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Abstract

My dissertation presents several new algorithms incorporating non-parametric and

deep learning approaches for computer vision and related tasks, including object

localization, object tracking and model compression.

With respect to object localization, I introduce a method to perform active lo-

calization by modeling spatial and other relationships between objects in a coher-

ent “visual situation” using a set of probability distributions. I further refine this

approach with the Multipole Density Estimation with Importance Clustering (MIC-

Situate) algorithm. Next, I formulate active, “situation” object search as a Bayesian

optimization problem using Gaussian Processes. Using my Gaussian Process Context-

Situation Learning (GP-CL) algorithm, I demonstrate improved efficiency for object

localization over baseline procedures. In subsequent work, I expand this research to

frame object tracking in video as a temporally-evolving, dynamic Bayesian optimiza-

tion problem. Here I present the Siamese-Dynamic Bayesian Tracking Algorithm

(SDBTA), the first integrated dynamic Bayesian optimization framework in combi-

nation with deep learning for video tracking. Through experiments, I show improved

results for video tracking in comparison with baseline approaches. Finally, I pro-

pose a novel data compression algorithm, Regularized L21 Semi-NonNegative Matrix

Factorization (L21 SNF) which serves as a general purpose, parts-based compression

algorithm, applicable to deep model compression.
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Chapter 1

Introduction

The focus of the present work is in non-parametric and deep learning approaches to

several of the quintessential problems in computer vision and machine learning at

large, including object localization and video tracking. I furthermore advance novel

techniques supporting algorithmic efficiency for these tasks, including a method to

achieve deep model compression.

Computer vision is a diverse and challenging problem domain, encompassing ac-

tive research at the intersection of machine learning, artificial intelligence, robotics,

general automation, graphics, and medicine – among many other fields. Over the

course of the last several years in particular, deep learning and non-parametric meth-

ods have emerged as two of the dominant paradigms across not only computer vision,

but machine learning more generally. Among their copious attractive attributes, deep

learning and non-parametric models offer a representational flexibility and richness

that is distinctly amenable to the large data and complexity demands required by

many modern machine learning tasks.

Deep learning has, moreover, recently come to occupy a singular role in machine

learning as the de facto tool for many data-driven problems. While deep learning has

achieved extraordinary new benchmarks across a myriad of disciplines, it is neverthe-

less a field that is still in a state of relative infancy – replete with theoretical lacunae

and as-of-yet unexploited synergies with other well-grounded methodologies.

1



Deep learning is generally best suited for pattern recognition tasks in large data

regimes, whereas, conversely, deep models are often deficient in small data domains

and prove particularly brittle for problems exhibiting a high degree of situational

specificity. Non-parametric methods, by contrast, are generally responsive to small

data problems, more robust to situational specificity, and offer the additional bene-

fit of naturally accommodating statistically-principled practices, including Bayesian

learning.

The primary goal of my dissertation is to harness and accentuate the benefits of

both non-parametric and deep learning approaches for computer vision tasks, and to

additionally coherently unify these approaches – when possible. In addition, I provide

a matrix factorization algorithm that can be applied to general deep learning models

in computer vision for improved efficiency in deep learning tasks. I hypothesize that

non-parametric and deep learning approaches can be successfully allied to provide

solutions to a wide variety of tasks in computer vision. Furthermore, I posit that this

hybrid approach can be leveraged to furnish useful higher order analytic modalities

(e.g. “visual situation recognition”, search confidence/uncertainty measures) that

traditional deep learning approaches alone cannot provide. Indeed, current research

has demonstrated, for example, strong evidence that hybrid machine learning methods

(a fortiori : deep learning combined with Bayesian methods) are requisite for the

deployment of deep models in real-world settings for which epistemic uncertainty

garners increased public risk [139].

To this end, I hypothesize that by exploiting model flexibility and deep structure

with non-parametric and deep models, respectively, it is possible to improve upon

state-of-the-art methods across a variety of essential computer vision tasks. In total,

my dissertation comprises the following six original pieces of research:

1. “Active Object Localization in Visual Situations.” arXiv: 1607.00548.
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2. “Fast On-Line Kernel Density Estimation for Active Object Localization.”

IJCNN, 2017.

3. “Bayesian Optimization for Refining Object Proposals.” IPTA, 2017.

4. “Gaussian Processes with Context-Supported Priors for Active Object

Localization.” IJCNN, 2018.

5. “Deep Siamese Networks with Bayesian non-Parametrics for Video Object

Tracking.” Future Technologies Confererence, Springer, 2019.

6. “Regularized L21-Based Semi-NonNegative Matrix Factorization with Appli-

cations to Deep Model Compression.” (to be submitted for publication)

In (1) and (2), my primary hypothesis is that prior knowledge and situation-

relevant context can be efficiently encoded using a dynamic, non-parametric “situa-

tion model.” Furthermore, this model, when used in conjunction with deep learning,

can accurately and efficiently localize relevant objects in an image – even in the case

of partially-observed and sparse data. The experimental successes of (1) and (2)

prompted me to consider a more statistically-principled approach to object localiza-

tion. In (3) and (4), I specifically hypothesize that object localization can be made

more efficient still by utilizing deep model-based object detection in combination with

non-parametric Bayesian active search. Following this work, I extend this approach

to the more extreme, “one-shot” use-case of video tracking. My primary hypothesis in

(5) is that video tracking can be framed as a temporally-evolving optimization prob-

lem that can be efficiently solved with dynamic Bayesian optimization. In this work I

present the first integrated dynamic Bayesian optimization framework in combination

with deep learning for video tracking. In (6) I posit that exploiting a particular loss

function (L21) in combination with semi-nonnegative constraints, can engender an
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effective general data compression algorithm that is particularly well-suited to highly

overdetermined systems, including deep models.
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Chapter 2

Active Object Localization in Visual Situations

2.1 Overview

In this chapter, I collaborated with Quinn et al. [76] in developing a method to

perform active localization of objects in instances of visual situations. The system,

called “Situate,” combines given and learned knowledge of the structure of a particular

situation, and adapts that knowledge to a new situation instance as it actively searches

for objects. The general research question taken up through this project was how to

effectively encode situation-relevant context applied to a dynamic, active search of a

“visual situation.”

More concretely, the system learns a set of probability distributions describing

spatial and other relationships among relevant objects. These distributions are then

used to iteratively sample object proposals on a test image; concurrently, the system

uses information from those object proposals to adaptively modify the distributions

depending on what the system has detected. For this research, I contributed to

designing and integrating Situate’s active object localization models.

2.2 Background and Related Work

Most object-localization algorithms in computer vision do not exploit prior knowledge

or dynamic perception of context. The current state-of-the-art methods employ feed-
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forward deep networks that produce and test a fixed number of object proposals

(also called region proposals)—on the order of hundreds to thousands—in a given

image (e.g., [19]– [21]). An object proposal is a region or bounding box in the image.

Assuming an object proposal defines a bounding box, the proposal is said to be a

successful localization (or detection) if the bounding box sufficiently overlaps a target

object’s ground-truth bounding box.

In fact, state-of-the-art methods are still susceptible to several problems, includ-

ing difficulty with cluttered images, small or obscured objects, and inevitable false

positives resulting from large numbers of object-proposal classifications. Moreover,

such methods require large training sets for learning, and potential scaling issues as

the number of possible categories increases. For these reasons, several groups have

pursued the more human-like approach of “active object localization,” in which a

search for objects unfolds over time, with each subsequent time step using informa-

tion gained in previous time steps (e.g., [24]–[26]).

Work on active object localization has a long history in computer vision, often

in the context of active perception in robots [182] and modeling visual attention

[184]. The literature of this field is large and currently growing — here I summarize

a few examples of recent work most similar to the present work. Alexe et al. [183]

propose an active, context-driven localization method: given an initial object proposal

in a test image, at each time step the system uses a nearest-neighbor algorithm to

find training image regions that similar in position and appearance to the current

object proposal. These nearby training regions then “vote” on the next location to

propose in the test image, given each training region’s displacement vector relative

to the ground-truth target object. The systems outputs the highest scoring of all

the visited windows, using an object-classifier score. While this method is generally

effective, the nearest-neighbor method can be computationally expensive. A more
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efficient and accurate version of this method, using R-CNN object proposals and

random forest classifiers is described in [185]. Other groups have used recurrent

neural networks (RNNs) to perform active localization, see: Mnih et al. [186]. Still,

other researchers frame active object localization as a Markov decision process (MDP)

and use reinforcement learning to learn a search policy. The approach proposed in

[187] involves learning a search policy for a target object that consists of a sequence

of bounding-box transformations. In the MDP method proposed in [188], an action

consists of running a detector for a “context class” that is meant to help locate

instances of the target “query class”. Nagaraja et al. [189] propose an MDP method

in which a search policy is learned via “imitation learning”: in a given state, an

oracle demonstrates the optimal action to take and the policy subsequently learns

to imitate the oracle. Like these methods, my approach focuses on perception as a

temporal process in which information is used as it is gained to narrow the search for

objects.

The key differences between the current approach and these other active local-

ization methods can be summarized as follows: often these methods are tested on

datasets in which the role of context is limited; these methods often rely on ex-

haustive co-occurrence statistics among object categories; and it is usually hard to

understand why these methods work well or fail on particular object categories. In

addition, the reinforcement learning based methods learn a policy that is fixed at

test time; in the current method, the representation of a situation itself adapts (via

modifications to probability distributions) as information is obtained by the system.

Finally, the amount of training data and computation time required can be quite

high, especially for reinforcement learning and RNN-based methods.
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2.3 Methodological Summary

My approach is an example of active object localization, but in the context of specific

situation recognition. Thus, only objects specifically relevant to the given situation

are required to be located. Situate is provided some prior knowledge— the set of the

relevant object categories—and it learns (from training data) a representation of the

expected spatial and semantic structure of the situation. This representation consists

of a set of joint probability distributions linking aspects of the relevant objects. Then,

when searching for the target objects in a new test image, the system samples object

proposals from these distributions, conditioned on what has been discovered in pre-

vious steps. That is, during a search for relevant objects, evidence gathered during

the search continually serves as context that influences the future direction of the

search. My hypothesis is that this localization method, by combining prior knowl-

edge with learned situation structure and active context-directed search, will require

dramatically fewer object proposals than methods that do not use such information.

For the purposes of this particular research, I focus on a relative simple visual

“situation”, that of “dog walking”, where each image contains exactly one (human)

dog-walker, one dog, one leash, and unlabeled “clutter” (such as non-dog-walking

people, buildings, etc). There are 500 such images in my dataset. My system’s task

is to locate three objects—Dog-Walker, Dog, and Leash—in a test image using as few

object proposals as possible.

For brevity’s sake, I will now describe only some of the details of the prior and

“situation model” of my system. For each of the three object categories, Situate takes

the ground-truth bounding boxes from the training set, and fits the natural logarithms

of the box sizes (area ratio) and box shapes (aspect ratio) to normal distributions. At

test time, the system uses these prior distributions to sample area ratio and aspect

8



ratio.

From training data, Situate learns a situation model: a set of joint probability

distributions that capture the “situational” correlations among relevant objects with

respect to location, area, and aspect ratio. When running on a test image, Situate

will use these distributions in order to compute category-specific location, area, and

aspect ratio probabilities conditioned on objects that have been detected.

To model the locations of objects, I take a vector θxy from each training image

where θxy = (xdog, ydog, xDW , yDW , xleash, yleash), where DW indicates the dog walker. I

then model these vectors with a normal distribution N(µθxy ,Σθxy). Although the true

distribution may not be normal, a simple normal distribution helps to encapsulate

that these variables are indeed related to one another, and that Situate should update

its search priorities if any of these variables are known.

Once an object has entered the Workspace, parameters from Workspace objects

and the joint distribution are used to generate a conditional distribution. I can then

sample new bounding box locations for a particular object type such that

(xsample, ysample) ∼ N(µθxy ,Σθxy |(xw1 , yw1 , ..., xwn , ywn)) (2.1)

where xwi and ywi represent the x and y coordinates of ith object in the Workspace.

The location does not fully define a bounding box. I also need to generate a bounding

box shape and size. I model the shape and size using the log aspect ratio of the box

γ (i.e., the log of the ratio of box width to box height) and the log of the area ratio δ

(i.e., the log of the ratio of the box area to the image area). These values are gathered

from training images for each object type and are modeled such that

γobject ∼ N(µγobject , σγobject) (2.2)

9



and

δobject ∼ N(µγobject , σδobject) (2.3)

Once an object has entered the Workspace, I use a conditional distribution to generate

bounding box sizes and shapes. To build the conditional distribution, I first model

the joint distribution using the training data such that:

θγδ ∼ N(µΘγδ ,ΣΘγδ) (2.4)

where

Θγδ = (γdog, δdog, γDW , δDW , γleash, δleash). (2.5)

I then sample a new box shape and size such that

(γobject, δobject) ∼ N(µΘγδ ,Σθγδ |(γw1 , δw1 , ..., γwn , δwn)) (2.6)

where γwi and δwi are the γ and δ values from the ith entry in the Workspace. For

(2.6) I use the mutivariate conditioning formula:

N(x1|x2 = a) ∼ N(µ1 + Σ12Σ−1
22 (a− µ2),Σ11 − Σ12Σ−1

22 Σ21) (2.7)

Once I have (xsample, ysample, γsample, δsample), a sampled bounding box is fully specified.

In Figures 2.1-2.3 below, I illustrate an example run of the Situate pipeline for

active object localization.
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Figure 2.1: The system’s state after six object proposals have been sampled and scored.
The sixth proposal was for the Dog-Walker category and its score (0.36) is higher than the
provisional threshold, so a provisional detection was added to the Workspace (red dashed
box; the samples that gave rise to this proposal are shown in red on the various Dog-
Walker probability distributions). This causes the location, area ratio, and aspect ratio
distributions for Dog and Leash to be conditioned on the provisional Dog-Walker detection,
based on the learned situation model. In the location distributions, white areas denote
higher probability. The area-ratio and aspect-ratio distributions for Dog and Leash have
also been modified from the initial ones, though the changes are not obvious due to the
simple visualization.

2.4 Experimental Results

The stated hypothesis is that by using prior (given and learned) knowledge of the

structure of a situation and by employing an active context-directed search, Situate

will require dramatically fewer object proposals to locate relevant objects than meth-

ods that do not use such information. In order to test this hypothesis, this work

compares Situate’s performance with that of four baseline methods and two varia-

tions on Situate. The four baseline methods include: uniform sampling, sampling from

learned area-ratio and aspect-ratio distributions, using a location prior determined by
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Figure 2.2: The system’s state after 19 object proposals have been sampled and scored. The
focused conditional distributions have led to a Dog detection at IOU 0.55 (solid red box, in-
dicating final detection), which in turn modifies the distributions for Dog-Walker and Leash.
The situation model is now conditioned on the two detections in the Workspace. Note how
strongly the Dog and Dog-Walker detections constrain the Leash location distributions.

Figure 2.3: The system’s state after 26 object proposals have been sampled and scored.
Final detections have been made for all three objects.
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“salience” calculations, and Randomized Prim’s Algorithm, a category-independent

object-proposal method.

In reporting results, I use the term completed situation detection to refer to a run

on an image for which a method successfully located all three relevant objects within

1,000 iterations; I use the term failed situation detection to refer to a run on an image

that did not result in a completed situation detection within 1,000 iterations.

The various methods described above are characterized by: (1) Location Prior:

whether the prior distribution on location is uniform or based on salience; (2) Box

Prior: whether the prior distributions on bounding-box size and shape are uniform or

learned; and (3) Situation Model: whether, once one or more object detections are

added to the Workspace, a learned situation model conditioned on those detections

is used instead of the prior distributions, and whether that conditioned model is

combined with a salience prior for location.

As described above, the dataset contains 500 images. For each method, I per-

formed 10-fold cross-validation: at each fold, 450 images were used for training and 50

images for testing. Each fold used a different set of 50 test images. For each method

I ran the algorithm described previously on the test images, with final-detection-

threshold set to 0.5, provisional-detection-threshold set to 0.25, and maximum number

of iterations set to 1,000. In reporting the results, I combine results on the 50 test

images from each of the 10 folds and report statistics over the total set of 500 test

images.

2.5 Discussion

The results presented in this chapter strongly support my hypothesis that by using

knowledge of a situation’s structure in an active search, my method will require

dramatically fewer object proposals than methods that do not use such information.
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Figure 2.4: Results from seven different methods, giving median number of iterations per
image to reach a completed situation detection (i.e., all three objects are detected at final
detected threshold). If a method failed to reach a completed situation detection within the
maximum iterations on a majority of test images, its median is given as “Failure”.

Figure 2.5: Cumulative number of completed situation detections as a function of iterations.
For each value n on the x-axis, the corresponding y-axis value gives the number of test image
runs reaching completed situation detections with n or fewer object proposal evaluations.
“RP” refers to the Randomized Prim’s algorithm.

Situate’s active search is directed by a set of probability models that are continually

updated based on information gained by the system as it searches. My results show

that using information from provisional, incomplete detections is key to closing in
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Figure 2.6: Results from different methods giving median number of iterations between
subsequent object detections (at the final-detection threshold. For each method, the plot
gives three bars: the first bar is t̃0,1, the median number of iterations to the first object
detection in that image; the second bar is t̃1,2, the median number of iterations from the
first to the second detection; and the third bar is t̃2,3, the median number of iterations from
the second to the third detection. Results for Randomized Prim’s [181] is not included here
because I did not collect this finer-grained data for that method.

quickly on a complete situation detection.

My results showed that a location prior based on a fast-to-compute salience map

only marginally improved the speed of localization. More sophisticated salience meth-

ods might reduce the number of iterations needed, but the computational expense of

those methods themselves might offset the benefits. In general, this work provides the

following contributions: (1) It proposes a new approach to actively localizing objects

in visual situations, based on prior knowledge, adaptable probabilistic models, and

information from provisional detections. (2) Through experiments, I demonstrate the

benefits of this approach in addition to analyzing where and why this approach fails.

(3) This research contrasts the approach embodied by Situate with several other re-

search groups working on incorporating context into object detection, and on active

object localization.
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Chapter 3

Fast On-Line Kernel Density Estimation for Active Object Localization

3.1 Overview

In this chapter, I propose a novel method for prior learning and active object localiza-

tion of knowledge-driven search in static images using non-parametric kernel density

estimation as the basis for a situation model. In this system, prior situation knowl-

edge is captured by a set of flexible, kernel-based density estimations that represent

the expected spatial structure of the given situation. These estimations are efficiently

updated by information gained as the system searches for relevant objects, allowing

the system to use context as it is discovered to narrow the search. More specifically,

at any given time in a run on a test image, this system system uses image features

plus contextual information it has discovered to identify a small subset of training

images— an importance cluster—that is deemed most similar to the given test im-

age, given the context. This subset is used to generate an updated situation model

in an on-line fashion, using an efficient multipole expansion technique. As a proof of

concept, I apply my algorithm to a highly varied and challenging dataset consisting

of instances of a “dog-walking” situation. These results support the hypothesis that

dynamically-rendered, context-based probability models can support efficient object

localization in visual situations. In this work I present an efficient algorithm for com-

puting non-parametric probability density estimates. Unlike parametric methods,
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non-parametric methods make no global a priori assumptions about the shape of a

distribution function. These models are consequently highly flexible and capable of

representing useful patterns in diverse datasets.

3.1.1 Kernel Density Estimation

Kernel density estimation (KDE) is a widely used method for computing non-parametric

probability density estimates from data. Suppose the data lives in a d dimensional

space and a set S of training examples x, with x ∈ Rd, is given. Now I want to

compute the probability density of an unobserved point z ∈ Rd, given S. The idea

of KDE is to use a kernel function, which measures similarity between data points, so

that points in S that are most similar to z contribute the most weight to the density

estimate at point z.

This concept is formalized as follows. Using a kernel function K and bandwidth

parameter σ, I estimate the density f at a point z ∈ Rd due to N local points,

x1, ...,xN with the following formula:

f̂(z) =
1

σdN

N∑
i=1

K(z− xi) with

ˆ
K(z)dz = 1 (3.1)

My hypothesis is that prior and joint non-parametric distributions will be able

to capture likely bounding box widths and heights more flexibly than multivariate

Gaussian distributions for these values. To simplify my focus, I retain the origi-

nal uniform and multivariate Gaussian distributions for the prior location and joint

locations models, respectively.

A commonly used kernel function is the Gaussian kernel:

K(u) = (2π)−
d
2 exp

{
−‖u‖

2

2σ2

}
(3.2)
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Which yields the following form for the kernel density estimate of f , due to N

points:

f̂(z) = Z
N∑
i=1

exp

{
−‖z− xi‖2

2σ2

}
with Z =

1

σdN
(2π)−

d
2 (3.3)

I can now express the conditional density estimate for a point z, given observed

data {y} and kernel K, as follows:

f̂(z|y) =

∑N
i=1 K(z− xz

i )K(z− xy
i )∑N

i=1 K(z− xy
i )

(3.4)

The complexity associated with computing a density estimate f̂ at M discrete values

of z, each time using N neighboring points is O(M ·N), which is frequently prohibitive

for on-line density approximations with large images and/or large values of N . Thus,

in order to efficiently employ non-parametric models for active object localization, I

needed to solve two related problems. First, the system needs to choose—from the

training data—a small number N of points that gives the most useful information for

the kernel density estimate. Second, even with a small N , it can still be expensive to

compute this estimate, due to the multiplicative O(M · N) complexity, so I need to

construct an accurate and fast density approximation method that scales well with the

number of variables on which I will be conditioning the distributions. Towards these

ends I develop: (1) a novel method to use the context of the detections discovered

so far in the Situate Workspace to determine an importance cluster—an appropriate,

information-rich subset of the training data to use to create conditional distributions;

and (2) a fast approximation technique for estimating distributions based on the

method of multipole expansions.
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3.2 Context-Based Importance Clustering

My first innovation addresses the problem of determining an appropriate subset of

the data to use to compute conditional distributions. Because a dataset of images

depicting a particular, sometimes complex, visual situation is likely to exhibit high

variability, I would like to optimally leverage contextual cues as my algorithm dis-

covers them, in order to assist in object localization. As such, I employ a novel

context-based importance clustering (CBIC) procedure, which my system uses during

its active search for objects.

The current procedure instead computes a flexible non-parametric conditional

estimate, not from the entire training set, but from a subset of the training im-

ages—those that are deemed to be most similar to the test image, given the object

proposals currently in the Workspace.

The motivation for this method is that I wish to focus my density estimation

procedure on data that is most contextually relevant to a given test image, as it is

perceived at a given time in a run.

More specifically, during a run of Situate on a test image, whenever a new object

proposal has been added to the Workspace (i.e., the proposal’s score is above one of

the detection thresholds), I determine a subset of the training data to use to update

conditional distributions for the other object categories. To do this, I cluster the

training dataset, using a k-means algorithm, based on the following features. (1) In

the case where a single object has been localized, I cluster based on the normalized size

of that object category’s ground-truth bounding boxes. (2) When multiple objects

have been localized, I again use the normalized sizes of the located object-categories,

but I also use the normalized distance between the localized objects.

One reason for using these particular features is that they are strongly associated
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with both the depth of an object in an image as well as the spatial configurations

of objects in a visual situation. Together, these data provide the system with useful

information about the size of the bounding-box of a target object. The number

of clusters used for k-means is rendered optimally from a range of possible values,

according to a conventional internal clustering validation measure based on a variance

ratio criterion (Calinski-Harabasz index). Once the training data has been clustered,

the test image is then assigned to a particular cluster—the importance cluster— with

the nearest centroid. Note that importance clusters change dynamically as Situate

adds new proposals to the Workspace.

3.3 Kernel Density Estimation with Multipole Expansions

My second innovation is to employ a fast approximation technique for estimating

distributions: the method of multipole expansions. Multipole expansions are a physics

inspired method for estimating probability densities with Taylor expansions.

Let K denote the Gaussian kernel. I apply the multipole method to approximate

the kernel density estimate due to N points by forming the multivariate Taylor series

for K(z − xi). The key advantage of this method is that, following the scheme of

the factorized Gaussians presented, the kernel estimate about the centroid x∗ (i.e.,

the center of the Taylor series expansion) can be expressed in factored form (I omit

the details here for brevity). The multipole form of this factorization is given by the

following expression:

N∑
i=1

K(z− xi) = G(z)�
N∑
i=1

wiF(xi) (3.5)

Here, the symbol � connotes the multiplication of two Taylor series with vector com-

ponents; G(z) is the Taylor series representing the points z at which I am estimating
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densities, and F (xi) is the Taylor series representing the elements of the importance

cluster being used to estimate these densities. The value wi weights the point xi

by how similar it is to the test image, using the features described in the previous

subsection.

Note that the sum over the weighted F terms needs to be performed only once in

order to estimate M point-wise densities.

Now, suppose one wish to compute a density estimate f̂ at M discrete values of z,

each time using N neighboring points. As mentioned previously, doing this directly

with KDE is O(M ·N) complexity. What the multipole method allows is a reasonable

approximation to KDE, but with O(M + N) complexity, where N is the size of the

importance cluster. This is potentially a huge gain in efficiency; in fact, it allows us to

use this method in an on-line fashion while the system performs its active search. In

order to use the multipole method in the Situate architecture, I needed to extend the

previous formulation of f̂(z|y) to approximate conditional probability densities (e.g.,

the expected distribution of “dog” widths / heights given a detected “dog-walker”).

I can subsequently apply the multipole expansion method to obtain an expression

for conditional density estimation with multipole expansion:

f̂(z|y) ∝ G(K(z− xi∗))�
N∑
i=1

wiF(xi) (3.6)

In this equation, x* is a stochastically determined centroid for the estimate (as

will be explained in the next subsection); G(z), F (xi), and wi are all defined as

before. This expression yields a complexity requirement of O(M + N). My stochastic

filtering technique obviates the need for expensive pre-clustering techniques that are

often applied in kernel density estimation. My proposed stochastic filtering method

produces a sparse density. The sparsity of the estimate is the penalty paid for using
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a stochastic filter. Nevertheless, so long as M � N (a very natural assumption for

most practical applications of density estimation), then f̂ → f(z) as M →∞ which

follows from the convergence of the Taylor series.

3.4 Stochastic Filtering

A significant issue arises when I consider performing this density approximation for a

large M (i.e., for many different point-wise approximations), which might be required

in cases for which comprehensive, interpretable models are desired. The issue is that

the inevitable errors in the approximation can accumulate.

Although the overall error in the density approximation can be improved by

choosing a sufficiently large order for the Taylor expansions (such as a multivariate

quadratic, cubic, etc.), the error margin can nonetheless potentially become exces-

sive when aggregated over points that are a great distance from the center of each

Gaussian kernel; naturally, this issue is compounded further as the size of the set of

sample points, N , grows.

There have been a few proposed remedies in the literature to this issue of aggre-

gated errors. The authors in [79] simply suggest limiting the points over which the

density estimation is performed to a small subset of the space, but this is a fairly weak

and impractical compromise for a general problem setting. Alternatively, the authors

in [80] suggest performing a constrained clustering of the density space and then

estimating each point-wise density by its nearest centroid. However, finding an ap-

propriate clustering needed for this scheme turns out to be very expensive to achieve.

Various approximate solutions exist, including an adaptive, greedy algorithm called

“farthest point clustering” [84] and a more computationally-efficient version given by

[85].

I introduce a new approach, termed stochastic filtering—that obviates the need
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for such clustering of the density space. For each target point-density approximation

f̂(z), I simply choose one element of the current importance cluster at random, and

use this element to be the center of the Taylor expansion G(z).

Note that my proposed stochastic filtering method will produce a sparse density

estimate since the stochastic choice of cluster center coupled with the Gaussian kernel

will render many of the approximate values zero. The sparsity of the estimate is

therefore the penalty I pay for using this filter. Nevertheless, so long as M >> N (a

very natural assumption for most practical applications of density estimation), then

f̂ → f(z) as M →∞, which follows from the convergence of the Taylor series. From

a sparse estimate, one can additionally apply a simple Gaussian smoothing process

to achieve a low-cost, yet high-fidelity density estimate. It should also be noted

that perfect density estimation is not at all required for practical use in our object

localization task. Instead I desire an efficient localization process which is capable of

dynamically leveraging visual-contextual cues for active object localization.

3.5 MIC-Situate Algorithm

The following are the steps in my algorithm, Multipole Density Estimation with

Importance Clustering (MIC-Situate). Assume that I have a training set S, and

Situate is running on a test image T . Situate chooses an object category at random,

samples a location and a bounding-box width and height from its current distributions

for the given object category in order to form an object proposal, and scores that

object proposal to determine if it should be added to the Workspace. Suppose that

L object proposals have been added to the Workspace, with values {l1, ..., lL} (e.g.,l1

might be the (width, height) values of a detected dog-walker bounding box, and l2

might be the (width, height) values of a detected dog bounding box.) Whenever a

new object proposal is added to the Workspace, do the following: For each object
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category c:

1. Perform k-means clustering of the training data.

2. Determine which cluster the test image belongs to (the importance cluster).

3. Using this importance cluster, compute the fast multipole conditional density

estimation, conditioning on the L detected objects.

4. Update the size (width/height) distribution for object category c.

3.6 Experimental Results

I generated results from running the methods described above for the MIC-Situate

algorithm which utilizes both the novel importance clustering technique as well as

the fast non-parametric, multipole method for learning a flexible knowledge represen-

tation of bounding-box sizes of objects for active object localization. Altogether, I

tested four distinct methods for object localization in the dog-walking situations: (1)

Multipole (with IC): non-parametric multipole method with importance cluster-

ing, as described above (2) Multipole (no IC): non-parametric multipole method

without importance clustering (where density approximations are generated using

the entire training dataset), (3) MVN: distributions learned as multivariate Gaus-

sian methods and (4) Uniform: a baseline uniform distribution. In the case of (1)

and (2) I used a multipole-based non-parametric density estimate for target object

width/height priors, utilizing the entire training dataset; I similarly used conditional

multipole density estimates for the conditional width/height size distributions.

This work has provided the following contributions: (1) I propose a new approach

to actively localizing objects in visual situations using a knowledge-driven search

with adaptable probabilistic models. (2) I devise a general-purpose procedure that
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Figure 3.1: Results for the four methods I experimented with for object localization in
the Dog-Walking situation images. The graph reports the median number of iterations
required to reach a completed situation detection (i.e. correct final bounding-boxes for all
three objects). Note that the median value for “Uniform” was “failure”—that is, greater
than 1,000. The percentages listed below each graph indicate the percentage of images in the
test set for which the method reached a completed situation. For example, the “Multipole
(no IC)” method reached completed situations on 58.6% of the 500 images.

uses observed/contextual data to generate a refined, information-rich training set (an

importance cluster) applicable to problems with high situational specificity. (3) I de-

velop a novel, fast kernel density estimation procedure capable of producing flexible

models efficiently, in a challenging on-line setting; furthermore, when applied in con-

junction with importance clustering, this estimation procedure scales well with even

a large number of observed variables. (4) I employ these techniques to the problem

of conditional density estimation. (5) As a proof of concept, I apply my algorithm to

a highly varied and challenging dataset.
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Chapter 4

Bayesian Optimization for Refining Object Proposals & Gaussian

Processes with Context-Supported Priors for Active Object Localization

4.1 Overview

Precise object localization remains an enduring, open challenge in computer vision.

For example, fine-grained pedestrian localization in images is an active area of research

with rich application potential [174]. More generally, accurate object localization is a

vital task for many real-word applications of computer vision including: autonomous

driving [175], cancer detection [176], image captioning [177], scene recognition [178]

and robotics [179]. Current benchmark approaches [180] in object localization com-

monly apply a form of semi-exhaustive search, requiring a high volume—oftentimes

thousands—of potentially expensive function evaluations, such as classifications by a

convolutional neural network (CNN). Because of their black box nature, these meth-

ods often lack interpretability and neglect to incorporate top-down information in-

cluding contextual and scene attributes.

With [20][21], Girshick et al. achieved state-of-the-art performance on several

object detection benchmarks using a “regions with convolutional neural networks”

(R-CNN) approach. R-CNN comprises two phases: the region proposal generation

and the proposal classification. Regional proposal generation renders rectangular

regions of interest (ROIs) that are later classified by a deep CNN during proposal
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Figure 4.1: Idealization of localization process for pedestrian image using contextual data.
Contextual data is shown in green; the ground-truth of the target is shown in blue, and
target proposals are in red. Beginning with context-supported initial proposals, the GP-CL
algorithm efficiently refines the localization process.

classification.

While the various R-CNN models perform well on general detection tasks, R-

CNN-based approaches nonetheless suffer from at least (4) serious shortcomings and

challenges: (1) the efficiency of the region proposal method, (2) the computational

cost of evaluating the deep CNN, (3) localization accuracy and (4) the ability to

successfully calibrate the R-CNN framework with top-down information, including

context and feedback, in a principled, Bayesian manner. I address each of these four

areas by proposing a Bayesian optimization scheme in conjunction with contextual

visual data for efficient object localization.

This chapter provides the following contributions: (1) I demonstrate that CNN

features computed from an object-proposal bounding box can be used to predict

spatial offset from a target object. (2) I frame the localization process as an ac-

tive search integrating top-down information in concert with a dynamic Bayesian

optimization procedure requiring very few bounding-box proposals for high accuracy.
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(3) By rendering an active Bayesian search, my method can provide a principled

and interpretable groundwork for more complex vision tasks, which I show explicitly

through the incorporation of flexible context models. I compare my approach with

the bounding-box regression method used in R-CNN approaches through experiments

that test efficiency and accuracy for a challenging localization task.

My primary hypothesis for this research is that object localization can be made

more efficient by utilizing deep model-based object detection in combination with

non-parametric Bayesian active search. To test this hypothesis, I devise an algorithm

using a Bayesian optimization framework in conjunction with contextual visual data

for the localization of objects in still images. My method encompasses an active search

procedure that uses contextual data to generate initial bounding-box proposals for a

target object. I train a convolutional neural network to approximate an offset distance

from the target object. Next, I use a Gaussian Process to model this offset response

signal over the search space of the target. I then employ a Bayesian active search for

accurate localization of the target. In experiments, I compare my approach to a state-

of-the-art bounding-box regression method for a challenging pedestrian localization

task. As a validation of my initial hypothesis, I show that my method exhibits a

substantial improvement over this baseline regression method.

4.2 Background and Related Work

My method supports a human-like approach to active object localization (e.g., [7],

[15], [23]), in which a search for objects unfolds over a series of time steps. At each

time step the system uses information gained in previous time steps to decide where

to search. More recent variants of R-CNN, including, notably, Faster R-CNN [32],

have attempted in the main to improve the efficiency of the core R-CNN pipeline by

refining either the region proposal generation stage or the proposal classification stage
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of the localization algorithm. Faster RCNN trains a region-proposal network (RPN)

that shares full-image convolutional features with the detection network used in Fast

R-CNN [13] to simultaneously predict object bounds and objectness scores. Other

related methods (e.g., [18], [36]), attempt to simplify the CNN structure to improve

computation time.

I use a context-situation model, incorporating top-down, “situational” information

to efficiently generate region proposals and then incorporate a Bayesian optimization

scheme to further refine these proposals for accurate localization. The various R-

CNN models all use category-specific “bounding-box regression” (BB-R) models to

refine object proposals made by the system. The work of Zhang et al. [43] provides an

extension of R-CNN that relates closely to the present work due to its use of Bayesian

optimization.

Recently, contextual information has been identified to improve several vectors

of analysis in computer vision, including localization [39]. Indeed, the effective use

of context is critical for future A.I. systems that aim to exhibit more comprehensive

capabilities, including scene and situation “understanding” [30]. Nonetheless, many

current systems disregard the use of context entirely, and its apposite use in vision

tasks remains an open question. Torralba and Murphy [25] incorporate global contex-

tual features to learn context priors for object recognition. [26] frame localization as

a MDP and apply unary and binary object contextual features to improve the search

for a target object. Another successful use of context for localization includes [1] for

which the class-specific search algorithm learns a strategy to localize objects by se-

quentially evaluating windows, based on statistical relation between the position and

appearance of windows in the training images to their relative position with respect

to the ground-truth. See also: [16], [6], [4], [28].
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4.3 Gaussian Processes with Context-Supported Priors for Active Object

Localization

Gaussian Processes used in conjunction with a Bayesian optimization framework are

frequently applied in domains for which it is either difficult or costly to directly

evaluate an objective function. In the case of object detection and localization, it

is computationally prohibitive to extract CNN features for numerous bounding-box

proposals (this is why, for instance, Faster R-CNN utilizes shared convolutional fea-

tures). There consequently exists a fundamental tension at the heart of any object

localization paradigm: with each bounding box for which I extract CNN features, we

gain useful knowledge that can be directly leveraged in the localization process, but

each such piece of information comes at a price.

A Bayesian approach is well-suited for solving the problem of function optimization

under these challenging circumstances. In the case of accurate object localization, I

am attempting to minimize the spatial offset from a ground-truth bounding box. To

do this, I train a model to predict spatial offset of a proposal using CNN features

extracted from the proposal. Once trained, the model output can be used to minimize

the predicted offset. Ideally, this output is minimal when the proposal aligns with

the actual ground-truth bounding box for the target object.

In my approach, I optimize a cheap approximation— the surrogate to the offset

prediction—over the image space for efficiency. After rendering this approximation,

the system determines where to sample next according to the principle maximum

expected utility. Utility is determined using a dynamically defined acquisition function

that strikes a balance between minimizing uncertainty and greedy optimization. This

method is described in more detail below.

I train a model that predicts the normalized offset distance from a target ground-
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truth object for a misaligned object proposal. The output of this model is the pre-

dicted distance of a proposal’s center from the center of the target object, and the

inverse of the output is the predicted proximity. I call the latter the “response sig-

nal.” The higher the response signal, the closer the proposal is predicted to be to the

target.

For each image in the training set, I generate a large number of image crops that

are offset from the ground-truth pedestrian by a random amount. These randomized

offset crops cover a wide range of IOU values (with respect to the ground-truth bound-

ing box). These offset crops are also randomly scaled, so that the offset-prediction

model can learn scale-invariance (with regard to bounding box size) for approximat-

ing offset distance. For each of the offset crops, I extracted CNN features using a

pre-trained VGG network.

Using these features, I trained a ridge regression model mapping features to nor-

malized offset distance from the ground-truth bounding box center. Note that in

this regime, small offsets from the center of the target ground will yield (ideally) a

maximum response signal. To improve the accuracy of the offset predictor, I average

an ensemble of model outputs ranging over five different bounding-box scales. The

performance results of the offset-prediction model are plotted in Figure 4.2.

4.4 Context-Situation Learning

I define a context-situation model as a distribution of location and size parameters

for a target object bounding box, given various location and size parameters for a

particular visual situation:

p(xtarget, starget|{xcontext, scontext}1:C) (4.1)
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Figure 4.2: Performance of the offset-prediction model on test data (n = 1000 offset image
crops). The mean (center curve) and +/-1 standard deviations (outer curves) are shown.
As desired, the response signal yields a Gaussian-like peak around the center of the target
object bounding-box (i.e., zero ground-truth offset). The bumps present in the range of
values above 0.35 offset from the ground truth is indicative of noisy model outputs when
offset crops contain no overlap with the target object.

Where x ∈ R2 is the normalized bounding-box center, s ∈ R2 has components

equal to the log bounding-box area-ratio (relative to the entire image) and log aspect-

ratio, respectively; C represents the number of known context objects.

In experiments, I use a set of pedestrian images for my dataset that comprise

instances of a “dog-walking” visual situation.

4.5 Gaussian Processes

I use a Gaussian Process (GP) to compute a surrogate function f using observations

y of response signals from my prediction model: y(x) = f0(x) + ε. (Recall that the

signal y is high when the input proposal is predicted to be close to the target object.)

The surrogate function approximates f0, the objective signal value for coordinates x

in the image space, with ε connoting the irreducible error for the model.

GPs offer significant advantages over other general-purpose approaches in super-

vised learning settings due in part to their non-parametric structure, relative ease of
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computation and the extent to which they pair well with a Bayesian modeling regime.

GPs have been applied recently with success in a rich variety of statistical inference

domains.

More formally, let be the ith observation from a dataset: D1:T = {x1:T ,

y(x1:T )} consisting of total pairs of object-proposal coordinates in the image space

and response signals y, respectively. I wish to estimate the posterior distribution

p(f |D1:T ) of the objective function given these data: p(f |D1:T ) ∝ p(D1:T |f)p(f).

This simple formula allows us to iteratively update the posterior over the signal as I

acquire new data.

A GP for regression defines a distribution over functions with a joint Normality

assumption. Denote f , the realization of the Gaussian process:

f ∼ GP (m, k) (4.2)

Here the GP is fully specified by the mean m and covariance k. A common kernel

function that obeys suitable continuity characteristics for the GP realization is the

squared-exponential kernel, which I use here:

k(x, x́) = σ2
fexp

[
− 1

2l2
‖x− x́‖2] + σ2

ε δxx́ (4.3)

where σ2
f is the variance of the GP realization, which I set heuristically; σ2

ε is the

variance of the ε parameter that I estimate empirically; and δxx́ is the Kroenecker delta

function. GPs are particularly sensitive to the choice of the length-scale/bandwidth

parameter l, which I optimize with grid search for the reduced log marginal likelihood.
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The posterior predictive of the surrogate function for a new datum is given by:

p(f∗|x∗, X, y) = N(f∗|kT∗K−1
σ y, k∗∗ − k∗TK−1

σ k∗) (4.4)

where X the data matrix (all prior observations x), k∗ = [k(x∗, x1), . . . , k(x∗, xT )],

k∗∗ = k(x∗, x∗) and Kσ = K + σ2
yIT , where K = k(xi, xj), 1 ≤ i,j ≤ T .

For my algorithm, I compute posterior predictive updates in batch iterations. At

each iteration, the realization of the GP is calculated over a grid of size M corre-

sponding with the image space domain of the object localization process. This grid

size can be chosen to match a desired granularity/computational overhead tradeoff.

I furthermore incorporate a “short memory” mechanism in my final algorithm

so that older proposal query values, which convey less information pertinent to the

current localization search, are “forgotten.” For improved numerical stability, I apply

a Cholesky decomposition prior to matrix inversion.

4.6 Bayesian Oprimization for Active Search

In the regime of Bayesian optimization, acquisition functions are used to guide the

search for the optimum of the surrogate approximating the true objective function.

Intuitively, acquisition functions are defined in such a way that high acquisition indi-

cates greater likelihood of an objective function optimum. Most commonly, acquisi-

tion functions encapsulate a data query experimental design that favors either regions

of large signal response, large uncertainty, or a combination of both.

At each iteration of the current algorithm, the acquisition function, defined be-

low, is maximized to determine where to sample from the objective function (i.e.,

the response signal value) next. The acquisition function incorporates the mean and

variance of the predictions over the image space to model the utility of sampling. The
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system then evaluates the objective function at these maximal points and the Gaus-

sian process is updated appropriately. This procedure is iterated until the stopping

condition is achieved.

A standard acquisition function used in applications of Bayesian optimization is

the Expected Improvement (EI) function. I define a dynamic variant of EI that I call

Confidence-EI (CEI) that better accommodates the current problem setting:

aCEI =

 (µ(x)− f(x+)− ξ)φ(Z) + σ(x)ϕ(Z)

Z = µ(x)−f(x+)−ξ)
σ(x)

(4.5)

Above, f(x+) represents the incumbent maximum of the surrogate function, µ(x)

is the mean of the surrogate at the input point x in the image space, σ(x) > 0 is the

standard deviation of the surrogate at the input; ϕ(·) and φ(·) are the pdf and cdf

of the Gaussian distribution, respectively; and ξ is the dynamically-assigned design

parameter. The design parameter controls the exploration-exploitation tradeoff for

the Bayesian optimization procedure; if, for instance, I set ξ = 0, then EI performs

greedily.

For my algorithm, I let ξ vary over the course of localization run by defining it as a

function of a per-iteration total confidence score. With each iteration of localization,

I set the current total confidence value equal to the median of the response signal for

the current batch of bounding-box proposals. In this way, high confidence disposes

the search to be greedy and conversely low confidence encourages exploration.

4.7 GP-CL Algorithm

Input: Image I, a set of C context objects, trained model y giving response signals,

learned context-situation model p(xtarget, starget|·), n0 initial bounding-box proposals
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for target object generated by the context-situation model, and corresponding re-

sponse signal values: Dn0 = (xi, si), y(xi, si)
n0

i=1, GP hyperparameters θ, size of GP

realization space M , dynamic design parameter for Bayesian active search ξ, size

of GP memory GPmem (as number of generations used), batch size n, number of

iterations T , current set of bounding-box proposals and response signals D
(t)
proposal.

Algorithm 4.1: GP-CL Algorithm

1: Compute n0 initial bounding box proposals: {(xi, si}n0
i=1 ∼ p(xtarget, starget|·)

2: D
(0)
proposal ← Dn0

3: for t = 1 to T do
4: Compute µ(x)(t) and σ(x)(t) for the GP realization f

(t)
M of D

(t−1)
proposal over grid of M

points
5: for i = 1 to n do
6: zi = argmaxx

(
aCEI(f

(t)
M {zj}

j=i−1
j=1 , ξ

)
7: sample : si ∼ p(·)s
8: pi = (zi, si)

9: end for
10: D(t) ← (xi, si), y(xi, si)

n
i=1

11: D
(t)
proposal ←

⋃t
j=t−GPmem D

(j)

12: end for
13: return max

x
µ(x)(T )

4.8 Experimental Results

I evaluate the GP-CL algorithm described above in comparison with the benchmark

bounding-box regression model used in Faster R-CNN for the task of pedestrian

localization.

The output of the GP-CL algorithm is a single bounding-box, as in the case of

the regression model. For each method, I compare the final bounding-box with the

ground-truth for the target object. In total, I tested each method for 440 experimental

trials, including multiple runs with different initializations on test images.

Girshick et al. thresholded their training regime for localization with bounding-
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box regression at large bounding-box overlap (IOU ≥ 0.6). To comprehensively test

my method against bounding-box regression (BB-R), I trained two distinct regression

models: one with IOU thresholded for training at 0.6, as used with R-CNN, and one

with IOU thresholded at 0.1.

Results for my experiments are summarized in Table 4.1 and Figure 4.4. I report

the median and standard error (SE) for IOU difference (final – initial), the median

relative IOU improvement (final – initial) / initial, the total percentage of the test

data for which the method yielded an IOU improvement, in addition to the total

percentage of test data for which the target was successfully localized (i.e., final IOU

≥ 0.5).

Method

IOU
Difference
Median

(SE)

Median
Relative IOU
Improvement

%of Test
Set with IOU
Improvement

% of Test
Set

Localized

BB-R(0.6) .1065(.004) 32.35% 93.86% 48.2%
BB-R(0.1) .1034(.009) 29.0% 71.1% 44.1%
GP-CL .4938(.012) 134.7% 87.1% 75.7%

Table 4.1: Summary statistics for the pedestrian localization task. BB-R (0.6) indicates
the bounding-box regression model with training thresholded at initial IOU 0.6 and above;
BB-R (0.1) denotes the bounding-box regression model with training thresholded at initial
IOU 0.1 and above; GP-CL denotes Gaussian Process Context Localization.

This work has provided the following research contributions:(1) I have proposed

and tested a novel technique for efficient object localization combining deep learning

and non-parametric Bayesian optimization. (2) This procedure involved a novel deep

training for “offset” distance. (3) In experiments, my GP-CL algorithm exhibited

an improvement upon the bounding-box regression technique that underlines state of

the art R-CNN localization frameworks.
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Figure 4.3: Examples of runs on two test images with the GP-CL algorithm. In each
row the test image is shown on the far-left; the “search IOU history” is displayed in the
second column, with the algorithm iteration number on the horizontal axis and IOU with
the ground-truth target bounding box on the vertical axis. The remaining columns present
the GP-CL response surface for the posterior mean and variance; the first pair of boxes
reflect the second iteration of the algorithm and the last pair show the third iteration of
the algorithm. In each case localization occurs rapidly thus requiring a very small number
of proposals.

Figure 4.4: Graph of BB-R (0.6), BB-R (0.1) and GP-CL localization results for test images.
The horizontal axis indicates the median IOU for the initial proposal bounding boxes, while
the vertical axis designates the final IOU with the target object ground truth. The line
depicted indicates “break-even” results.
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Chapter 5

Deep Siamese Networks with Bayesian non-Parametrics for Video Object

Tracking

5.1 Overview

In this chapter, I present a novel algorithm utilizing a deep Siamese neural network

as a general object similarity function in combination with a Bayesian optimization

(BO) framework to encode spatio-temporal information for efficient object tracking in

video. In particular, I treat the video tracking problem as a dynamic (i.e. temporally-

evolving) optimization problem. Using Gaussian Process priors, I model a dynamic

objective function representing the location of a tracked object in each frame. By

exploiting temporal correlations, the proposed method queries the search space in a

statistically principled and efficient way, offering several benefits over current state of

the art video tracking methods.

5.2 Background and Related Work

Early video tracking approaches have included feature-based approaches and tem-

plate matching algorithms [88] that attempt to track specific features of an object

or even the object as a whole. Feature-based approaches use local features, includ-

ing points and edges, keypoints [89], SIFT features [90], HOG features [91] and de-

formable parts [92]. Conversely, template-based methods take the object as a whole
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offering the potential advantage that they treat complex templates or patterns that

cannot be modeled by local features alone. Through the course of a video, an ob-

ject can potentially undergo a variety of different visual transformations, including

rotation, occlusion, changes in scale, illumination changes, etc., that pose significant

challenges for tracking. In order to obtain a robust template matching for video

tracking, researchers have developed a host of methods, including mean-shift [93] and

cross-correlation filtering which entails convolving a template over a search region;

significant advances to cross-correlation filtering for video tracking include MOSSE

[94] adaptive correlation filter and the MUSTer algorithm [95] which draws influence

from cognitive psychology in the design of a flexible object representation using long

and short-term memory stored by means of an integrated correlation filter.

More recently, deep learning models have been applied to video tracking to lever-

age the benefits of learning complex functions from large data sets. Several contem-

porary state of the art deep learning-based tracking models have been developed as

generic object trackers in an effort to obviate the need for online training and to also

improve the generalizability of the tracker. [98] applies a regression-based approach

to train a generic tracker, GOTURN, offline to learn a generic relationship between

appearance and motion; several deep techniques additionally incorporate motion and

occlusion models, including particle filtering methods [99] and optical flow [100]. [101]

demonstrated the power of deep Siamese networks based on [102], achieving a new

state of the art for generic object matching for video tracking.

Even with these recent successes in video object tracking, there nevertheless exists

a void in state of the art video tracking workflows that fully integrate deep learning

models with classical statistics and machine learning approaches. Most state of the

art video trackers lack for instance a capacity to generate systematic belief states

(e.g. through explicit error and uncertainty measures), or ways to seamlessly incor-
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porate contextual and scene structure, or to adaptively encode temporal information

(e.g. by imposing intelligent search stopping conditions and bounds) and the ability

to otherwise directly and inferentially control region proposal generation or sampling

methods in a precise and principled way. To this end, I wish to test whether the fusion

of deep models with non-parametric approaches can provide a necessary incubation

for intelligent computer vision systems capable of high-level vision tasks (e.g. efficient

tracking). In the current work I present the first integrated dynamic Bayesian opti-

mization framework in conjunction with deep learning for object tracking in video.

I adopt the Siamese network-based approach for one-shot image recognition to

learn a generic, deep similarity function for object tracking. The network learns a

function f(z, x) that compares an exemplar crop z to a candidate crop x and returns

a high score if the two images depict the same object and a low score otherwise. For

computer vision tasks, a natural candidate for the similarity function f is a deep

conv-net. A Siamese network applies an identical transformation φ to both input

image crops and then combines their representations using another function g that is

trained to learn a general similarity function on the deep conv-net features, so that

f(z, x) = g(φ(z), φ(x)).

The network is trained on positive and negative pairs, using logistic loss:

l(y, v) = log(1 + exp(−yv)) (5.1)

where v is the real-valued score of an exemplar-candidate pair and y ∈ {−1,+1} is

its ground-truth label. The parameters of the conv-net θ are obtained by applying

Stochastic Gradient Descent (SGD) to:

arg min
θ

E(z,x,y)[L(y, f(z, x; θ))] (5.2)
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Figure 5.1: The Siamese network φ takes the exemplar image z and search image x as
inputs. I then convolve (denoted by *) the output tensors to generate a similarity score.
Similarity scores for a batch of sample search images are later rendered in a 20 × 20 × 1
search grid using a Gaussian Process (see section 5.3 for details).

where the expectation is computed over the data distribution. Pairs of image crops

were obtained using annotated videos from the 2015 edition of ImageNet for Large

Scale Visual Recognition Challenge (ILSVRC); images were extracted from two dif-

ferent frames, at most a distance of T frames apart; positive image exemplars were

defined as a function of their center offset distance from the ground-truth and the

network stride length. Image sizes were normalized for consistency during training.

I use a five-layer conv-net architecture, with pooling layers after the first and sec-

ond layers, and stride lengths of 2 and 1 throughout. The final network output is a

22× 22× 128 tensor, as shown in Figure 5.1.

5.3 Dynamic Bayesian Optimization

Following [113], I define object tracking in video as a dynamic optimization problem

(DOP):

DOP = {max f(x, t) s.t. x ∈ F (t) ⊆ S, t ∈ T } (5.3)

where S ∈ RD, with S in the search space; f : S ×T → R is the temporally-evolving

objective function which yields a maximum when the input x matches the ground-
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truth of the target object; F (t) is the set of all feasible solutions x ∈ F (t) ⊆ S at

time t.

I devise a novel acquisition function, which I call memory-score expected-improvement

(MS-EI), that demonstrated superior performance to EI and PI on my experimental

data. I define MS-EI as:

MS-EI(x) = µ(x))− f(x∗)− ξ)Φ(Z) + σ(x)ρ(Z) (5.4)

where Z = µ(x)−f(x∗)−ξ
σ(x)

,x∗ = argmax f(x),Φ and ρ denote the pdf and xdf of the

standard normal distribution respectively. I define ξ = (α·mean[f(x)]D ·nq)−1; where

α and q are tunable parameters that depend on the scale of the objective function

(I use α = 1, q = 1.1); D denotes the sample data set, and n is the sample iteration

number, with |D| = n; mean[f(x)]D is the sample mean of the previously observed

values. Here ξ serves to balance the exploration-exploitation trade-off to the speci-

ficity of a particular search. In this way, MS-EI employs a cooling schedule so that

exploration is encouraged early in the search; however, the degree of exploration is

conversely dynamically attenuated for exploitation as the search generates sample

points with larger output values.

5.4 Dynamic Gaussian Processes

I model a DOP f(x, t) as a spatio-temporal GP where the objective function at

time t represents a slice of f constrained at t. This dynamic GP model will therefore

encapsulate statistical correlations in space and time; furthermore, the GP can enable

tracking the location of an object, expressed as the temporally-evolving maximum of

the objective function f(x, t).

Let f̂(x, t) ∼ GP(0, K({x, t}, {x, t})), where (x, t) ∈ R3 (x is the bounding-box
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Figure 5.2: Illustration of f̂(x, t) for DOP: Region (1) shows previous sample instances for
time instances prior to time t ; region (2) depicts the bounded region of the search at time
t ; region (3) represents future time slices. Image credit: [113].

spatial location), and K is the covariance function of the zero-mean spatio-temporal

GP. For simplicity, I assume that K is both stationary and separable of the form:

K(f̂(x, t), f̂(x, t)) = KS(x,x) ·KT (t, t) (5.5)

where Ks and KT are the spatio and temporal covariance functions, respectively. I

use Mateŕn kernel functions [119] in experiments and train the spatial and temporal

covariance functions independently, following my separable assumption.

5.5 Siamese-Dynamic Bayesian Tracking Algorithm

I now present the details of the Siamese-Dynamic Bayesian Tracking Algorithm

(SDBTA). The algorithm makes use of the previously-described deep Siamese conv-

net. In the first step, I train the dynamic GP model. Then, for each current frame

t in the video containing T total frames (consider t = 0 the initial frame containing
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the ground-truth bounding-box for the target object), the algorithm renders the GPR

approximation over a resized search grid of size d× d (I use d = 20 for computational

efficiency), and then subsequently applies upscaling (e.g. cubic interpolation) over the

original search space dimensions. In order to allow my algorithm to handle changes

in the scale of the target object, each evaluation of an image crop is rendered by the

Siamese network as a triplet score, where the system generates the similarity score for

the current crop compared to the exemplar at three scales: {1.00− p, 1.00, 1.00 + p},

where I heuristically set p = 0.05. The remaining algorithm steps are straightforward

and detailed below.

Algorithm 5.1: Siamese-Dynamic Bayesian Tracking Algorithm

1: Train Dynamic GP model
2: for i do = 1,2,...T frames do
3: for j do = 1,2,...{Max iterations per frame} do
4: Calculate {xi, ti} = arg maxx,t MS-EI(x, t)
5: Query Siamese network yi ← f(xi, ti)
6: Augment new point to the data
7: Render GPR with set {y} over d× d grid
8: Upsample grid data to dim. of search space S
9: Update current location of optimum over S

10: end for
11: end for

5.6 Experimental Results

I tested the SDBTA using a subset of the VOT14 and VOT16 datasets, the “CFNET”

video tracking dataset, against three baseline video tracking models: template match-

ing using normalized cross correlation (TM) the MOSSE tracker algorithm, and AD-

NET (2017, CVPR), a state of the art, deep reinforcement learning-based video track-

ing algorithm. During exection, I fixed the number of samples per frame at 80 (cf.

region proposal systems commonly rely on thousands of image queries. I report the

search summary statistics for IOU (intersection over union) for each model. Beyond
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TM MOSSE ADNET SDBTA (mine)

mean IOU 0.26 0.10 0.47 0.56

std IOU 0.22 0.25 0.23 0.17

Table 5.1: Experimental results summary.

these strong quantitative tracking results, I additionally observed that the comparison

models suffered from either significant long-term tracking deterioration or episodic

instability (see Figure 5.3). The SDBTA algorithm in general did not exhibit this

behavior based on my experimental trials.

This work has provided the following research contributions: (1) I propose and

test a novel algorithm combining the benefits of one-shot deep learning with non-

parametric Bayesian optimization. This method represents the first integrated dy-

namic Bayesian optimization framework in conjunction with deep learning for object

tracking in video.(2) I define a novel acquisition function using a “memory” com-

ponent appropriate to the task of video tracking. (3) In experiments, I show the

improved performance of the SDBTA algorithm in comparison to three benchmark

tracking algorithms.
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Figure 5.3: The graph shows the general stability of the SDBTA tracker for a representative
test video,’tc-boat-ce1’ (T = 200 frames); IOU is represented by the vertical axis and the
frame number corresponds with the horizontal axis. By comparison, the MOSSE tracker
essentially fails to track after frame 30; TM fails to track for nearly half of the duration of
the video (frames 25-100); and ADNET fails to track after frame 170.
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Chapter 6

Regularized L21-Based Semi-NonNegative Matrix Factorization with

Applications to Deep Model Compression

6.1 Overview

In this chapter, I propose a novel data compression algorithm, Regularized L21

Semi-NonNegative Matrix Factorization (L21 SNF). While my algorithm serves as

a general-purpose compression algorithm, I have nevertheless designed it with the

specific purpose of providing an effective means to render deep model compression

[170,171]. I furthermore anticipate that this work will be pertinent to applications

which require effective compression of highly overdetermined datasets (e.g. genomics

[173]).

Despite their recent successes, it is well known that deep models are computa-

tionally and memory intensive models. To account for the scale, diversity and the

difficulty of data from which these models learn, deep networks are often deliberately

built to be overly complex and to have an excess number of parameters [146]. The

overdetermined nature of these models frequently makes them immensely inefficient;

a recent study has shown that as much as 75% of their parameters are redundant

[147]. In addition, these over-sized models have expensive inference costs, which can

severely limit the feasibility of their deployment and training in constrained environ-

ments. Since their inception, many compression methods have been developed for
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deep neural networks, including various regularization techniques applied to network

parameters [148,149], efficient encodings [150], PCA and SVD - related dimensional-

ity reduction techniques [151], and sparsification [152] – to name only a small number

of techniques.

My algorithm aims concretely to reduce the number of filters in the convolutional

tensors of a CNN via matrix decomposition. As the convolution operation represents

the fundamental bottleneck across many state of the art DL models today, the ef-

fective reduction of the depth of the convolution layers has the potential to broadly

increase efficiency of CNN models by reducing their computational and memory over-

heads. In particular, I anticipate that algorithms which make use of pre-trained, dense

feature models (e.g. AlexNet, VGG) essential to high fidelity computer vision tasks

(e.g. semantic segmentation, high resolution upsampling) can benefit greatly from

this technique.

6.2 Non-Negative Matrix Factorization

Non-negative matrix factorization (NMF) is the problem of finding a matrix factor-

ization of a given non-negative matrix Xm×n so that X ≈ WH for non-negative

factors Wm×r and Hr×n; compression is achieved when r < min(m,n), which is to

say NMF produces a rank-r approximation of X. The significance of this factoriza-

tion is that it gives rise, naturally, to a parts-based decomposition of X. One can

see this clearly by considering each column of W as a basis element in the reduced

space; the columns of H can be interpreted as the corresponding coordinates for each

basis element that render an approximation of the columns of X. Therefore W can

be regarded as containing a basis that is optimized for the linear approximation of

the data in X. Since the number of basis vectors (r) is often relatively small, this set
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Figure 6.1: Example of parts-based NMF applied to gray-scale facial images; image credit
[153].

of vectors represents a useful latent structure in the data (i.e. the matrix X). Lastly,

because each component in the factorization is restricted to be non-negative, their

interaction in approximating X is strictly additive, meaning that the columns of W

in particular yield a parts-based, compressed, decomposition of X. See Figure 6.1 for

a visualization of NMF.

To find an approximate factorization X ≈WH, I first define a cost function that

quantifies the quality of the approximation. There are several natural choices. The

Frobenius norm, an extension of the Euclidean norm to matrices and tensors provides

one option:

‖X−WH‖2
F =

∑
ij

(Xij −WHij)
2 (6.1)

This expression is bounded below by zero, and vanishes when X = WH. A common

alternative measure for NMF optimization is the so-called ”divergence”, defined:

D(X||WH) =
∑
ij

(Xijlog
Xij

WHij

−Xij + WHij) (6.2)
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where divergence is similarly bounded below by zero, and vanishes when X = WH;

divergence reduces to KL-Divergence [154] when
∑

ij Xij =
∑

ij WHij = 1. In the

classic paper [155], the authors solve NMF for both cost functions (6.1) and (6.2)

using a multiplicative update rule; others have used non-negative least square [156],

neural approaches [157] and projective methods [158].

When the data matrix X is not strictly non-negative (e.g. consider X as a convo-

lutional tensor) NMF will fail, naturally. Nevertheless, in many common use cases, a

parts-based decomposition is a desideratum for data compression with non-negative

data. [163] Introduce a useful compromise toward this end, which they term ”Semi-

Nonnegative Matrix Factorization” in which one – and only one – of the factor ma-

trices (i.e. W,H) is constrained to be non-negative.

In the context of model compression, I consider X to be a convolutional tensor,

where the filters (2-d arrays) in the tensor are flattened so that the convolutional

tensor as a whole admits of a matrix representation. In this manner, non-negative

matrix factorization of the flattened convolutional tensor yields a parts-based decom-

position that effectively reduces one or more of the tensor dimensions (e.g. the filter

depth). This reduction facilitates a useful compression of a deep CNN. By analogy,

this matrix factorization methodology can be extended to the domain of higher order

tensors [159].

In place of the aforementioned loss functions, I propose to instead employ a gen-

erally more robust measure that combines the strengths of L2 and L1 loss, termed

L2-1 loss [164]. Define the L2-1 norm as follows:

‖X‖2,1 =
n∑
i=1

√√√√ m∑
j=1

X2
ji (6.3)
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L2-1 loss is accordingly given by:

‖X−WH‖2,1 =
n∑
i=1

√√√√ m∑
j=1

(Xji − (WH)ji)2 (6.4)

*Note in particular that I define L2-1 as a sum of L2 vector magnitudes with respect

to each column of X. When applied to a set of convolutional filters (consider each

column of X as a ”flattened” filter), for example, L2-1 loss can viewed as a measure

that weighs the distance per filter component using L2 cost, while summing over

filters with L1 cost. One can show that the L2 norm is rotationally invariant [160] (a

desirable property for approximating convolutional filters); moreover, the L1 norm is

known to be robust to outliers.

6.3 Robust L21-Based Semi-Nonnegative Matrix Factorization

Recall the following useful gradient and trace-related formulas which I employ below:

tr(A + B) = tr(A) + tr(B) (6.5)

tr(ABC) = tr(CAB) = tr(BCA) (6.6)

∇Xtr(AX) = AT (6.7)

∇Xtr(X
TA) = A (6.8)

∇Xtr(X
TAX) = (A + AT )X (6.9)

∇Xtr(XAXT ) = X(AT + A) (6.10)

‖X‖2
2 = tr(XTX) (6.11)
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Let X ∈ Rm×n,W ∈ Rm×k,H ∈ Rk×n
+ ; moreover, let x(i) ∈ Rm×1 denote the ith

column of X, and h(i) ∈ Rk×1
+ denote the ith column of H. The optimization problem

underlying my regularized L21 semi non-negative matrix factorization algorithm is

defined:

arg min
W,H

‖X−WH‖2,1 + α‖W‖2
2 subject to H ≥ 0 (6.12)

where α = α
2

and α ≥ 0 is a given parameter, and I adopt α
2

instead of α here in

order to simplify the new algorithm and its derivation.

I define the associated loss function:

L (X,WH) = tr[(X−WH)D(X−WH)T ] + αtr[WTW]

where D ∈ Rn×n,Dii = 1/‖x(i) −Wh(i)‖2

(6.13)

Following the methodology introduced in [167], I subsequently derive iterative update

formulas based on the loss function given in (6.13) and show that these updates incur

a monotonic loss in (6.12).

L (X,WH) = tr[XDXT − 2XDHTWT + WHDHTWT ] + αtr[WTW] (6.14)

= tr[XDXT ]− 2tr[WTXDHT ] + tr[WHDHTWT ] + αtr[WTW] (6.15)

Observing that:

∇Wtr[(XDXT ] = 0 (6.16)

∇Wtr[WTXDHT ] = XDHT (6.17)

∇Wtr[WHDHTWT ] = 2WHDHT (6.18)

∇Wαtr[WTW] = 2αW (6.19)
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This yields:

∇WL = 2WHDHT − 2XDHT + 2αW (6.20)

I now solve ∇WL = 0, which gives the solution:

W = [XDHT ][αI + HDHT ]−1 (6.21)

Next I prove that optimality of (6.21) by demonstrating that (6.13) is convex; I first

consider ∂L
∂Wij

:

∂L

∂Wij

= 2(WHDHT )ij − 2(XDHT )ij + 2α(W)ij (6.22)

By expanding the first term on the RHS of (6.22), I have:

∂L

∂Wij

= 2
k∑
l=1

Wil(HDHT )lj − 2(XDHT )ij + 2α(W)ij (6.23)

The Hessian of L is consequently:

∂L

∂Wij∂Wpq

= 2(HDHT + αI)qjδip 1 ≤ i, p ≤ m 1 ≤ j, q ≤ k (6.24)

Therefore, the Hessian of L is a block diagonal matrix with each block being 2HDHT+

2αI. Since 2HDHT + 2αI is a positive definite matrix of size k × k, then the Hes-

sian of L is also a positive definite matrix of size mk ×mk. This indicates that L

is convex. Therefore the formula given for W in (6.21) is optimal, as was to be shown.

The previous derivation of (6.21) and associated demonstration of optimality furnish

a proof for the following Lemma. I now consider (6.21) as an iterative update rule at

step t, where I regard H(t) as fixed at the time of the t-th update for W, denoted by
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W(t). Define D(t)ii = 1/‖x(i) −W(t)h(t)(i)‖2, which is also regarded as fixed at the

time of t-th update for W. The iterative update for matrix W is given by:

W(t+ 1) = [XD(t)H(t)T ][αI + H(t)D(t)H(t)T ]−1 (6.25)

Lemma 1. Let W(t) and W(t+1) represent consecutive updates for W as prescribed

by (6.25). Under this updating rule, the following inequality holds:

tr[(X−W(t+ 1)H(t))D(t)(X−W(t+ 1)H(t))T ] + αtr[WT (t+ 1)W(t+ 1)]

≤ tr[(X−W(t)H(t))D(t)(X−W(t)H(t))T )] + αtr[WT (t)W(t)]

(6.26)

Proof. The proof of Lemma 1 follows directly from the optimality of the update

formula given in (6.21). �

Lemma 2. Following the work of [167], I show that under the update rule of (6.25),

the following inequality holds where α = α
2
:

‖X−W(t+ 1)H(t)‖2,1 + αtr[W(t+ 1)WT (t+ 1)]

−(‖X−W(t)H(t)‖2,1 + αtr[W(t)WT (t)])

≤ 1

2

[
tr[(X−W(t+ 1)H(t))D(t)(X−W(t+ 1)(H(t))T ]

−tr[(X−W(t)H(t))D(t)(X−W(t)H(t))T ]
]

+αtr[W(t+ 1)WT (t+ 1)]− αtr[W(t)WT (t)]

(6.27)
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Proof. Notice that:

tr[(X−W(t)H(t))D(t)(X−W(t)H(t))T )] + αtr[W(t)WT (t)]

=

p∑
j=1

n∑
i=1

(X−W(t)H(t))2
ijDii + αtr[W(t)WT (t)]

=
n∑
i=1

‖x(i) −W(t)h(t)(i)‖2Dii(t) + αtr[W(t)WT (t)]

(6.28)

Analogously,

tr[(X−W(t+ 1)H(t))D(t)(X−W(t+ 1)H(t))T )] + αtr[W(t+ 1)WT (t+ 1)]

=
n∑
i=1

‖x(i) −W(t+ 1)h(t)(i)‖2Dii(t) + αtr[W(t+ 1)WT (t+ 1)]

(6.29)

Consequently, the right-hand-side (RHS) of the inequality (6.27) can be expressed:

RHS =
1

2

n∑
i=1

(
‖x(i) −W(t+ 1)h(t)(i)‖2Dii(t)− ‖x(i) −W(t)h(t)(i)‖2Dii(t)

)
+αtr[W(t+ 1)WT (t+ 1)]− αtr[W(t)WT (t)]

=
1

2

n∑
i=1

(
‖x(i) −W(t+ 1)h(t)(i)‖2Dii(t)−

1

Dii(t)

)
+αtr[W(t+ 1)WT (t+ 1)]− αtr[W(t)WT (t)]

(6.30)
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Similarly, the left-hand-side (LHS) of the inequality (6.27) can be expressed:

LHS =
n∑
i=1

(
‖x(i) −W(t+ 1)h(t)(i)‖ − ‖x(i) −W(t)h(t)(i)‖

)
+

αtr[W(t+ 1)WT (t+ 1)]− αtr[W(t)WT (t)]

=
n∑
i=1

(
‖x(i) −W(t+ 1)h(t)(i)‖ − 1

Dii

)
+αtr[W(t+ 1)WT (t+ 1)]− αtr[W(t)WT (t)]

(6.31)

Ergo,

LHS −RHS =
n∑
i=1

(
‖x(i) −W(t+ 1)h(t)(i)‖ − 1

2
‖x(i) −W(t+ 1)h(t)(i)‖2Dii(t)−

1

2

1

Dii(t)

)
=

n∑
i=1

Dii(t)

2

(
2
‖x(i) −W(t+ 1)h(t)(i)‖

Dii(t)
− ‖x(i) −W(t+ 1)h(t)(i)‖2 − 1

Dii(t)2

)
=

n∑
i=1

−Dii(t)

2

(
‖x(i) −W(t+ 1)h(t)(i)‖2 − 2‖x(i) −W(t+ 1)h(t)(i)‖ 1

Dii(t)
+

1

Dii(t)2

)
=

n∑
i=1

−Dii(t)

2

(
‖x(i) −W(t+ 1)h(t)(i)‖ − 1

Dii(t)

)2

≤ 0

(6.32)

As was to be shown. �

Theorem 1. Updating W using formula (6.21) while fixing H yields a monotonic

decrease in the objective function defined by (6.12).
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Proof. By Lemma 1, the right hand side expression in Lemma 2:

1

2
tr[(X−W(t+ 1)H(t))D(t)(X−W(t+ 1)(H(t))T ] + αtr[W(t+ 1)WT (t+ 1)]

−1

2
tr[(X−W(t)H(t))D(t)(X−W(t)H(t))T ]− αtr[W(t)WT (t)]

(6.33)

is less than or equal to zero. So does the left hand side expression in Lemma 2:

‖X−W(t+ 1)H(t)‖2,1 + αtr[W(t+ 1)WT (t+ 1)]

−‖X−W(t)H(t)‖2,1 − αtr[W(t)WT (t)] ≤ 0

(6.34)

Thus proving Theorem 1. �

Next I derive an iterative update formula for H, with H ≥ 0; subsequently I prove

convergence of this update rule by showing that the residual L (X,WH) (eq. (6.13))

is monotonically decreasing for fixed W. Since the second term of the residual,

αtr[WTW], is fixed during the H update, I ignore it here.

Definition.

F (H) = tr[(X−WH)D(X−WH)T ] (6.35)

To prove this convergence, I utilize an auxiliary function, denoted A (H,H′) as in

[155], [163].

Definition. A is an auxiliary function for F (H) if:

A (H,H′) ≥ F (H), A (H,H) = F (H) (6.36)

58



Lemma 3. If A is an auxiliary function of F (H), then F (H) is non-increasing

under the update:

Ht+1 = arg min
H

A (H,Ht) (6.37)

Proof.

F (Ht+1) ≤ A (Ht+1,Ht) ≤ A (Ht,Ht) = F (Ht). (6.38)

I now consider an explicit solution for H in the form of an iterative update, for which

I subsequently prove convergence. Since H is non-negative, it is helpful to decompose

both the k×k matrix WTW = Ω and the k×n matrix WTX = Φ into their positive

and negative entries:

Ω+
ij =

1

2
(|Ωij|+ Ωij), Ω−ij =

1

2
(|Ωij| − Ωij). (6.39)

Lemma 4. Under the iterative update:

Hij(t+ 1) = Hij(t)

√
(Φ+D(t))ij + (Ω−H(t)D(t))ij
(Φ−D(t))ij + (Ω+H(t)D(t))ij

(6.40)

where WT (t)W(t) = Ω, Ω = Ω+ − Ω−, WT (t)X = Φ, Φ = Φ+ − Φ−, and D(t)ii =

1/‖x(i)−W(t)h(t)(i)‖2, the following relation holds for some auxiliary function A (H,H′):

H(t+ 1) = arg min
H

A (H,H(t)) (6.41)

Proof. Using the notation introduced above, F (H) can be written in the following

form:

F (H) = tr[XDXT ]− 2tr[HTΦ+D] + 2tr[HTΦ−D]

+tr[Ω+HDHT ]− tr[Ω−HDHT ]

(6.42)
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In the subsequent steps I provide an auxiliary function A (H,H′) for the residual loss

F (H). Following [164], in order to construct an auxiliary function that furnishes an

upper-bound for F (H), I define A (H,H) as a sum comprised of terms that represent

upper-bounds for each of the positive terms appearing in (6.42) and lower-bounds for

each of the negative terms, respectively.

Using the fact that a ≤ a2+b2

2b
∀ a, b > 0, I derive an upper bound for the third

term on the RHS of (6.42):

tr[HTΦ−D] =
∑
ij

Hij(Φ
−D)ij ≤

∑
ij

(Φ−D)ij
(Hij)

2 + (H′ij)
2

2H′ij
(6.43)

[163] derive the following useful inequality, which I use to bound the fourth term on

the RHS of (6.42).

Proposition 1. For any matrices A ∈ Rn×n
+ , B ∈ Rk×k

+ , S ∈ Rn×k
+ , S′ ∈ Rn×k

+ , with

A and B symmetric:

tr[STASB] ≤
n∑
i=1

k∑
p=1

(AS′B)ipS
2
ip

S′ip
(6.44)

Considering the fourth term of the RHS of (28), I have:

tr[Ω+HDHT ] = tr[HTΩ+HD] ≤
∑
ij

(Ω+H′D)ijH
2
ij

H′ij
(6.45)

Next I derive a lower-bound for the second term of (6.42), using the fact that a ≥
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1 + log a, ∀ a > 0:

tr[HTΦ+D] =
∑
ij

Hij(Φ
+D)ij

≥
∑
ij

(Φ+D)ijH
′
ij(1 + log

Hij

H′ij
)

(6.46)

Finally, I consider the last term on the RHS of equation (6.42):

Proposition 2.

tr[Ω−HDHT ] ≥
∑
ijk

Ω−ikH
′
kjDjjH

′
ij

(
1 + log

HkjHij

H′kjH′ij

)
(6.47)

Proof.

tr[Ω−HDHT ] = tr[HTΩ−HD] =
∑
ij

(Ω−HD)ijHij

=
∑
ijk

Ω−ik(HD)kjHij =
∑
ijk

Ω−ikHkjDjjHij

(6.48)

Once again I employ the inequality a ≥ 1 + log a, whereupon:

tr[Ω−HDHT ] ≥
∑
ijk

Ω−ikH
′
kjDjjH

′
ij

(
1 + log

HkjHij

H′kjH′ij

)
(6.49)

As was to be shown. �
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Putting the previous steps together, I define the auxiliary function A (H,H′):

A (H,H′) = tr[XDXT ] +
∑
ij

(Ω+H′D)ijH
2
ij

H′ij
− 2

∑
ij

(Φ+D)ijH
′
ij(1 + log

Hij

H′ij
)

−
∑
ijk

Ω−ikH
′
kjDjjH

′
ij

(
1 + log

HkjHij

H′kjH′ij

)
+ 2

∑
ij

(Φ−D)ij
(Hij)

2 + (H′ij)
2

2H′ij

(6.50)

Observe that A (H,H′) ≥ F (H) and A (H,H) = F (H), as required for an auxiliary

function, where F (H) denotes the residual loss as defined in equation (6.42). By

the aforementioned Lemma, it follows that F (H) is non-increasing under the update:

H(t+ 1) = arg minH A (H,H(t)).

I now demonstrate that the minimum of A (H,H′) coincides with the update rule

given in (6.40), by: (1) showing that the update in (6.40) corresponds with a critical

point for A (H,H′); and (2) proving the convexity of A (H,H). Since

∂A (H,H′)

∂Hij

= 2(Φ−D)ij

(Hij

H′ij

)
+ 2

(Ω+H′D)ijHij

H′ij

−2(Φ+D)ij

(H′ij
Hij

)
− 2

(Ω−H′D)ijH
′
ij

Hij

= 0

(6.51)

Solving for Hij gives:

Hij = H′ij

√
(Φ+D)ij + (Ω−H′D)ij
(Φ−D)ij + (Ω+H′D)ij

(6.52)

Thus, as asserted, the update rule given in (6.40) corresponds with a critical point

for A (H,H′).

62



Now I consider computation of the Hessian of A (H,H′):

∂A (H,H′)

∂Hij∂Hkl

=


if (i, j) == (k, l):

2
(Φ−D)ij

H′ij
+ 2

(Ω+H′D)ij
H′ij

+ 2
(Φ+D)ijH

′
ij

H2
ij

+ 2
(Ω−H′D)ijH

′
ij

H2
ij

else: 0

(6.53)

Clearly, the Hessian of A (H,H′) is a diagonal matrix with non-negative entries, in-

dicating that A (H,H′) is convex, as was to be shown.

Finally, to conclude the proof of Lemma 4, I show that the iterative update formula

given by (6.40) is additionally optimal in the sense that it enforces non-negativity for

the matrix H. To this end, I define a matrix Λ ∈ Rk×n of Lagrangian multipliers.

This gives the following associated Lagrangian:

F (H)Λ = tr[XDXT ]− 2tr[HTΦ+D] + 2tr[HTΦ−D]

+tr[Ω+HDHT ]− tr[Ω−HDHT ]− Λ�H

(6.54)

where � denotes the Hadamard product. The gradient of the Lagrangian is therefore:

∇HF (H)Λ = −2Φ+D + 2Φ−D + 2Ω+HD− 2Ω−HD− Λ (6.55)

where I use the identity ∇H(tr[Ω+HDHT ]) = 2Ω+HD.

The Karush-Kuhn-Tucker (KKT) conditions [165] dictate that a necessary condition

for optimality with the prescribed non-negative constraints is H∗�Λ = 0, where H∗
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is optimal. This indicates that an optimal solution necessarily satisfies:

− Φ+D + Φ−D + Ω+HD− Ω−HD− 1

2
Λ = 0 (6.56)

which implies the following by the KKT slackness condition:

Hij(−Φ+D + Φ−D + Ω+HD− Ω−HD)ij = 0 (6.57)

Equivalently, the optimal solution satisfies:

H2
ij(−Φ+D + Φ−D + Ω+HD− Ω−HD)ij = 0 (6.58)

If I solve (6.58) for Hij I arrive at formula (6.40). This concludes the proof of Lemma

4. �

Lemma 5. Let H(t) and H(t+ 1) represent consecutive updates for H as prescribed

by (6.40). Under this updating rule, the following inequality holds:

tr[(X−W(t)H(t+ 1))D(t)(X−W(t)H(t+ 1))T ]

≤ tr[(X−W(t)H(t))D(t)(X−W(t)H(t))T )]

(6.59)

Proof. The proof of Lemma 5 follows directly from Lemma 4 and Lemma 3. �
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Lemma 6. Under the update rule of (6.40), the following inequality holds:

‖X−W(t)H(t+ 1)‖2,1 − ‖X−W(t)H(t)‖2,1

≤ 1

2

[
tr[(X−W(t)H(t+ 1))D(t)(X−W(t)(H(t+ 1))T ]−

tr[(X−W(t)H(t))D(t)(X−W(t)H(t))T ]
] (6.60)

Proof. Notice that:

tr[(X−W(t)H(t))D(t)(X−W(t)H(t))T )]

=

p∑
j=1

n∑
i=1

(X−W(t)H(t))2
ijDii =

n∑
i=1

‖x(i) −W(t)h(t)(i)‖2Dii(t)
(6.61)

Analogously,

tr[(X−W(t)H(t+ 1))D(t)(X−W(t)H(t+ 1)T ))]

=
n∑
i=1

‖x(i) −W(t)h(t+ 1)(i)‖2Dii(t)
(6.62)

Therefore,

RHS =
1

2

n∑
i=1

(
‖x(i) −W(t)h(t+ 1)(i)‖2Dii(t)− ‖x(i) −W(t)h(t)(i)‖2Dii(t)

)
=

1

2

n∑
i=1

(
‖x(i) −W(t)h(t+ 1)(i)‖2Dii(t)−

1

Dii(t)

)
(6.63)
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Similarly,

LHS =
n∑
i=1

(
‖x(i) −W(t)h(t+ 1)(i)‖ − ‖x(i) −W(t)h(t)(i)‖

)
=

n∑
i=1

(
‖x(i) −W(t)h(t+ 1)(i)‖ − 1

Dii

) (6.64)

Ergo,

LHS −RHS =
n∑
i=1

(
‖x(i) −W(t)h(t+ 1)(i)‖ − 1

2
‖x(i) −W(t)h(t+ 1)(i)‖2Dii(t)−

1

2

1

Dii(t)

)
=

n∑
i=1

Dii(t)

2

(
2
‖x(i) −W(t)h(t+ 1)(i)‖

Dii(t)
− ‖x(i) −W(t)h(t+ 1)(i)‖2 − 1

Dii(t)2

)
=

n∑
i=1

−Dii(t)

2

(
‖x(i) −W(t)h(t+ 1)(i)‖2 − 2‖x(i) −W(t)h(t+ 1)(i)‖ 1

Dii(t)
+

1

Dii(t)2

)
=

n∑
i=1

−Dii(t)

2

(
‖x(i) −W(t)h(t+ 1)(i)‖ − 1

Dii(t)

)2

≤ 0

(6.65)

As was to be shown. �

Theorem 2. Updating H using formula (6.40) while fixing W yields a monotonic

decrease in the objective function defined by (6.12).

Proof. By Lemma 5:

tr[(X−W(t)H(t+ 1))D(t)(X−W(t)(H(t+ 1))T ]−

tr[(X−W(t)H(t))D(t)(X−W(t)H(t))T ] ≤ 0

(6.66)
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Then by Lemma 6:

‖X−W(t)H(t+ 1)‖2,1 − ‖X−W(t)H(t)‖2,1 ≤ 0

That is,

‖X−W(t)H(t+ 1)‖2,1 + α‖W(t)‖2
2 ≤ ‖X−W(t)H(t)‖2,1 + α‖W(t)‖2

2 (6.67)

Thus proving Theorem 2. �

I now present my Regularized, L21 Semi-Nonnegative Matrix Factorization Algo-

rithm.

Algorithm 6.1: Regularized L21 SNF

Initialize H(0) as non-negative matrix, initialize W(0) (e.g. use k-means)

for t in 0 : T − 1 do

(1) Hij(t+ 1) = Hij(t)
√

(Φ+D(t))ij+(Ω−H(t)D(t))ij
(Φ−D(t))ij+(Ω+H(t)D(t))ij

(2)W(t+ 1) = [XD(t)H(t)T ][αI + H(t)D(t)H(t)T ]−1

where WT (t)W(t) = Ω, Ω = Ω+ − Ω−, WT (t)X = Φ, Φ = Φ+ − Φ−, and
D(t)ii = 1/‖x(i) −W(t)h(t)(i)‖2.

6.4 Experimental Results

I perform two general experiments to compare the performance of L21 SNF Algorithm

with SNF [163]: (1) general data compression via matrix factorization, and (2) qual-

itative facial image data reconstruction via matrix factorization. To compare general

data compression performance, I begin with randomized, mixed sign data matrices
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Figure 6.2: Schematic of the VGG-16 deep CNN architecture [169].

Figure 6.3: Comparison of L21 loss for L21 SNF (mine) vs SNF algorithms for compression
of matrix X of dimension 500× 100: (i) Top-Left, 500× 50 compression, (ii) Top-Right,
500× 25, (iii) Bottom-Left, 500× 10, and (iv) Bottom-Right, 500× 5.
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(in the range [−20, 20]) X of dimension 500× 100 and 10, 000 × 128, respectively.

In each case, I perform different degrees of compression; in the former case, through

separate trials, I reduce X to dimension 500× 50, 500× 25, 500× 10 and 500× 5; in

the latter case, I reduce X to dimension 10, 000× 64, 10, 000× 32, 10, 000× 16, and

10, 000× 8. In particular, these more extreme, highly non-square matrix dimensions

are inspired by the use-case of deep CNN compression. For example, ’conv2’ in the

VGG-16 architecture [169] is of dimension 12, 544× 128 (when convolutional filters

are flattened), see Figure 6.2.

Using identical initialization schemes for W and H, I compare reconstruction loss

using (4) different metrics: (i) Frobenius loss (FL), (ii) normalized Frobenius loss

(NFL), i.e., ‖X−WH‖F
‖X‖F

, (iii) L21 loss (L21), and (iv) normalized L21 loss (NL21) ,

i.e. ‖X−WH‖2,1
‖X‖2,1 . Table 6.1 and Table 6.2, together with Figure 6.3 and Figure 6.4,

summarize these findings below. In all my of experiments, I optimize the regulariza-

tion hyperparameter α using random search [172] over the interval [0,1]. In general,

a prudent choice of α can improve the convergence time and overall stability of the

L21 SNF algorithm in addition to reducing reconstruction loss.

Overall, the L21 SNF algorithm demonstrates a substantial improvement in com-

parison with SNF [163] and PCA in reducing L21-based reconstruction loss across

each of my experiments, while at the same time maintaining generally strong results

for L2-based reconstruction loss (see Figures 6.3 and 6.4, Tables 6.1 and 6.2). In

particular, L21 SNF exhibits significant gains in the case of severely overdetermined

systems. In experimental trials of reducing random, mixed sign matrices of initial

dimension 10, 000× 128, for instance, L21 SNF shows a relative improvement of 26%

over SNF for the 50% compression task, while exhibiting only a 4% increase in L2

loss, comparatively; similarly, for the 75% compression task, L21 SNF demonstrates

an 11% relative improvement over SNF with respect to L21 loss, and only a 1% in-
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Compression NFL (mine) NL21 (mine) NFL (SNF) NL21 (SNF)
500× 50 0.660 (0.623) 0.474 (0.473) 0.562 (0.561) 0.561 (0.560)
500× 25 0.829 (0.797) 0.736 (0.733) 0.773 (0.772) 0.772 (0.771)
500× 10 0.914 (0.910) 0.896 (0.895) 0.907 (0.906) 0.905 (0.904)
500× 5 0.955 ( 0.953) 0.949 (0.949) 0.952 (0.952) 0.952 (0.952)

Table 6.1: Summary of loss measures for L21 SNF algorithm (mine) vs SNF run for 500
iterations, beginning with random, mixed sign matrix of dimension 500× 100. Numerical
values indicate median value at convergence; values in parentheses indicate minimum values
at convergence.

crease in L2 loss compared with SNF (see Table 6.2).

Lastly, I compare compression quality rendered by L21 SNF with SNF for the

task of compression on a batch of images. For this experiment, I randomly sam-

pled 200 images from the Large-scale CelebFaces Attributes (CelebA) Dataset [168].

Each image is of dimension 89× 108; I flattened and concatenated this batch of im-

ages, rendering a data matrix X of dimension 9, 612× 200. I then ran each of the

L21 SNF and SNF algorithms for 250 iterations, reducing the original matrix to size

9, 612× 100. The results of this experiment are shown in Figure 6.6.

Figure 6.6 in particular provides a qualitative illustration of the stark contrast

in performance between L21 SNF and SNF [163] for compression applied to severely

overdetermined datasets. While the reconstruction fidelity for L21 SNF is comparable

with the original images from the CelebA dataset, both the SNF and PCA techniques

performed poorly by comparison, as each introduces a significant amount of distortion

and image artifacts in the reconstruction process.
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Compression NFL (mine) NL21 (mine) NFL (SNF) NL21 (SNF)
10k × 64 0.704 (0.694) 0.498 (0.498) 0.674 (0.673) 0.672 (0.620)
10k × 32 0.865 (0.855) 0.749 (0.749) 0.845 (0.846) 0.845 (0.844)
10k × 16 0.935 (0.929) 0.874 (0.874) 0.925 (0.924) 0.924 (0.923)
10k × 8 0.968 (0.964) 0.937 (0.937) 0.962 (0.962) 0.962 (0.962)

Table 6.2: Summary of loss measures for L21 SNF algorithm (mine) vs SNF run for 100
iterations, beginning with random, mixed sign matrix of dimension 10, 000× 128.

Figure 6.4: Comparison of L21 loss for L21 SNF (mine) vs SNF algorithms for compression
of matrix X of dimension 10, 000× 128: (i) Top-Left, 10, 000× 64 compression, (ii) Top-
Right, 10, 000× 32, (iii) Bottom-Left, 10, 000× 16, and (iv) Bottom-Right, 10, 000× 8.
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Figure 6.5: Left: Original image of resolution 400× 400; Middle: results using SNF to
reduce image to 400× 50 (500 iterations); Right: results using L21 SNF (mine) to reduce
image to 400× 50 (500 iterations). Notice that even though L21 SNF is optimized for L21
loss, the two compression results exhibit nearly identical reconstruction fidelity, which is to
say that L21 SNF also maintains strong results with respect to Frobenius loss.

Figure 6.6: Results for compression of batch of 200 face images sampled from the CelebA
[168] dataset; I show a sample of seven randomly selected images after compression. The
original image batch of dimension 9, 612× 200 was compressed to 9, 612× 100; each algo-
rithm was run for 250 iterations. Top: ground-truth images; Second from Top: L21 SNF
(mine) rendered result; Second from Bottom: SNF results; Bottom: PCA results.
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Chapter 7

Conclusions

This work has provided several innovations that accentuate and unify non-parametric

and deep learning methodologies across a diverse array of computer vision processes.

I illustrate in particular that these paradigms can be successfully leveraged to provide

a basis for higher order analytical modalities, including “visual situation recognition”

necessary for the safe and effective deployment of deep models in real-world, risk-

sensitive settings.

In Chapter 1, I introduced the general problem scope of my dissertation. In

Chapters 2 and 3, I demonstrated that prior knowledge and situation-relevant con-

text can be encoded with a dynamic, non-parametric “situation model.” Moreover,

this model, when used in conjunction with deep learning, can accurately and effi-

ciently localize relevant objects in an image. In particular, I introduce the MIC-

Situate algorithm which presents the notion of a context-based importance cluster

for rendering situational-specific conditional density estimates; in conjunction with

this technique, I present a multipole expansion with stochastic filtering-based method

to reduce KDE approximations employed in active object search from O(MN) com-

plexity to O(M +N).

In Chapter 4, I extended these ideas through the development of a more statistically-

principled approach to object localization. Here I presented a novel technique for the

challenging task of efficient object localization. My method trains a predicted-offset
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model, demonstrating successfully the ability of CNN-based features to serve as the

input for an object localization method. Using Bayesian optimization, this tech-

nique surpasses the state-of-the-art regression method employed in R-CNN (and its

extensions) for the localization of pedestrians in high-resolution still images with com-

putational efficiency. With future research, this work can potentially be extended to

gradient-based GPs and massively scalable GPs, whereby GP-enabled localization

can directly incorporate bounding-box size parameters, as well as leverage additional

sources of visual context for localization. More generally, I aim to apply these ap-

proaches to broader, high-dimensional problem regimes.

In Chapter 5, I applied a Bayesian optimization approach to the more extreme,

“one-shot” use-case of video tracking. In this work I presented the first integrated

dynamic Bayesian optimization framework in combination with deep learning for

video tracking. While this algorithm demonstrated effectiveness in video tracking,

I believe it can be further improved in the future. I intend to potentially expand

the current approach to accommodate the following enhancements: (1) GP-enabled

multi-scaling (so the GP is generated in five dimensions, including space, size and

time); (2) adaptive Bayesian optimization (ABO) which adaptively alters the bounds

and sample constraints at each frame for optimizing the acquisition function based

on the learned time-related length-scale parameter; (3) I anticipate furthermore that

incorporating a fully-convolutional architecture into the Siamense conv-net with my

current pipeline will yield faster than real-time video tracking with the added benefits

of Bayesian non-parametrics. This research can be further augmented to include

visual context models for structured image and video types to be used with video

scene and behavior recognition; various numerical optimization techniques can further

improve the efficiency and speed of the GP-based video tracking. I believe that this

research has significant potential for widespread real-world use, including applications
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to surveillance, high-level scene understanding in computer vision systems, and a

myriad of commercial and consumer-based applications.

Finally, in Chapter 6, I devised a novel algorithm, “Regularized L21-Based Semi-

NonNegative Matrix Factorization” which provides a general, additive, parts-based

data compression algorithm, using an L21-norm-based loss function. In particular, I

demonstrated a formal proof of convergence of this algorithm. Through experiments,

I showed the use-case advantages presented by my algorithm in comparison with

baseline compression algorithms, including SNF and PCA. In particular, my Regu-

larized L21-Based Semi-NonNegative Matrix Factorization algorithm is particularly

well-suited to highly overdetermined systems. In future work, I plan to extend this

algorithm to potentially incorporate sparsity constraints, and to furthermore deploy

it for real-world applications, including: deep model compression and genomic data

compression.
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