, and therefore no additional calls to the classifier). Figure

4.3 shows the object grounding performance results on the dog-walking situation

recognition task for each method.

Multi-agent Situate improves on Faster-RCNN and on the performance of an in-

dividual Situate agent for each of the object types. For the leash object, multi-agent

Situate’s improvements over Faster-RCNN in detections at the .5 IOU threshold are

minor. However, multi-agent Situate is able to identify the approximate location with

significantly higher frequency than Faster-RCNN. The bounding boxes generated by

Faster-RCNN localize the leash at the .2 IOU threshold in approximately 40% of im-

ages, where multi-agent Situate meets that standard in approximately 70% of images.

Although this is not the metric for correct grounding of a situation in an image, it

does indicate that the Workspaces generated by Situate represent the content of the

image to a reasonable degree for most images.

106

Figure 4.3: Object grounding quality comparison between Faster-RCNN, a single

Situate agent (using the improvements from the previous chapters), and the multi-

agent implementation of Situate.

107

Chapter 5

Applications and Additional Situations

5.1 Situate for retrieval

Situate’s structured notion of a situation and its agent-based approach is useful for the

situation recognition task, but the situation recognition task is not itself a use case. As

discussed in Chapter 1.4, the situation recognition task can express several other tasks,

including action recognition, referring expressions, and graph-based image retrieval.

In this section, I will evaluate Situate from the perspective of image retrieval and

compare it to the IRSG system described in chapter 1.4.

Recall that image retrieval tasks involve returning images from a corpus that

satisfy a query. Queries are often expressed in natural language terms, but in this

case we are using queries in the form of scene graphs, where a scene graph is a graph

connecting objects and relationships [19]. Retrieval is performed by generating a score

that relates how much each image in a corpus satisfies the query and then returning

the highest scoring images. The quality of a retrieval system can be expressed or

summarized in a number of ways, the most common including precision/recall (PR)

curves, receiver operating characteristic (ROC) curves, and the area under the ROC

curve (AUROC). Each communicate how well the retrieval system’s scores predict the

correctness of an image retrieved from the corpus. The notable difference between

PR curves and ROC curves is that ROC curves are agnostic to the distribution of

correct responses and incorrect responses in the corpus. That is to say, the ROC

curve should not change if there are 100 positive instances and 100 negative instances

108

in a data set, or if there are 100 positive instances and 10,000 negative instances in

the data set. PR curves are sensitive to the distribution within the data set. The

AUROC simply summarizes the ROC curve in a single value.

To evaluate Situate in the context of image retrieval, I used Situate, IRSG, and

the Faster-RCNN method to score images that contained a situation of interest and

images that did not contain the situation of interest. A set of 5,000 images from

the Visual Genome dataset [20] were used as a general set of negative examples for

several situations. This particular subset was used in [19]. I removed several images

that contained the situations of interest, leaving 4,978 negative examples The 100

testing images from the Portland Simple Dog-walking dataset served as the first set

of positive instances of a situation. Additional situations are discussed later in this

chapter.

Situate and IRSG are both constructed such that they generate a single score for

an image with respect to a given query. To get a comparable value from the Faster-

RCNN method, I used the padded geometric mean of the confidence values assigned

to the highest confidence bounding boxes for each object type in the situation. That

is, the situation score for the Faster-RCNN method is

score(x, T) =
(∏
t∈T

max
b∈Bt(x)

(
conf(b) + ε

)) 1
|T |
,

where T is the set of object types in the situation, Bt(x) is the set of bounding

boxes generated by Faster-RCNN for objects of type t and the image x, conf(b) is

the confidence associated with bounding box b, and ε is a padding value (which I

set to .01). If an object type from the situation was not detected, the padding value

prevents the image from having a score of zero.

Figure 5.1 (a) shows the receiver operating characteristic (ROC) curves for Situate,

IRSG, and the Faster-RCNN method. Each point along the curve is created by

109

selecting a threshold value and assigning each image in the corpus a predicted class

based on whether the image’s retrieval score is above or below that threshold. Then,

based on those assignments, the false positive rate (FPR) and true positive rate (TPR)

are calculated and plotted. This process is repeated for threshold values that span

the full range of retrieval scores. If the values assigned to inputs were random, this

process would produce a line from the bottom left to the upper right, representing the

guess rate. A perfect classifier would produce a higher output value for each positive

input than for every negative input, and would result in a curve that connects the

bottom left corner to the upper left corner, and the upper left corner to the upper

right corner. Figure 5.1 shows that Situate outperforms the Faster-RCNN method

and IRSG by a substantial margin.

Image retrieval systems are almost never going to be applied to balanced data sets,

so looking at performance given an imbalance can be informative. Figure 5.1 (b) shows

the precision/recall curves for Situate, IRSG, and for the Faster-RCNN method given

100 positive images and approximately 5,000 negative images. These curves show

that IRSG and the Faster-RCNN method were able to retrieve more than 10% of

dog-walking images before making their first error. For the Faster-RCNN method,

I presume that this is largely because images that contain high confidence instances

of each of the constituent objects of the situation are, in fact, images containing the

situation of interest. Notably, the quality of the results from IRSG (and even the very

specific shapes of its ROC and PR curves) match those of the Faster-RCNN method

very closely. IRSG applies Faster-RCNN to its input and uses the resulting bounding

boxes in an energy minimization procedure. However, this minimization very rarely

causes a deviation from the selection of the best individual bounding boxes that are

greedily selected in the simpler Faster-RCNN method. This result is consistent with

findings in the original report on IRSG and is discussed in more depth in Conser et

110

(a) ROC curves (b) Precision/Recall curves

Figure 5.1: The curves above show the performance of the Faster-RCNN method,

IRSG, and Situate on a retrieval task when a general set of negative images are used

as the background class. These images, from the Visual Genome dataset, contain

natural images from a variety of scene types, many including people. This task

simulates general image retrieval when there is little known about the images that

make up the corpus. The ROC curve gives a sense of the trade-off between sensitivity

and selectivity in a manner that is agnostic to the proportion of images with positive

instances of the situation and images without the situation in the data set. The

precision/recall curve is not agnostic to the number of images containing the situation

and the number of images without the situation in the data set, but does give a clearer

indication of differences in performance when the positives are relatively rare. Here,

the positive instances of the situation make up about 2% of the corpus.

al. [19, 6].

A practical application of the situation recognition to an image retrieval task on

a large corpus of images would likely start with a preliminary labeling of objects

in the images. However, even a robust labeling of objects is unlikely to include all

object types that are especially indicative of situations, such as the leash object in

the dog-walking situation. Then, querying the corpus for the situation might start by

filtering for images that contain objects that were included in the preliminary search.

In this context, the configuration of the objects and the presence of rare objects of the

111

situation are what distinguish the positive instances of the situation from negative

instances of the situation. This would lead to a difficult, secondary phase of the image

retrieval task where both positive and negative instances of a situation would both

contain several objects of the situation.

To evaluate how well Situate would perform the retrieval task in the context of

negative images that contain relevant objects, I compared the retrieval performance

of Situate, IRSG, and the Faster-RCNN method on a set containing 100 images that

contain positive instances of the dog-walking situation and 100 images that contain a

dog and at least one person, but are not instances of the dog-walking situation. These

images were from an additional set of images included with the Portland Simple Dog-

walking dataset. Figure 5.2 shows the ROC curves that result from this evaluation.

Not surprisingly, this much more difficult task led to a reduced classification quality

for all methods, but the Situate method substantially out performs both the Faster-

RCNN method and IRSG (which, again, have nearly identical performance to one

another).

112

(a) ROC curves (b) Precision/Recall curves

Figure 5.2: The curves above show the performance of the Faster-RCNN method,

IRSG, and Situate on a retrieval task when a challenging set of negatives is used

as the background class. Challenging negatives include at least one person and at

least one dog, but do not contain the dog-walking situation. This task simulates a

hypothetical image retrieval application of Situate which assumes a corpus of images

with a preliminary labeling that includes dogs and people as labeled objects, and

assumes the corpus is pre-filtered based on the inclusion of both a person and a

dog. Each method shows degraded performance when compared to the general set of

negative background images (see Figure 5.1), but the performance of Situate degrades

substantially less than that of the other methods. Note that these precision/recall

curves should not be directly compared to those in Figure 5.1, as the proportion of

positive images in the corpus has changed from approximately 2% to 50%.

113

5.2 Additional Situations

While developing Situate, I made many implementation decisions in the context of

a single situation —the dog-walking situation. I tried to make those decisions in

a manner agnostic to what I was learning about that situation, but very limited

conclusions can be drawn from results on a single situation. To begin evaluating how

well Situate generalizes to more situations, I applied multi-agent Situate to a few

additional situations and compared situation detection and retrieval results to IRSG

and the Faster-RCNN method described previously.

The additional situations evaluated in this section are “people playing ping-pong”

and “people shaking hands”. The handshaking situation consists of two people en-

gaging in a handshake, and is defined by a graph consisting of the two separate people

and their grasped hands. The ping-pong situation is defined as two players, the ping-

pong table, and the net. For both of these situations, there are frequently additional

people in the image that are not engaged in the situation of interest.

For both of these new situations, there are two instances of a single object type.

In the case of ping-pong, there are two players, and in the case of the handshaking

situation, there are two participants. Situate handles this by simply defining two

distinct objects in the situation graph (e.g., player1 and player2), although those

objects share a single classifier. To apply the Faster-RCNN method to situations with

multiple instances of the same object type, there is a single classifier that localizes

instances of the object type. The highest confidence bounding box for the object type

is used for the first instance of the situation object and the next highest confidence

bounding box (which does not overlap with the first, based on the IOU greater than

.5 standard) is used for the second instance.

For each of these situations, there were 500 positive examples that were gathered

and manually labeled as part of my research group’s project of constructing a situation

114

recognition dataset. Of the 500 images for each situation, I used 400 images for

training and I reserved 100 images for testing. The 400 training images were used

to tune the visual classifiers for each constituent object type, to train the situation

model, and to estimate the reliability of the constituent object classifiers. For retrieval

analysis, the 100 test images were considered in the context of a corpus made up of the

same (approximately) 5,000 general negative images that was used when evaluating

the dog-walking situation.

Examples of final workspaces generated for positive instances of the ping-pong

situation by the Faster-RCNN method and Situate can be seen in figures 5.3(a) and

5.4(a). Figures 5.3(b) and 5.4(b) show several false positive detections from each

method.

Figures 5.5 and 5.6 show examples of correct and false detections for the hand-

shaking situation produced by the Faster-RCNN system and Situate.

Figures 5.7 and 5.8 show that the Faster-RCNN method and Situate perform simi-

larly with respect to constructing groundings for positive instances for both situations.

The notable differences are with respect to the localization of people participating in

the situation and with respect to partial localization of other objects in the situation.

However, in the context of image retrieval, there is a more clear difference. Figure 5.9

shows the ROC curves for the handshaking and ping-pong situations for Situate, the

Faster-RCNN method, and IRSG. The handshaking situation appears to be rather

difficult for all methods, likely due to the large number of images in the negative set

that contain multiple people and the unreliably detectability of the handshake object.

The occasional localization of people that are not facing one another suggests that

adding more detail to the definition of the situation might improve the quality of the

classification being made by Situate.

Applying Situate to these additional situations produced a similar pattern to that

115

(a) High scoring ping-pong situation groundings generated using Faster-RCNN for images

that do contain the situation.

(b) High scoring ping-pong situation groundings generated using Faster-RCNN for images

that do not contain the situation.

Figure 5.3: The set of bounding boxes in (a) were generated from the ping-pong
images that scored the highest using the Faster-RCNN method. The bounding boxes
in (b) were generated from the negative situation images that led to the highest scores.
Although the image of people playing tennis is a charming, and possibly minor, error,
the people waiting for the bus demonstrates that the detectors themselves are not
selective enough to identify the most characteristic objects of the situation. (Best

viewed in color)

116

(a) High scoring ping-pong situation groundings generated using Situate for images that

do contain the situation.

(b) High scoring ping-pong situation groundings generated using Situate for images that

do not contain the situation.

Figure 5.4: The sets of bounding boxes in (a) and (b) represent the highest scoring
examples of ping-pong found by Situate for actual instances of the situation and
for images that do not contain the situation. The errors in (b) are substantial, but
also suggestive of the sources of error. The “net” classifier is not specific enough,
nor is the table classifier. These results suggest to me that it may be worthwhile to
further define the situation by including characteristics like “players facing the table”
or “paddle” objects. (Best viewed in color)

117

(a) High scoring handshaking situation groundings generated using Faster-RCNN for images

that do contain the situation.

(b) High scoring handshaking situation groundings generated using Faster-RCNN for im-

ages that do not contain the situation.

Figure 5.5: The sets of bounding boxes in (a) represent the instances of the hand-
shaking situation that the Faster-RCNN system scored the highest. The sets of
bounding boxes in (b) represent the negative images that the Faster-RCNN system
scored the highest. Although the “handshake object” detector was surprisingly accu-
rate during this experiment, I believe it falls into the category of objects that are not
likely to be explicitly searched for during the preliminary search of an image when
entering it into a partially labeled database. The false positive detections show that
the handshake object classifier is prone to false detections that can easily lead to false
situation detections. (Best viewed in color)

118

(a) High scoring groundings for the handshaking situation using Situate for images that do

contain the situation.

(b) High scoring handshaking situation groundings generated using Situate for images that

do not contain the situation.

Figure 5.6: The sets of bounding boxes in (a) are from the instances of handshaking
that Situate scored the highest. The sets of bounding boxes in (b) were generated
from negative images that produced the highest scores for the handshaking situation.
Both images in (a) demonstrate that the situation model is helpful in identifying
the correct pair of people that are engaged in the handshake, but (b) demonstrates
the limitations of the simple model used to represent the spatial distributions. The
proximity and connectedness of objects is not sufficiently enforced, nor is the logic
limiting the overlap of bounding boxes on a shared region of interest. (Best viewed in

color)

119

Figure 5.7: Localization quality for the ping-pong situation indicates that Situate

performs marginally better than the Faster-RCNN method largely due to more con-

sistently localizing both players. The localization quality for the player 2 object is

substantially better for Situate. The starkness of the difference is due, in part, to

the way that players 1 and 2 are defined for the Faster-RCNN system. For both

systems, there is only one “player” classifier. For the RCNN system, the highest con-

fidence instance of a player is recorded as player 1 and the second highest confidence

instance (that does not collide with the first with an IOU score greater than .5) is

recorded as player 2. Hence, the results for player 1 are generally better than for

player 2. Situate’s assignments are based on the sequence of the objects’ addition to

the Workspace, so are not distinguished by final confidence level.

Figure 5.8: The total number of detected participants at the .5 threshold is very

similar for both systems. However, just below that threshold of localization quality,

we see that the correct people in the image are detected substantially more frequently

by Situate, albeit with an imprecise bounding box.

120

(a) handshaking ROC (b) ping-pong ROC

Figure 5.9: Retrieval quality of Situate and the Faster-RCNN system for the ping-

pong and handshaking situations. The positive instances consist of 100 images gath-

ered from a variety of sources and the negative instances consist of approximately

5,000 images from the Visual Genome project.

seen for the dog-walking situation, where the localization of constituent objects is

fairly similar in quality to the use of Faster-RCNN, but the discrimination results

used for retrieval applications show Situate performing noticeably better.

121

(a) Handshaking situations that received high situation scores from the Faster-RCNN

method, but for which the ground truth objects of the situation were not correctly localized.

(b) Handshaking situations that received high situation scores from Situate, but for which

the ground truth objects of the situation were not correctly localized.

Figure 5.10: Failures to correctly ground the handshaking situation by the Faster-
RCNN method are usually associated with the misidentification of participants in
the handshaking situation. The handshake object is, surprisingly, detected fairly
accurately. Errors by Situate are more often associated with the misidentification
of the handshake object. The Situate system might benefit from a more fleshed out
model of the situation. For example, labeling the direction that each participant is
facing and tuning the classifiers accordingly. (Best viewed in color)

122

(a) Ping-pong situations that received high situation scores from the Faster-RCNN method,

but for which the ground truth objects of the situation were not correctly localized.

(b) Ping-pong situations that received high situation scores from Situate, but for which the

ground truth objects of the situation were not correctly localized.

Figure 5.11: Failures to correctly ground an instance of ping-pong are similar for
both Situate and the Faster-RCNN method, generally being the misidentification
of people in the scene as players. The errors made by both methods are similar
and demonstrates that a high quality localization of each object of a situation is
challenging even given that the situation has been correctly recognized. (Best viewed

in color)

123

Chapter 6

Discussion and Future Work

In chapter 1 I described several qualities of machine learning systems that I claimed

were worth perusing, including:

• understandable decisions,

• a flexible trade-off between run-time and response quality, and

• flexible adherence to classification criteria.

Toward these ends, the work in this dissertation has made the following contributions:

• it presents Situate, an agent based approach to image understanding that in-

tegrates convolutional neural networks for classification with a simple situation

model and tree building structure that constructs a structured interpretation of

an input image;

• it presents the situation recognition task that includes a standard of evidence

for image classification problems;

• it demonstrates an attentional system that uses initial detection quality estimate

to improve bounding box regression;

• and it makes novel use of Monte-Carlo tree search for managing agents for image

understanding.

Situate makes progress in the area of understandable decisions for situation recog-

nition problems by providing individual confidences for pieces of evidence used in the

124

final decision, as well as returning alternative solutions that were considered when

making the decision. By providing a record of what was or was not considered by

the system, Situate grants insight into the decision, whether that decision was correct

or incorrect, supporting the goals of producing trustworthy decisions and correctable

errors.

Situate’s resource allocation method prioritizes the most promising partial solu-

tions, allowing it to provide reasonable solutions quickly, even if not all solutions

have been fully evaluated, and using additional processing resources to either develop

confirmatory evidence for the initial solution (by way of identifying and rejecting

alternative solutions) or by replacing the initial solution (by making improvements

along the margins or replacing the solution with something entirely different). To-

gether, the balance of fast initial solutions and slower, more robust solutions provides

some trade-off between run-time and response quality.

Situate compared favorably to a system based on standard components (the

Faster-RCNN method) and to its closest relative found found in the literature (IRSG)

on localization and retrieval tasks. There remain clear limitations in my work on Sit-

uate up to this point, as well as clear avenues for future work. Some of the clear

limitations include:

• The situation model currently used in Situate can be unnecessary for some visual

situations, where relatively easily recognized objects are a strong indicator of the

situation; and insufficient for others, where specific properties of objects should

be recognized and more complex relationships should be encapsulated. However,

as the distributions of parameters relating objects becomes more complex, the

use of limited training data becomes more tenuous.

To develop Situate for visual situation recognition further, I would explore the

use of more flexible distribution modeling structures that could express more

125

complex relationships while remaining easy to condition quickly, such as Gaus-

sian mixture models (GMMs). I briefly explored GMMs for the dog-walking

situation, but found that the model generally produced similar distributions

to the single high-dimensional normal that was already being used, meaning

the added distribution complexity was not necessary for the situation as con-

structed. For more complex situation graphs, I imagine that would not be the

case. To address issues of extrapolating from small data sets, certain relation-

ships could start with a prior that is tuned during training. For example, the

relationship “x is to the left of y” could instantiate an appropriate prior, which

could then be adjusted based on a small amount of training data for the spe-

cific objects. A similar mechanism is included in IRSG, however, as we saw in

chapter 5.1, this complexity did not seem to be helpful for the simple situations

considered in this paper.

• For the analyses in this paper, Situate assumes a particular situation when con-

sidering an input. Situate found the strongest evidence for the given situation,

rather than deciding from among multiple possible labels. Extending Situate

to consider multiple situations at the same time should be a relatively straight-

forward process. Rather than having a fixed situation, a Situate agent would

have a distribution over possible situations. To search for objects, the Situate

agent would sample from among its known situations, and then probe the input

as usual. If an object is detected and added to the Workspace, the distribution

over Situations would be updated, which would in turn influence what the agent

searches for and where.

Of course, developing a robust graph that contains many situations and encodes

relationships between objects that reflect the common sense understanding of

those situations is a significant project. The development of this sort of knowl-

126

edge graph might be aided by automated methods, but using it to engender

trust in systems that use such a graph requires that the graph be trusted as

well, so would likely require significant human effort.

Additionally, this would be a significant step toward one of the motivating goals

for Situate; the ability to consider non-standard examples, like those shown in

Figure 1.2. This functionality would primarily come from an expansion of the

graph that relates objects and situations, but could be utilized by Situate based

on the modifications made to search for multiple situations.

Finally, I hope Situate can be applied to more diverse domains than visual situa-

tion recognition. Situate was designed to be flexible so that classifiers and situation

models could be updated for additional situations and domains. Some of Situate’s

structures are more complicated than is necessary for very simple visual situations,

and the situation model used in this paper is likely not complex enough to model

complex visual situations or situations outside of the visual domain. However, the

structure of a graph that stores information about how objects relate to one another,

unreliable classifiers that relate those graphs to data, and a system for navigating

those interactions has general applicability.

An obvious extension past still images would be into video, where a Workspace

can be used to generate predictions about future observations, and Workspaces that

make more accurate predictions gather more support. Depending on the application,

this could require significantly more complex situation models, but for some specific

use cases, I expect that relatively simple models could be useful. For example, errors

related to a failure to disambiguate overhead signs and trucks obstructing roadways

seem to be responsible multiple major accidents involving self-driving cars. The

expected movements of objects in the roadway and overhead can be modeled relatively

127

easily, even if a visual classifier cannot distinguish them using raw classifiers. 1.

In retrospect, the consideration of calls being made to the classifier during in-

put sampling was probably not necessary for the visual situation recognition task,

as the classifier used to recognize component objects can be applied very efficiently.

However, for other applications, situations might be made up of whole documents

in a corpus that require substantial resources to interpret. In that case, the atten-

tional mechanisms in Situate might look very different, but the notion of prioritizing

attention and limiting classifier calls would become more important.

1In 2016, the CEO of Tesla motors indicated that the difficulty in distinguishing be-
tween large trucks obstructing a lane and overhead highway signs had been responsible for
serious accidents. After years of tuning the system, the same problem continues to recur.
A basic model that encodes expected observations when an object is at road level versus
well overhead might disambiguate this particular confusion. https://www.tesla.com/blog/
tragic-loss, https://twitter.com/elonmusk/status/748625979271045121, https://www.
thedrive.com/news/33789/autopilot-blamed-for-teslas-crash-into-overturned-truck

128

https://www.tesla.com/blog/tragic-loss
https://www.tesla.com/blog/tragic-loss
https://twitter.com/elonmusk/status/748625979271045121
https://www.thedrive.com/news/33789/autopilot-blamed-for-teslas-crash-into-overturned-truck
https://www.thedrive.com/news/33789/autopilot-blamed-for-teslas-crash-into-overturned-truck

Bibliography

[1] Bogdan Alexe, Nicolas Heess, Yee Whye Teh, and Vittorio Ferrari. Searching
for objects driven by context. In Advances in Neural Information Processing
Systems, volume 2, pages 881–889, 2012.

[2] Juan C. Caicedo and Svetlana Lazebnik. Active object localization with deep
reinforcement learning. In Proceedings of the IEEE International Conference on
Computer Vision, volume 2015 International Conference on Computer Vision,
ICCV 2015, pages 2488–2496, 2015.

[3] H S Chang, M C Fu, J Q Hu, and S I Marcus. An adaptive sampling algorithm
for solving Markov decision processes. Operations research, 53(1):126–139, 2005.

[4] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Re-
turn of the Devil in the Details: Delving Deep into Convolutional Nets. British
Machine Vision Conference, 2014.

[5] Volkan Cirik, Louis Philippe Morency, and Taylor Berg-Kirkpatrick. Visual re-
ferring expression recognition: What do systems actually learn? In NAACL
HLT 2018 - 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies - Proceedings of
the Conference, volume 2, pages 781–787, 2018.

[6] Erik Conser, Kennedy Hahn, Chandler M. Watson, and Melanie Mitchell. Re-
visiting visual grounding, 2019.

[7] Rémi Coulom. Efficient selectivity and backup operators in Monte-Carlo tree
search. In Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 4630
LNCS, pages 72–83, 2007.

[8] Jacob Devlin, Hao Cheng, Hao Fang, Saurabh Gupta, Li Deng, Xiaodong He,
Geoffrey Zweig, and Margaret Mitchell. Language models for image captioning:
The quirks and what works. In ACL-IJCNLP 2015 - 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing of the Asian Federation of Natural
Language Processing, Proceedings of the Conference, volume 2, pages 100–105,
2015.

[9] Mark Everingham, Luc Van Gool, Christopher K I Williams, John Winn, and
Andrew Zisserman. The pascal visual object classes (VOC) challenge. Interna-
tional Journal of Computer Vision, 88(2):303–338, 2010.

129

[10] Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, and Deva Ramanan.
Object detection with discriminatively trained part-based models. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 32(9):1627–1645, 2010.

[11] Carolina Galleguillos, Andrew Rabinovich, and Serge Belongie. Object catego-
rization using co-occurrence, location and appearance. In 26th IEEE Conference
on Computer Vision and Pattern Recognition, CVPR, 2008.

[12] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Region-Based
Convolutional Networks for Accurate Object Detection and Segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 38(1):142–158, 2016.

[13] Abel Gonzalez-Garcia, Alexander Vezhnevets, and Vittorio Ferrari. An active
search strategy for efficient object class detection. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, vol-
ume 07-12-June-2015, pages 3022–3031, 2015.

[14] Guodong Guo and Alice Lai. A survey on still image based human action recog-
nition. Pattern Recognition, 47(10):3343–3361, 2014.

[15] Arthur E. Hoerl and Robert W. Kennard. Ridge Regression: Applications to
Nonorthogonal Problems. Technometrics, 12(1):69–82, 1970.

[16] Douglas R. Hofstadter and Melanie Mitchell. The Copycat project : A model of
mental fluidity and analogy-making. In Fluid Concepts and Creative Analogies,
pages 31–112. Harvester Wheatsheaf, 1995.

[17] Drew A. Hudson and Christopher D. Manning. GQA: A new dataset for real-
world visual reasoning and compositional question answering. In Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, volume 2019-June, pages 6693–6702, 2019.

[18] Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image generation from scene
graphs. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1219–1228, 2018.

[19] Justin Johnson, Ranjay Krishna, Michael Stark, Li Jia Li, David A. Shamma,
Michael S. Bernstein, and Fei Fei Li. Image retrieval using scene graphs. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, volume 07-12-June-2015, pages 3668–3678, 2015.

[20] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua
Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, and David A. Shamma ·
Michael S. Bernstein · Li Fei-Fei. Visual Genome. ArXiV, pages 1–44, 2016.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification
with Deep Convolutional Neural Networks. Advances In Neural Information
Processing Systems, pages 1–9, 2012.

130

[22] Will Landecker, Michael D. Thomure, Luis M.A. Bettencourt, Melanie Mitchell,
Garrett T. Kenyon, and Steven P. Brumby. Interpreting individual classifications
of hierarchical networks. In Proceedings of the 2013 IEEE Symposium on Com-
putational Intelligence and Data Mining, CIDM 2013 - 2013 IEEE Symposium
Series on Computational Intelligence, SSCI 2013, pages 32–38, 2013.

[23] Yann LeCun, Yoshua Bengio, Geoffrey Hinton, Lecun Y., Bengio Y., and Hinton
G. Deep learning. Nature, 521(7553):436–444, 2015.

[24] Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan Yuille,
and Kevin Murphy. Generation and comprehension of unambiguous object de-
scriptions. In Proceedings of the IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, volume 2016-December, pages 11–20,
2016.

[25] Varun K. Nagaraja, Vlad I. Morariu, and Larry S. Davis. Modeling context be-
tween objects for referring expression understanding. In Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), volume 9908 LNCS, pages 792–807, 2016.

[26] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-jing Zhu. BLEU : a
Method for Automatic Evaluation of Machine Translation. Computational Lin-
guistics, (July):311–318, 2002.

[27] John Platt and Others. Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods. Advances in large margin classi-
fiers, 10(3):61–74, 1999.

[28] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: To-
wards Real-Time Object Detection with Region Proposal Networks. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 39(6):1137–1149, 2017.

[29] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252,
2015.

[30] Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton. Dynamic routing between
capsules. In Advances in Neural Information Processing Systems, volume 2017-
December, pages 3857–3867, 2017.

[31] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, and
Yann LeCun. Overfeat: Integrated recognition, localization and detection using
convolutional networks. In 2nd International Conference on Learning Represen-
tations, ICLR 2014 - Conference Track Proceedings, 2014.

131

[32] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,
Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go
with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

[33] Michael D. Thomure, Melanie Mitchell, and Garrett T. Kenyon. On the role of
shape prototypes in hierarchical models of vision. In Proceedings of the Interna-
tional Joint Conference on Neural Networks, 2013.

[34] J. R R Uijlings, K. E A Van De Sande, T. Gevers, and A. W M Smeulders. Se-
lective search for object recognition. International Journal of Computer Vision,
104(2):154–171, 2013.

[35] A. Vedaldi and K. Lenc. Matconvnet – convolutional neural networks for matlab.
In Proceeding of the ACM Int. Conf. on Multimedia, 2015.

[36] Limin Wang, Zhe Wang, Wenbin Du, and Yu Qiao. Object-Scene Convolutional
Neural Networks for event recognition in images. In IEEE Computer Society
Conference on Computer Vision and Pattern Recognition Workshops, volume
2015-October, pages 30–35, 2015.

[37] M. D. Zakir Hossain, Ferdous Sohel, Mohd Fairuz Shiratuddin, and Hamid Laga.
A comprehensive survey of deep learning for image captioning, 2019.

132

Appendix A

Additional Experiments

A.1 Full Situation Localization and Retrieval

I performed a brief experiment to evaluate how well the combination of IOU esti-

mating classifier and bounding box regression can localize a full situation when the

constituent objects of the situation are considered as a single object.

The approach to identifying the full situation “object” is very similar to the origi-

nal RCNN method. For each image in a training set, I generated the minimal bound-

ing box that contained the bounding boxes of each constituent object of the situation.

I used these bounding boxes to train an IOU estimator as had been done for the con-

stituent objects in chapter 3.1.1. I also constructed the models necessary for bounding

box regression as was done in chapter 3.1.2. Then, for each image in the testing sets,

I applied the classifier and bounding box regression system to a set of image crops

that constituted a covering of the input image at various sizes and aspect ratios. The

resulting bounding box with the highest estimated IOU with the underlying “object”

was returned.

Figure A.1a shows localization results for positive instances of the dog-walking

situation situation, i.e. the intersection over union between the highest confidence

bounding box generated and the ground truth bounding box for the full situation

for images that contain the situation. The method appears to do fairly well, with a

.5 IOU localization of 40% of the positive images. However, one must keep in mind

that there is no direct comparison between this result and the localization of parts

performed in the situation recognition task, as the the components are not localized

133

here, simply contained within the larger bounding box that has been generated.

When considered from the perspective of retrieval, where negative instances are

considered, the approach largely fails. Figure A.1b shows that the area under the

ROC curve is just over .7, far below that of Situate and the RCNN-based system

used in chapter 5, and not a particularly useful level of discrimination ability.

Figure A.2 shows some of the positive instances of the dog-walking situation that

elicited the highest confidence from the localization system. For many of these images,

the constituent objects of the situation are not actually included in the final bounding

box, and although localizing the full situation with an IOU greater than .5 does not

mean the standard for situation detection defined in chapter 1.2, the localization

quality was still at least reasonable. Localization with an IOU of greater than or

equal to .5 was successful in about 40% of images.

(a) (b)

Figure A.1: The localization quality of the full situation bounding box for the dog-

walking situation is shown in (a). Of the 100 positive instances of the situation used

for evaluation, 40% were localized at the .5 IOU threshold. The confidence in these

localizations does not give the classifier strong discriminatory power, as can be seen

in the ROC analysis in (b). The area under the ROC curve is .71637, indicates that

the classifier is not particularly reliable.

134

Figure A.2: Above are the highest scoring instances of the full situation detected
by the full situation localization system. The IOU estimator has no enforced upper
bound on its estimate, but these are among the highest activations that the estimator
produces. A few of these high confidence bounding boxes are good, but they tend
to be larger than necessary to localize the objects, and often contain only one of the
constituent objects. (Best viewed in color)

Why is it the case that a system that is able to successfully localize the situation

in question is unable to distinguish images that contain the situation from those that

do not? Figure A.3 shows images from the set of images that do not contain the

situation that elicited the highest confidences from the classifier. While one of the

localizations is certainly an understandable error, most are quite inscrutable and are

scored with confidences similar to the highest confidence positive instances of the

situation. There are many possible explanations, including issues regarding the pre-

training data and classes used to train the underlying convolutional neural network,

the use of the regression based detector rather than a discriminative classifier, and

the high degree of variability in the situation. To further confuse the diagnosis, the

images that contain the situation but that elicited the lowest confidence from the

classifier include several images for which the situation was actually localized quite

135

well, as can be seen in figure A.4.

Figure A.3: The above bounding boxes generated the highest confidences from the
set of images that did not contain the dog-walking situation. While it could be argued
that a few of the images are reasonable mistakes (such as both images with skiers),
most are difficult to understand. It is also worth noting that the confidence values
associated with these images is as high or higher than the highest confidence images
from the positive set. (Best viewed in color)

Although there are some obvious ways one might go about improving this classifier,

such as providing more training data and doing more training that just the top level

classifier, it’s hard to speculate about what is currently leading to these errors. The

situation consists of objects that the underlying CNN has been exposed to during

pre-training and we know that classifiers for the individual objects perform fairly well

from their performance in chapter 3. If significantly more training data could help

the classifier to model more of the variability in the situation, or if more retraining of

the network would suffice with the available data, the decisions made by the classifier

would be no more clear and the returned structure would be no more useful outside

of the narrowly defined localization problem.

136

Figure A.4: The above images were the lowest confidence examples from the set
of positive images. These images were recognized as the dog-walking situation with
more confidence than about 10% of the images from the negative set. Several of these
examples are actually fairly well localized instances of the situation, making it hard
to speculate about what exactly is making them challenging examples. (Best viewed in

color)

137

	Introduction
	Background
	Situate and situation recognition
	Walk-through of an agent evaluation
	Related work
	Methods related to object recognition and localization
	Tasks related to situation recognition

	Function of a Single Situate Agent
	Structures and procedures
	Implementation and parameter setting

	Evaluation of the initial Situate agent
	Sources of improvement

	Improving the Situate Agent
	Classifier improvements
	IOU regression
	Bounding box regression

	Support functions
	Internal support
	External support
	Combined internal and external support

	Evaluation of the updated Situate agent

	Managing Multiple Situate Agents
	Multi-Agent Approach
	Differences from MCTS

	Evaluation of grounding performance

	Applications and Additional Situations
	Situate for retrieval
	Additional Situations

	Discussion and Future Work
	Additional Experiments
	Full Situation Localization and Retrieval

