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Abstract

Locating a small object in an image — like a mouse on a computer desk or the door handle of
a car — is an important computer vision problem to solve because in many real life situations a
small object may be the first thing that gets operated upon in the image scene. While a significant
amount of artificial intelligence and machine learning research has focused on localizing prominent
objects in an image, the area of small object detection has remained less explored. In my research
I explore the possibility of using context information to localize small objects in an image. Using
a Convolutional Neural Network (CNN), I create a regression model to detect a small object in an
image where model training is supervised by coordinates of the small object in the image. Since
small objects do not have strong visual characteristics in an image, it’s difficult for a neural network
to discern their pattern because their feature map exhibits low resolution rendering a much weaker
signal for the network to recognize. Use of context for object detection and localization has been
studied for a long time. This idea is explored by Singh et al. [25] for small object localization
by using a multi-step regression process where spatial context is used effectively to localize small
objects in several datasets. I extend the idea in this research and demonstrate that the technique of
localizing in steps using contextual information when used with transfer learning can significantly
reduce model training time.



Acknowledgement

This thesis would not be possible without Professor Melanie Mitchell’s guidance through the
research. Her savvy idea to use deep learning for identifying a small object helped me gain more
insight into machine learning in general and deep learning in particular. I also want to
acknowledge Sheng Lundquist’s help with TensorFlow for design, development and debugging of
the model. Achnowledgement is in order for Saurabh Singh also who provided datasets and
original code for this work.

ii



Contents

1 Introduction 1

2 Background 5
2.1 Convolutional Neural Networks (CNNs) . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Object Detection in R-CNN (Regions with CNN features) . . . . . . . . . . . . . . . 12

3 Related Work 13

4 Detecting a Small Object in an Image 15
4.1 Architecture Overview of Little Landmark CNN Model . . . . . . . . . . . . . . . . . 16
4.2 Image Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Prediction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Methods 22
5.1 Model Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Experiments and Results 27

7 Conclusions and Future Work 31
7.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

iii



List of Figures

1 This figure illustrates the process of detecting the car door handle (barely recogniz-
able in top left corner of the figure) in the image of a car. Step 1 finds the first
latent landmark, which predicts location of the second latent landmark. The latent
landmark found in step 2 predicts the location of the car door handle, which the
model learns to localize in the third step of the process. Image source: [25]. This
figure is best viewed in color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Dog Walking Image from PSU Dog Walking dataset. Detection of the “hand-holding-
leash” little landmark can help localize the dog walker and the dog in the image,
and give evidence that this image is an example of the “dog-walking” situation. This
figure is best viewed in color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Schematic diagram of a Convolutional Neural Net (CNN). A typical layer of a
CNN has three components; convolution (CONV), non-linearity (ReLU) and pool-
ing (POOL). Many such layers are stacked together to create a deep architecture.
Input enters the architecture from the left (image of the car) and after going through
many layers of CONV-ReLU-POOL transformations produces output (image clas-
sification) in the rightmost layer. In front part of the architecture (feature learn-
ing), inputs and outputs are partially connected, whereas towards the end learned
features of the model are passed thru a fully connected layer to generate a proba-
bility distribution for classification classes or a real value for a regression problem.
Image source: https://www.mathworks.com/solutions/deep-learning/convolutional-
neural-network.html. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Element-wise product and sum of the 3 X 3 kernel with an input of dimension 5 X
5 produces an output of 3 X 3 dimension. Element-wise product and sum of the
kernel with nine cells in the top left corner of the input produces the output in the
top left cell of the output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Pooling is used to create summary of activations generated by the ReLU layer.
This figure shows two types of pooling commonly used in CNN. In average pooling,
the average value of some output activations are used as a representative and the
maximum value is used in max-pooling. This figure is best viewed in color. . . . . . . 8

6 R-CNN [9] process for object localization. This figure is best viewed in color. . . . . 12

iv



7 Localization of the little landmark in three steps. Ground truth locations are shown
as a black triangle. Step 1, Step 2 and Step 3 are color coded as Red, Green and
Blue respectively. Colored blobs show the locations of the latent landmarks for each
step. Solid circles show the predicted location of the next latent landmark by each
step; dotted circles around solid circles show the bandwidth of the radial basis kernel
used to encode the predictions. The model discovers latent landmarks in the first
two steps that help find coordinates of the target in the third step. For the car door
handle localization, in the first step, the model localizes near the front wheel of the
car, gets little closer to the car door handle in the second step and lands on the
target in the third step. For the light switch localization, the process starts from the
edge of the light-switch panel and the model detects the light switch in three steps.
Image source: [25]. This figure is best viewed in color and with zoom. . . . . . . . . . 16

8 Little Landmark CNN Architecture. In this architecture, an image enters the system
from the bottom and the final prediction for the door handle of the car is made
in step 3 of the process. The input image goes thru six layers of CONV-ReLU
transformations. The output from CONV6/ReLU6 layer is an input to all three
prediction steps above. The red blob is the prediction for a latent landmark in that
step and is used to predict the location of next latent landmark. This information
is encoded as a feature map, marked as 1 and 2, with radial basis kernel (the blue
blob) and is passed as a feature to the next step. Coordinates of the little landmark
are predicted in the last step. CONV/ReLU boxes of the same color shows that
parameters are shared in those layers. Image source: [25]. This figure is best viewed
in color and with zoom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

9 Latent Landmark Prediction Grid. A separate logical grid (5 x 5 in size shown on
the left) is placed over each coordinate produced by CONV6/RELU6 layer (shown
on the right). The grid has fixed values for x and y coordinated of each 25 grid
points. The grid values when multiplied by the confidence value generated by the
network predicts the latent landmark for the next step. Image source: [25]. This
figure is best viewed in color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

10 Original vs. my model’s test accuracy comparison. The graph in (a) shows a plot
of normalized distance vs. detection rate published by Singh et al. on the CDHD
dataset. The curve marked as Pred 3 shows the accuracy of the three step process;
Pred 2 curve shows accuracy of the two step process; and Pred curve uses a single
latent landmark. My implementation’s test accuracy is plotted in (b) that shows
comparable performance to the original Pred 3 curve. This figure is best viewed in
color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

11 Visualization of features learned by a CNN model using a Deconvolutional Network
[29]. (a) shows layer 2 activations mapped to its pixel space and (b) shows image
patches corresponding to (a); (c) shows layer 5 activations mapped to its pixel space
and (d) shows image patches corresponding to (c). Image source: [29]. This figure
is best viewed in color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

v



12 Little landmarks architecture modified using transfer learning. This model used
features learned by the VGG-16 network as an input to rest of the model. As in
figure 8, an image enters the system from the bottom and the final prediction for the
door handle of the car is made in step 3 of the process. The bridge layer is use to
transform output dimensions of VGG-16 model so that it dovetails with the upper
part of Little Landmarks’ architecture. This figure is best viewed in color and with
zoom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

13 Normalized distance vs. detection rate plots; all plots show model accuracy for
normalized distance in the range 0.01 to 0.1. Plot (a) is created for the model
depicted in figure 12, that took about 60% less time to train than the original model
(figure 8) on car door handle dataset. (b) shows performance of figure 12 model
on dog-walking images to identify “hand-holding-leash” relationship. (c) represents
accuracy of a model that was trained to localize on “hand-holding-leash” relationship
in five steps, instead of three. (d) represents performance of figure 12 model when
trained using pool3 layer of the VGG-16 network, instead of pool4 that was used in
(b). (e) represents performance of the figure 8 model, but trained on same size of
data as in (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

14 Representative Images from Car Door Handle Dataset. Image source [25]. This
figure is best viewed in color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

15 Representative Images from Dog Walking Images Dataset. This figure is best viewed
in color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vi



List of Tables

1 This table displays test accuracies of various models discussed in chapter 5. Exper-
iment 1 was performed on the model that used transfer learning (figure 12 shows
architecture of this model). Test accuracy of this model was similar to the original
model proposed by Singh et al. [25]. Experiment 2(a) shows test accuracy of the
model depicted in figure 12, when the model is trained on dog-walking images; in
this case activations from pool4 layer of a pre-trained VGG-16 [24] model were used.
Experiment 2(b) shows test accuracy of a model where a five-step training was used
instead of three, on dog-walking images. Experiment 2(c) was similar to experiment
2(a) except for the fact that activations from pool3 layer of VGG-16 model [24] were
used. Model in experiment 3 was trained on the car-door-handle dataset, but the
training used same size of data as in experiment 2(a). . . . . . . . . . . . . . . . . . 28

vii



Dedicated to my son, for his patience while daddy worked...

viii



Chapter 1

Introduction

We use myriad small objects everyday without noticing their presence. We manipulate an incon-

spicuous car door handle when interacting with the car, use a barely visible light switch as we

enter a dark room and a computer mouse may be the first object we operate when we sit down to

use a computer. Despite the usefulness of small objects, their detection in an image is a relatively

unexplored area in computer vision. Detection of small objects in an image is a difficult task,

since these objects often do not have distinctive appearance. While Convolutional Neural Network

(CNN) architectures have demonstrated superior performance for classification or localization of

salient objects in an image, these architectures have not been very effective for identifying objects

or relationships that occupy a small part of an image, since low resolution of small objects provide

weak signal to the network for recognition. Another difficulty in small object detection, as noted

by Chen et al. [3], is that the precision requirement for accurate localization of small objects is

several magnitudes higher as compared to large objects. The reason for this predicament is that

the bounding box of a small object is much smaller as compared to the bounding box of a large

object in an image and as a result, to meet acceptable performance requirement, the available

pixels that the predicted bounding box of a small object in an image can deviate from the actual

bounding box is much smaller when compared to the number of pixels the predicted bounding box

of a large object can deviate from the actual one.

Singh et al. [25] propose a recurrent CNN architecture that uses successively more relevant

contextual information in a sequence of steps to localize small objects. Singh et al. call these small

objects little landmarks. The training in this regression model is supervised by coordinates of the

little landmark. The final step in this scheme predicts the small object’s location, while prior steps

predict where to look next for localization. The learning therefore discovers globally distinctive

1



patterns to start the sequence and conditionally distinctive ones, called latent landmarks, to get

closer to the target in discrete steps. Figure 1 illustrates this process.

Figure 1: This figure illustrates the process of de-
tecting the car door handle (barely recognizable
in top left corner of the figure) in the image of a
car. Step 1 finds the first latent landmark, which
predicts location of the second latent landmark.
The latent landmark found in step 2 predicts the
location of the car door handle, which the model
learns to localize in the third step of the process.
Image source: [25]. This figure is best viewed in
color.

In this thesis I recreate the model proposed by

Singh et al. using TensorFlow [8]. I train the model

on the same dataset that was used by Singh et al.

The parameters in the original model are randomly

initialized and the model is trained end-to-end. I

propose a modification to the model by incorporat-

ing transfer learning. Transfer learning is a process

in which image features learned by a trained network

can be used by another network for its own train-

ing. This techniques may result in reducing training

time and may also be useful when there’s is dearth

of training data, as I explain in section 5.1 of this

thesis. My goals in this thesis are following: i) test

transfer learning as a way to speed up training of

this system and observe the effect of fewer training

examples on test accuracy of the model; and ii) to

test generality of Singh et al.’s model by training it

on a new dataset whose spatial characteristics are

different from the datasets used by Singh et al.

Singh et al. demonstrate the robustness of their model by localizing small objects in several

datasets, such as an electrical switch on a wall, a car door handle and the beak of a bird. Their

results and the design philosophy that exploits context information for small object detection

provides strong evidence that this technique can also be used for localization of other small objects

in an image, since context is an important component that often helps in localizing an object in

an image. However, as Singh et al. train their model from scratch, their model takes a long time

to train and needs a large amount of data for training. These limitations of their model was my

motivation to modify their design and use transfer learning to build a more efficient model. Using

transfer learning, parameters learned by a model that has been trained on a large dataset can
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be effectively used as the initial parameters for some other model. To exploit transfer learning, I

modify the original model by repurposing a pre-trained VGG-16 [24] model where I use activations

from pool4 layer of the VGG-16 model to initialize part of the model and with experiments I

Figure 2: Dog Walking Image from PSU Dog
Walking dataset. Detection of the “hand-holding-
leash” little landmark can help localize the dog
walker and the dog in the image, and give evi-
dence that this image is an example of the “dog-
walking” situation. This figure is best viewed in
color.

demonstrate that incorporating transfer learning in

the model in such a way significantly reduces training

time without affecting the model accuracy. VGG-16

is a deep CNN model created by K. Simonyan and A.

Zisserman from University of Oxford that achieved

92.7% accuracy in top-5 test categories and 70.5%

in top-1 test category on the Imagenet dataset [23].

Imagenet is a dataset of over 14 million images be-

longing to 1000 categories. I demonstrate significant

improvement in training time with my approach and

report results in chapter 6.

Researchers at Portland State University have

created a labeled dataset of “dog-walking” images as

part of a project on recognizing visual situations in

images. Chapter 5 provides statistics of this dataset.

I use this dataset to test the effectiveness of little

landmark CNN model to localize the “hand-holding-

leash” relationship in a “dog-walking” image. Suc-

cessful localization of this little landmark would be

useful for the overall task of detecting relevant parts

of the “walking a dog” visual situation (Figure 2),

such as likely location of the dog and the person walk-

ing the dog in the image.

I performed four main experiments on the little landmark CNN model. In the first experiment,

I recreated the model using TensorFlow [8] and trained it from scratch using the car door handle

dataset to localize a car door handle in the image of a car. The purpose of this experiment was

to demonstrate that my model faithfully replicates the original model. The test accuracy for this
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model was similar to that reported by Singh et al. In the second experiment, I used transfer learning

to modify the model and observed significant improvement in training time for the same dataset and

achieved the same accuracy as in the first experiment. In the third experiment I trained the same

model as in the second experiment, but localized on “hand-holding-leash” landmark in dog-walking

images. The localization in the third experiment performed poorly. The size of data available for

experiment 3 was about 20% of the size of data used in experiment 2. In the last experiment, I

repeated experiment 2, but with same size of data that was used in experiment 3. The test accuracy

in this case was inferior than that of of experiment 2, but better than experiment 3. I discuss these

experiments and results in more detail in chapter 6.

The remainder of this thesis is organized as follows. Chapter 2 contains a brief discussion of

CNNs, the mechanics of training a CNN model and how regularization is used in finding a balance

between bias and variance to minimize generalization error. I discuss related work in chapter 3. In

chapter 4 I explain the CNN architecture for the little landmark localization task and also discuss

the prediction model for little and latent landmarks. In chapter 5 I discuss my model modifications

and in chapter 6 I present results of my experiments. I conclude in chapter 7 where I summarize

my research findings and and discuss possible extensions to this work.
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Chapter 2

Background

Since its resurgence in 2012, when a neural network based architecture called AlexNet was pro-

posed by Krizhevsky et al. [17] for image classification of the ImageNet [23] dataset, a variant of

neural network architecture called Convolutional Neural Networks (CNN) has achieved significant

improvement in image classification as well as regression tasks. Another influential work in this area

was done by Girshick et al. [9] where they propose an architecture that uses region proposals with

CNN for object localization. Their method is called R-CNN. Understanding of the CNN architec-

ture and the object detection scheme in the R-CNN architecture is necessary for understanding the

little landmark localization system proposed by Singh et al. and my extension to their architecture.

In this chapter I provide an overview of CNN and R-CNN architectures.

2.1 Convolutional Neural Networks (CNNs)

A CNN is a deep learning model 1 and is essentially a special kind of neural network that can be

used to solve classification or regression problems. In a tradition neural network, the parameter

values (weights) of the model are stored in a two-dimensional matrix and the interaction between

input and output layers of the models is encoded as the result of multiplication operations between

the parameter matrix and a one-dimensional input vector, whereas the connectivity between input

and output units in a CNN is partial in the sense that an input unit is connected only to a few

output units — via a weight vector (called a kernel or filter). Sparse interactions between input

1Deep Learning AI systems can be represented as a deep graph with many layers that represent hierarchical
structure of the learning network. These systems understand the world in terms of a hierarchy of concepts, with each
concept defined through its relation to simpler concepts [11].
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Figure 3: Schematic diagram of a Convolutional Neural Net (CNN). A typical layer of a CNN
has three components; convolution (CONV), non-linearity (ReLU) and pooling (POOL). Many
such layers are stacked together to create a deep architecture. Input enters the architecture from
the left (image of the car) and after going through many layers of CONV-ReLU-POOL trans-
formations produces output (image classification) in the rightmost layer. In front part of the
architecture (feature learning), inputs and outputs are partially connected, whereas towards the
end learned features of the model are passed thru a fully connected layer to generate a probabil-
ity distribution for classification classes or a real value for a regression problem. Image source:
https://www.mathworks.com/solutions/deep-learning/convolutional-neural-network.html.

and output units in a CNN results in an architecture where training is much more efficient because

of reduced number of parameters in the model as compared to the number of parameters in a

traditional neural network of the same depth. Another important design characteristic of a CNN

is that weights in a kernel are shared across all interactions, which further reduces the number of

parameters in the model. I explain CNN architecture in more detail next.

Figure 3 shows a schematic diagram of a general CNN architecture. A layer of CNN typically

has convolution, non-linearity (Rectified Linear Unit — ReLU) and pooling stages. CNN layers are

arranged in a sequence and, in this hierarchical model, each layer learns features or representations

at increasing levels of abstraction. The input enters the model from left and in this example

is classified as one of several image classes by the rightmost layer of the model. However, this

architecture can also be used to solve a regression problem where the output is a single continuous

value. As depicted in Figure 3, a small patch of input generates a small patch of output in the

CONV-ReLU stage. The generated output is called a feature map of activations. These activations

are generated using a kernel as shown in Figure 4. Figure 4 shows a 5 X 5 input when processed

with a 3 X 3 filter produces an output of dimension 3 X 3. The output is generated by taking the
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dot product of the kernel with the input as it slides (convolves) over the input, in increments of

one cell in this example. In Figure 4 the dot product of nine cells in top left corner of the input

with the kernel produces the top left cell of the output. The rest of the values in the output are

produced as the the kernel convolves horizontally and vertically one cell at a time. This one cell

movement of the kernel is called a stride. The value of the stride can be anything between one and

the length of the kernel. Sometimes the input is zero padded so that the kernel aligns with the

input as is convolves horizontally and vertically across the input.

Figure 4: Element-wise product and sum of the
3 X 3 kernel with an input of dimension 5 X 5
produces an output of 3 X 3 dimension. Element-
wise product and sum of the kernel with nine cells
in the top left corner of the input produces the
output in the top left cell of the output.

The weight values in a kernel do not change

as it convolves across the input. The height and

length of feature map produced by the CONV

stage of a layer is determined by the the kernel

size and the stride. However, the depth of the

feature map is determined by the architecture

designer. The depth of the convolution dictates

how many filters there are in what’s called a

filter bank. The rational for this design is that

different filters in the filter bank of the convo-

lution can learn different characteristics of the

input. The fact that different filters in a filter bank learn different features of the input image and

also that higher layers of the model learn features by using features learned by lower layers was

demonstrated by Fergus et al. [29] using a Deconvolutional Network that maps activations back to

the input pixel space.

The CONV stage in a CNN is followed by the ReLU stage that introduces non-linearity into the

model by applying max(0, x) element-wise to the activations produced by kernels in the convolution

layer. Introducing non-linearity with ReLU ensures that the CNN model does not collapse into

a large linear model [13, 12, 18]. A CNN model (and neural networks in general) can therefore

be thought of as a nonlinear generalization of a linear model, which by introducing the nonlinear

transformation greatly enlarges the class of the linear model [12]. This feature of CNN allows it

to fit the model using a non-linear function that is more suitable (in terms of lower test error)

for the domain represented by the training dataset. Use of the the max(0, x) non-linear function
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results in accelerated training as compared to logistic or hyperbolic tangent function as explained

by Krizhevsky et al. [17]. The gradient in the saturating part of logistic or hyperbolic tangent

activation functions becomes very small (for very large or very small weights) resulting in sluggish

training because of minuscule weight change during training.

Figure 5: Pooling is used to create summary of
activations generated by the ReLU layer. This
figure shows two types of pooling commonly used
in CNN. In average pooling, the average value of
some output activations are used as a represen-
tative and the maximum value is used in max-
pooling. This figure is best viewed in color.

The ReLU stage in the CNN layer is fol-

lowed by the pooling (POOL) stage. Activa-

tions from the ReLU are downsampled by the

POOL stage. As shown in Figure 4, pooling

layer downsamples the activations spatially and

is usually done either by averaging or by com-

puting the max over a small window of activa-

tions produced by the ReLU stage. Downsam-

pling further reduces the number of parameters

in the model and hence the amount of compu-

tation in the network. It also results in small

shift invariance, since a small amount of change

in the input will not change the output of a

CNN layer, irrespective of whether average or

max pooling is used. The use of pooling can be

viewed as adding a strong prior that the func-

tion the layer learns must be invariant to small translations [11]. Because of the downsampling

at this stage, there’s a progressive reduction in size of the feature map generated by layers of the

CNN, as shown in Figure 3.

Forward pass

As shown in Figure 3, each CNN layer transforms one volume of activations into another volume

during the forward pass of the processing and the system makes a prediction at the rightmost layer

on the model. As discussed above, these activations are generated by doing a dot product of the

kernel with part of the input as the kernel convolves over the input. In this scheme, the weight

values in a kernel do not change as it convolves across the input. This is a critical design decision of
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CNNs, because this scheme ensures that any useful features identified in one part of the image can

be re-used everywhere else without having to be independently learned, as explained by Murphy

[18]. Using the kernel in such a fashion introduces a strong prior probability distribution over the

parameters of a layer, which warrants that the weights for one hidden unit must be identical to the

weights of its neighbor but shifted in space [11].

Model Training using Back-Propagation

Weights in the filters are the parameters of a CNN model and model fitting involves learning these

weights using a method called back-propagation. Back-propagation is an optimization algorithm

where the goal is to find a set of values for model parameters that generalizes the learning in

such a way that the model achieves superior classification or regression accuracy on data that it

has not seen before. One of the ways to achieve this goal is by minimizing the error on training

dataset by using gradient descent (or its variant) method for optimization. In this mechanism

many forward and backward passes are made using mini-batches of training data. A mini-batch

is a small set of input data taken together for making a forward pass and using the average error

in the back-propagation process for weight adjustments. Computing error for every input is very

expensive because it requires evaluating the model for every example in the training dataset [11].

Mini-batches are therefore used to approximate the error by randomly sampling a small number

of examples from the training set and using average error of the set for the back-propagation

process. The gradient descent algorithm converges much faster when allowed to rapidly compute

approximate estimates of the gradient rather than slowly calculating the exact gradient [11]. Use

of mini-batches in gradient descent therefore accelerates the training and also helps to obtain

an unbiased estimate of the gradient by taking the average gradient on a mini-batch. Choice of

number of examples in a mini-batch is a hyper-parameter of the model whose optimal value can be

determined by cross-validation.

Activations are generated in the forward pass and the error is calculated by measuring the

difference between prediction and target using an error function at the last layer of the model.

Gradient descent is used to nudge the prediction close to the target by adjusting weights of the

model in the backward pass from the output to the input layer using chain rule of derivatives.

Values of the parameters of the model are adjusted in small increments, over many iterations, with
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the opposite sign of the derivative.

The hope that a model that has low training error will also have small test error is based upon

the assumption that the examples in each dataset are independent from each other, and that the

training set and test set are identically distributed, drawn from the same probability distribution,

in other words examples in training and test datasets are drawn in identically and independently

distributed (IID) fashion.

Validation Set and Hyper-Parameter Tuning

Like most statistical learning models, CNNs also use hyper-parameters to fine-tune the model. The

objective of using optimally calibrated hyper-parameters is to minimize the test error of the model.

This ensures that the model learns good generalizations and does not just memorize patterns it sees

in the training dataset — a problem called overfitting. Two commonly used hyper-parameter of the

model are learning rate and weight decay. Learning rate determines how big or small adjustment

to make to model parameter values during the back-propagation process. A high learning rate may

help decrease the model error fast, but may also result a sub-optimal solution. A low learning

rate on the other hand may achieve optimal model fitting, but training the model may take a long

time. A validation set is used in this case to find a learning rate that provides a good compromise

between training time and model accuracy. A validation set is a dataset that is reserved to test

model accuracy as the model is trained using different hyper-parameters. In this case the training

learning rate that results in best accuracy on the validation set is chosen as the final learning rate.

Depending upon the availability of data, the validation set may be an independent dataset or a

subset of the test dataset. The selection of the weight decay hyper-parameter is discussed in next

section where I explain the issue of overfitting the model and how to address it using regularization.

Overfitting and Regularization

Because of their large numbers of parameters, CNN models have a proclivity to overfit when not

designed with suitable regularization parameters or when there is not sufficient data to train the

model. Overfitting results in a model that shows high variance when the model is trained on

different training datasets (Hastie et al. [13]). Because of overfitting in a CNN, the training fails

to achieve good model generalizations resulting in good training accuracy, but poor performance
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on test datasets. Bias in a model is another source of prediction error which is usually caused by

wrong selection of model for the task. In case of overfitting, variance rather than bias dominates

the estimation error. Regularization addresses the problem of overfitting by reducing variance

significantly at the cost of increasing the bias only a little bit (Goodfellow et al. [11]).

Regularization techniques control the variability of the model by limiting the model capacity

by adding a parameter norm (L1 or L2) penalty to the objective function. If J(w;X, y) represents

the original error function, where w represents parameters of the model, X represents training data

and y represents expected output vector for the training data, then the following represents error

function with the regularization term

J̃(w;X, y) = J(w;X, y) + αΩ(w)

Here αΩ(w) is the regularization term. The regularization term limits the capacity of the model

by ensuring that model parameters values do not become very large or very small between itera-

tions during training. α in the regularization term is the weight hyper-parameter that determines

contribution of the norm penalty term Ω relative to the error function. Regularization that uses

L2 norm penalty (also called weight decay) drives the model weights closer to the origin by adding

a regularization term Ω(w) = 1/2 ‖w‖22 to the error function (technique called shrinkage by Hastie

et al. [13]).

The dropout technique proposed by Srivastava et al. [26] is another regularization technique

used specifically with neural networks. The basic design of using dropout involves dropping some

neural network units (along with their incoming and outgoing connections) while training. This

results in a smaller network that is less prone to overfitting. In each training step, whether or

not a neural network unit is retained in the network is probabilistically determined. This setup

effectively creates many different training models that are derived from the original model, but are

much smaller. At the time of testing however, the entire network is used for the prediction and

this technique effectively results in “averaging” weights of all training models and thereby reduces

variability in the model.

In my implementation of a CNN for the “localizing little landmarks” task, I explored L1 and

L2 regularizations as well as dropout. I report my findings in the experiments chapter 6. Singh et
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al. [25] use L2 regularization as I will explain in section 4.3.

2.2 Object Detection in R-CNN (Regions with CNN features)

Figure 6: R-CNN [9] process for object localization. This figure is best viewed in color.

R-CNN [9], a model proposed by Girshick et al., was one of the first approaches to show that a

model based on CNN can be effectively used for object localization in an image (Figure 6). In this

approach, Girshick et al. generate 2000 region proposals (using selective search [27]) for the input

image and then use the CNN model of Krizhevsky et al. [17] to generate 4096 dimensional feature

maps for these regions. These activations are then used for region classification using a Support

Vector Machine (SVM).

While R-CNN has reported impressive performance for prominent object detection, it has not

been very successful in detecting small objects in an image. I discuss some variants of R-CNN

technique that other researchers have used for small object localization [3, 6] in the next chapter.
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Chapter 3

Related Work

The problem of localization of small objects in an image using CNNs has not been widely studied.

Chen et al. [3] extended the R-CNN algorithm to detect small objects in an image, such as a

computer mouse on a desk, or a faucet in a kitchen. They used a modified Region Proposal

Network [22] by choosing object proposals many times smaller than used in the original Region

Proposal Network. To use context information, they also cropped a region centered at the region

proposal, but bigger than the region proposal. The region proposal and the context proposal are fed

to two parallel CNNs and their concatenated activation are used as an input to a third CNN to make

predictions. Chen et al. used intersection over union (IoU) as a performance metric, whereas in my

work I use the Euclidian distance between original and predicted object coordinates normalized by

the bounding box of the object, as I will explain in section 4.3.

Another important work for small object identification was done by Eggert et al. [6]. These

authors modified the Faster R-CNN model [22] to leverage higher-resolution feature maps for brand

logo detection. Their work qualifies as small object detection, since they are trying to locate small

brand logos in pictures such as images of a soft drink brand in a picture taken at an outdoor concert

venue, or images of a sport brand on a person’s shirt. In their work they attempt to generate better

region proposals and assume a perfect classifier. They compare performances of region proposal

generators using activations from the conv3, conv4 and conv5 layers of a pre-trained VGG-16 model

and discover that the conv3 and conv4 layers’ activations performed better than the activations of

the conv5 layer.

The research that I extend [25] in this work proposes an architecture that is recurrent in the
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sense that the feature map generated by one step of the model is encoded as contextual information

and is fed as input to the next step in the sequence along with the feature map generated by the

convolutional layer.

Another important work that explores this idea of using contextual information is by Zuo et

al. [30]. In their work they argue that convolutional and pooling layers in a CNN are performed

locally without considering other regions of the image and therefore fail to capture contextual

dependencies for better representation. They propose a model that encodes this correlation for

better performance.

In this thesis I use transfer learning to demonstrate that instead of training a network from

scratch, using a pre-trained network may reduce the training time significantly. Pan et al. [20]

do an in depth study of the feasibility of transfer learning and show that the knowledge learned

by a model in one domain can be transferred to another machine learning model in a different

domain even when the feature space and/or the data distribution of source and target systems is

not the same. Shin et al. [14] also employ transfer learning to fine-tune a CNN model pre-trained

on a natural image dataset (RGB) to a medical image (monochrome) classification task. Transfer

learning of this kind has been successfully used by numerous researchers and practitioners in image

classification and localization tasks by exploiting patterns learned by deep CNN models pre-trained

on large image datasets.
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Chapter 4

Detecting a Small Object in an Image

An efficient object detection model may use region proposals, as one used by Girshick et al. in R-

CNN [9, 22]. Their two stage architecture is current state-of-the-art, where the first stage extracts

region proposals and the second stage uses these region proposals as input to a CNN which is pre-

trained on an auxiliary dataset. This setup has shown remarkable performance improvement for a

prominent object detection in an image, but is not suitable for little landmarks, as little landmarks

do not have very distinctive features. A simple solution to address the issue of lack of distinctness

of little landmark in an image can be either to magnify the image or take a high resolution image.

As explained by Eggert et al. [6], this simple approach may not be very effective since computing

convolutions in a CNN grows quadratically with image dimensions and will result in unnecessary

computation. Moreover, as explained by Chen et al. [3], low resolution inputs for small objects are

deeply embedded in the nature of visual perception and a robust vision system should be able to

deal with it.

This limitation of R-CNN beckons a different deep learning architecture to localize small objects

in an image. Singh et al. [25] propose a stepwise regression model for this task and they call this

model an architecture for “localizing little landmarks”. They propose a recurrent model that

is trained end-to-end, supervised by location of the little landmark in an image. The authors

demonstrate the robustness of this model by testing and training it on several datasets. One

contribution of their work was to annotate a dataset that contains images with little landmarks.

The authors use Stanford’s car dataset [16] for this task and annotate images in the dataset with

the location of the car door handle. I use this Car Door Handle (CDH) dataset and Portland State
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Dog Walking Images (DWI) dataset for training and testing our models. Details of these datasets

are provided in chapter 5.

4.1 Architecture Overview of Little Landmark CNN Model

The CNN architecture for the detection of little landmarks [25] exploits the fact that a little

landmark is defined by its context. Authors define a latent landmark as a location that is more

prominent than the little landmark and can be used as context to help detect the little landmark

conditionally. The localization in this architecture happens in a sequence of steps where a series of

latent landmarks lead to the target little landmark by providing contextual information. Figure 7

illustrates this process with two examples. In the image on the left, the car door handle is detected

(a) Car Door Handle Localization. (b) Light Switch Localization.

Figure 7: Localization of the little landmark in three steps. Ground truth locations are shown as
a black triangle. Step 1, Step 2 and Step 3 are color coded as Red, Green and Blue respectively.
Colored blobs show the locations of the latent landmarks for each step. Solid circles show the
predicted location of the next latent landmark by each step; dotted circles around solid circles
show the bandwidth of the radial basis kernel used to encode the predictions. The model discovers
latent landmarks in the first two steps that help find coordinates of the target in the third step.
For the car door handle localization, in the first step, the model localizes near the front wheel of
the car, gets little closer to the car door handle in the second step and lands on the target in the
third step. For the light switch localization, the process starts from the edge of the light-switch
panel and the model detects the light switch in three steps. Image source: [25]. This figure is best
viewed in color and with zoom.

in a sequence of three steps; a trained network finds the first latent landmark (in red) near the

front wheel, the second latent landmark in the bottom half of the front door (in green) which helps

find the target location (in blue) in the third step. A similar pattern can be seen in the image on

the right side of Figure 7 where the edge of the light-switch panel is used as the starting point to
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localize the light switch on the wall in three steps.

Figure 8 shows a schematic diagram of the little landmark localization architecture that localizes

a car door handle in three steps. Layers in this architecture have CONV and ReLU stages only.

Absence of pooling stage can be attributed to the fact that since pooling results in a lower resolution

feature map than the original one, it may make detection of the little landmark more difficult as it

already has non-distinctive characteristics.

An image enter this system from CONV1 layer and the prediction of car door handle is made

in step 3. Conv1(3, 3, 1, 32) indicates a filter size of 3 x 3, stride of 1 and a filter bank of depth 32.

ReLU introduces non-linearity into the system. In this recurrent CNN architecture, convolutional

layers Conv1 to Conv6 are used to extract a feature map of the input image which becomes the

common input to step 1, step 2, and step 3 on the top. The three columns in the upper part of

figure 8 correspond to the stepwise procedure that detects little landmark in the third step. Each

prediction step s in the model generates location of the latent landmark (red blob) and predicts

the location of next latent landmark (blue blob). The prediction for the next step is encoded as a

feature map P (s) (marked as 1 and 2 in Figure 8) and along with the image feature map — output

of Conv6 layer generated in the bottom part of Figure 8 — is used as input to the next step. The

loss calculation for the model is explained later in section 4.3, but it’s worth noting here that the

difference between prediction (blue blob) in step s-1 and the generated latent landmark location

(red blob) in step s contributes to total error of an iteration.

4.2 Image Pre-processing

A batch of ten images is created as the input to the model. The height and width of images are

adjusted so that all images in a batch have same dimensions. When necessary, images are zero

padded to match the longest width and height among all images in a batch. Images are normalized

by performing mean subtraction and standard deviation scaling. Random scale jitter is added to

images and images are also randomly flipped to introduce noise for minimizing the problem of

overfitting on training data.

A location grid, out locs, is created for each batch which corresponds to spatial dimension of

the output from the CONV6/RELU6 layer of the model (figure 8). This location grid is used for
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Figure 8: Little Landmark CNN Architecture. In this architecture, an image enters the system
from the bottom and the final prediction for the door handle of the car is made in step 3 of the
process. The input image goes thru six layers of CONV-ReLU transformations. The output from
CONV6/ReLU6 layer is an input to all three prediction steps above. The red blob is the prediction
for a latent landmark in that step and is used to predict the location of next latent landmark. This
information is encoded as a feature map, marked as 1 and 2, with radial basis kernel (the blue
blob) and is passed as a feature to the next step. Coordinates of the little landmark are predicted
in the last step. CONV/ReLU boxes of the same color shows that parameters are shared in those
layers. Image source: [25]. This figure is best viewed in color and with zoom.

generating the latent landmarks (red blobs in Figure 8) as explained in the next section.
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4.3 Prediction Model

The coordinates of the target little landmark is the only supervision used in the model and the

model learns to predict latent landmarks. As I explained above, each step in the model learns

to find its latent landmark and predicts the location of the latent landmark for the next step. I

explain this process next.

Latent and Little Landmark Centroid Generation (red blob in Figure 8)

As evident from Figure 3, the size of an activation volume decreases as an image is transformed

through various layers of a CNN. The CONV11/ReLU11 layer of a step produces 26 output activa-

tion layers of size w x h, where values of w and h are determined by the width and height of images

in the input batch. The first of 26 w x h output activation layers is used for predicting centroids of

little and latent landmarks (red blobs in Figure 8); in steps 1 and 2 latent landmarks are predicted

whereas in step 3 the little landmark (coordinates of car door handle in figure 8) is predicted. The

softmax of w x h dimensional output activation is multiplied with w x h dimensional out locs

location grid (location grid is created during preprocessing, as explained above in section 4.2, and

values of grid cells remain constant during training) to generate coordinate values of the centroid

of little and latent landmarks (pc).

Latent Landmark Prediction for Next Step (blue blob in figure 8)

CONV11/ReLU11 layer of each step produces li (where, i = w x h) activations as shown in bottom

left image on right side of figure 9. These activations are used to produce an estimate of the

next step’s latent landmark, P (s) (blue blobs in figure 8 and figure 9). Each one of li activations

influences prediction of next step’s latent landmark’s centroid (poc). To calculate poc, a logical grid

of 5 x 5 cells is placed over each location li. The last 25 layers of w x h x 26 dimensional output

from CONV11/RELU11 is used for this calculation. This scheme is illustrated in Figure 9.

The image on bottom left of right side of figure 9 shows li locations generated by CONV11/ReLU11

layer. The left side of figure 9 shows 25 logical grid points gj (for j ∈ {1, ..., 25}) corresponding to a

locations li, where gj(x), gj(y) ∈ {−50,−25, 0, 25, 50} pixels. Grid points gj , therefore take values

in the range {(-50,-50), (-50, -25), ..., (25,50), (50,50)}, where values in the pair corresponds to x
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Figure 9: Latent Landmark Prediction Grid. A separate logical grid (5 x 5 in size shown on the
left) is placed over each coordinate produced by CONV6/RELU6 layer (shown on the right). The
grid has fixed values for x and y coordinated of each 25 grid points. The grid values when multiplied
by the confidence value generated by the network predicts the latent landmark for the next step.
Image source: [25]. This figure is best viewed in color.

and y coordinates, and these values remain constant during training. The network produces 25 lay-

ers of confidence values of size w x h from the last 25 layers of the output from CONV11/RELU11

layer. These 25 layers of w x h activation values are multiplied with grid points gj and then added

together to generate x and y coordinate values for poc for each location li. These i coordinate

values are finally multiplied by network confidence values (first layer of w x h x 26 dimensional

output from CONV11/RELU11) to predict the latent landmark for the next step (this is shown

as multiplication between values in top left and bottom left images on the right side in figure 9).

Finally, to generate prediction P (s) for the latent landmark of the next step, encoding is done by

placing a radial basis kernel with β = 15, centered at pc+poc. Prediction P (s) is shown as the blue

blob on right side of figure 9.

Predicting Coordinates of the little Landmark

As explained above pc along with the prediction poc made by each location li is used for generating

P (s). The sum pc + poc predicts the centroid for the next step’s latent landmark, except for the

last step. In the last step, pc + poc predicts the location of the little landmark — for example,

coordinates of the car door handle in Figure 9.
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Training (and Loss Calculation)

For my implementation of Singh et al.’s work I implemented their model in TensorFlow and trained

it using the Adam optimizer [15]. L2 loss between the predicted location and the ground truth

was used for gradient calculation. However, there are several components in the loss value; L2 loss

between the ground truth and the location predicted by the last step of the model and the L2 loss

between latent landmarks predicted in step s and estimated in step s-1 contribute to the total

loss of the model in one iteration, which is averaged over the minibatch of ten images to perform

back-propagation of error through the network. The weightage given to the step losses is less than

the weightage given to L2 loss between the ground truth and the predicted location in the last step

as shown below

L =
S∑

s=1

λsL
(s) +R(θ)

I used λs = 0.1, except for the final step S where λs = 1. R(θ) is a regularizer for the parameters

of the network. I used L2 regularization (weights decay) with a multiplier of 0.00005.

Incorporating losses from all steps of the model in the loss function encourages earlier steps

to be informative for the later steps by penalizing disagreement between the predicted and later

detected latent landmark locations. Also, encoding predictions as a feature map instead of as a rigid

constraint for the next step allows it to ignore the prediction from the previous step, if necessary.

This flexibility is helpful in early stages of the training when the latent landmark estimates are not

very reliable.

Performance Metric

To evaluate the model’s accuracy, Singh et al. used a generally accepted metric of plotting detection

rate against normalized distance [10]. The normalized distance is calculated by dividing the L2

norm between actual and predicted locations by the height of the bounding box of the car in the

car door handle dataset, and by height of the light switch panel in the light switch dataset. The

detection rate is the ratio between number of images for which the little landmark was correctly

located to the total number of test examples. For performance evaluation I create a plot of the

normalized distance vs. detection rate for normalized distances in the range 0.01 to 0.1.
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Chapter 5

Methods

The authors of [25] provided me with their Matlab implementation for the model. I used that

codebase to create my own implementation of the model using TensorFlow and Python. I tested

the fidelity of my implementation by comparing my test results with results published in [25]. I

used the same dataset as in [25] for training and testing the model and I found that my model

performed similar to the results reported in [25]. Figure 10 shows a comparison between the models.

(a) Singh et al.’s result [25] (b) Result from my TensorFlow implementation

Figure 10: Original vs. my model’s test accuracy comparison. The graph in (a) shows a plot of
normalized distance vs. detection rate published by Singh et al. on the CDHD dataset. The curve
marked as Pred 3 shows the accuracy of the three step process; Pred 2 curve shows accuracy of the
two step process; and Pred curve uses a single latent landmark. My implementation’s test accuracy
is plotted in (b) that shows comparable performance to the original Pred 3 curve. This figure is
best viewed in color.

The plot of normalized distance vs. detection rate from my implementation is depicted in Fig-

ure 7(b). The Pred 3 plot in Figure 7(a) shows the accuracy of Singh et al.’s model. The Pred 2

and Pred 1 plots in Figure 7(a) are of model with two steps and one step respectively.
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Datasets

Car Door Handle (CDH) Dataset

The authors of [25] provided me with car images dataset that contained annotated coordinates of

the car door handle. There were 1920 training images and 1200 testing images in the dataset. All

images had the coordinates of the car door handle annotated. Car bounding box details were also

available.

Dog Walking Images (DWI) Dataset

I used the Portland State Dog-Walking Images dataset 2 to test the model’s effectiveness on a

different dataset. I used 310 images for training and 70 for testing. PSU researchers annotated the

coordinates of the hand-holding-leash little landmark of the image and also the dog, dog walker

and the leash bounding boxes in each image.

Training Detail

I trained my implementation of the model on above mentioned datasets. For the Car Door Handle

dataset, I trained the model for 1640 epochs (on a two GPU machine) where each epoch was trained

on a shuffled set of 1920 images in batches of ten images each. Similarly for the Dog-Walking Images

dataset, I trained the model on 310 images in batches of 10 images. The testing performance of

these trained models and other experiments are discussed in chapter 6.

5.1 Model Modifications

Transfer Learning

Fergus et al. [29] and many other researchers [2, 19] have demonstrated that, in a well-trained

CNN model, lower layers get attuned to more generic features of an image like edges, corners or

color blobs, whereas higher layers learn more specific features like a person’s face or wheels of a

car. Bengio [2] argues that a deep learning algorithm seeks to discover good representations at

multiple layers in such a way that features learned in a higher level can be composed of features

learned in lower layers of the network. Another important characteristic of learning in this scheme

2http://web.cecs.pdx.edu/ mm/PortlandStateDogWalkingImages.html
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(a) (b) (c) (d)

Figure 11: Visualization of features learned by a CNN model using a Deconvolutional Network [29].
(a) shows layer 2 activations mapped to its pixel space and (b) shows image patches correspond-
ing to (a); (c) shows layer 5 activations mapped to its pixel space and (d) shows image patches
corresponding to (c). Image source: [29]. This figure is best viewed in color.

is that features learned in higher layers are invariant to variations in training distribution, such as

background, viewpoint, scene context etc. Fergus et al. [29], by mapping activations in a CNN model

back to its pixel space, experimentally demonstrate this fact as shown in Figure 11. Properties of

a deep CNN discussed above make transfer learning possible where representations learned with a

CNN trained on a large image dataset can be effectively used to initialize another network. Oquab

et al. [19] show that, despite differences in image statistics and tasks in two different datasets,

transferred representations lead to significant improvement in image detection and classification

and they demonstrate that incorporation of prior knowledge via transfer learning can boost the

performance of CNNs by a large margin. Because of these advantages the two most common reasons

to employ transfer learning are that it can reduce training time and that it can overcome overfitting

when there is a paucity of training data.

My motivation to use transfer learning was to exploit generalizations learned by the VGG-16

network [24] pre-trained on ImageNet [23] dataset to reduce the training time of for little landmark

localization. VGG-16 [24] is a CNN model proposed by K. Simonyan and A. Zisserman from the

University of Oxford that achieved 92.7% accuracy in top-5 test category and 70.5% accuracy in

top-1 category on the Imagenet dataset. The Imagenet dataset [23] is a dataset of over 14 million

images belonging to 1000 categories.

As I discussed above, the model proposed by Singh et al. [25] takes about 100 hours to train

on a single GPU machine. I used transfer learning to improve the training time for this model by

using activations from another state-of the-art CNN model, pre-trained on an auxiliary dataset, as
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the starting point for training the model. I observed significant improvement in training time in

this modified implementation that used transfer learning; my implementation of the original model

needed 58 hours of training on a two GPU machine and the modified model needed about 23 hours

to train to achieve similar level of performance.

Another goal of my thesis was to localize the “hand-holding-leash” part of a dog-walking image.

The rational was that detection of “hand-holding-leash” situation in the image will give more

evidence that a person may be walking a dog in the image. This detection will help localize other

objects or relationships in the image, which may help to identify the visual situation in an image

[21]. To this end, I used the design proposed to detect little landmarks [25] to localize “hand-

holding-leash” part of the dog walking image.

I used transfer learning to overcome the problem of overfitting because of scarce training data

in the Portland State Dog-Walking Images dataset. I did encounter overfitting problem when I

trained the model from scratch with limited data in dog walking images dataset.

Little Landmarks Model Modification using Transfer Learning

As I explained above, I used generalizations learned by the VGG-16 model for training the car

door handle as well as the dog walking image datasets. The VGG-16 CNN architecture has sixteen

weight layers and a filter of size 3 x 3 is used to convolve in all layers. The input to the network is

a fixed size 224 x 224 RGB image. Mean image subtraction is the only preprocessing performed

on input images to center images. I used activations from pool4 layer of the model as input to the

modified little landmarks model (Figure 12).

In the modified architecture I used a bridge layer that takes pool4 activations from the VGG-

16 model as input and performs a layer of convolutions to modify output dimensions so that it

conforms with rest of the architecture. I used a publicly available pre-trained VGG-16 model [4]

as the basis of my model. I used same image preprocessing technique that I used for the little

landmark model I discussed in chapter 4, and fed a mini-batch of ten images to VGG-16 model, as

before. Internally the VGG-16 implementation warped images to 224 x 224 x 3 before feeding it

to the network.
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Figure 12: Little landmarks architecture modified using transfer learning. This model used features
learned by the VGG-16 network as an input to rest of the model. As in figure 8, an image enters
the system from the bottom and the final prediction for the door handle of the car is made in step
3 of the process. The bridge layer is use to transform output dimensions of VGG-16 model so that
it dovetails with the upper part of Little Landmarks’ architecture. This figure is best viewed in
color and with zoom.
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Chapter 6

Experiments and Results

In this chapter I discuss the experiments I performed and their results. Table 1 provides a compar-

ison of detection rates between experiments for various normalized distances and figure 13 shows

normalized distance vs. detection rate plots for all experiments.

Experiment 1: Transfer Learning on Car Door Handle Dataset

In this experiment I used the modified model that used VGG-16 model with transfer learning

(Figure 12). The objective of this experiment was to demonstrate that the training time of the

model proposed by Singh et al. [25] can be improved if the model’s weights are initialized by weights

of a pre-trained model. I trained the model on the same car door handle dataset as the original

model until the performance of the modified model was comparable to Singh et al.́s model. During

training weights of the pre-trained VGG-16 model were fixed and fine tuning was performed only

for the weights in regression steps of the model. The modified model needed about 23 hours to

train for 610 epochs on a two GPU machine. I observed about 60% improvement in training time

of the modified model when compared to the original. Figure 13(a) shows the normalized distance

vs. detection rate plot for this experiment.

Experiment 2: Transfer Learning on Dog-Walking Dataset

In this experiment I trained the same network as in experiment 1 with dog walking images. The

objective of this experiment was to exploit the idea proposed by Singh et al. to localize on “hand-

holding-leash” part of the dog-walking image. 310 training and 70 test images were used in this

experiment to localize “hand-holding-leash” part of the image. I trained the model for 23 hours on
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Normalized
Distance

Detection Rate

Original Experiment1 Experiment2(a) Experiment2(b) Experiment2(c) Experiment3
0.01 0.42 0.32 0.03 0.03 0.00 0.20
0.02 0.71 0.61 0.06 0.04 0.00 0.42
0.03 0.81 0.77 0.09 0.07 0.01 0.57
0.04 0.88 0.84 0.11 0.10 0.04 0.68
0.05 0.91 0.90 0.11 0.10 0.04 0.74
0.06 0.93 0.92 0.16 0.14 0.07 0.77
0.07 0.94 0.94 0.19 0.17 0.10 0.80
0.08 0.95 0.96 0.19 0.19 0.13 0.82
0.09 0.96 0.97 0.19 0.20 0.13 0.83
0.10 0.97 0.98 0.23 0.23 0.14 0.85

Table 1: This table displays test accuracies of various models discussed in chapter 5. Experiment 1 was
performed on the model that used transfer learning (figure 12 shows architecture of this model). Test
accuracy of this model was similar to the original model proposed by Singh et al. [25]. Experiment 2(a)
shows test accuracy of the model depicted in figure 12, when the model is trained on dog-walking images;
in this case activations from pool4 layer of a pre-trained VGG-16 [24] model were used. Experiment 2(b)
shows test accuracy of a model where a five-step training was used instead of three, on dog-walking images.
Experiment 2(c) was similar to experiment 2(a) except for the fact that activations from pool3 layer of
VGG-16 model [24] were used. Model in experiment 3 was trained on the car-door-handle dataset, but the
training used same size of data as in experiment 2(a).

a two GPU machine and observed near perfect training accuracy. However, I observed very poor

test accuracy as shown in Figure 13(b).

The model appeared to overfit by memorizing features of training images and it did not seem

to learn any general pattern for localization. I trained the model with weight loss values of 0.005

and 0.0005 also in addition to 0.00005, which was used for L2 regularization in the original model.

I also experimented with L1 regularization. None of these method resulted in any performance

improvement. I also used dropout [26] for regularization, but did not see any performance improve-

ment.

Since context plays an important role in little landmark’s localization I changed the model to

localize in five steps instead of three. My rational for this approach was that a model localized

in five steps may pick up better context information which may result in better generalization.

However, this approach also did not work. Plot of this experiment is shown in figure 13(c).

In another attempt to improve performance I used activations from pool3 layer of the VGG-16

model. The rational for this approach was that, since latent and little landmarks are both not

very distinctive, using filters from a lower layer, that may be more attuned to features of latent

and little landmarks, may show better performance. Plot of this experiment is shown in figure 13(d).
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Experiment 3: Singh et al.’s Model on Limited Data

In the last experiment I trained the original TensorFlow model that I discussed in section 4.3, but

with same amount of training data that was used for experiment 2. I anticipated that training the

original little landmark model with small amount of data may render the model not as effective. For

about the same duration of training that I used for the model discussed in section 4.3, I did notice

inferior performance in this experiment, but the performance was not as poor as in experiment 2.

Figure 13(e) shows normalized distance vs. detection rate plot for this experiment.
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(a)

(b) (c)

(d) (e)

Figure 13: Normalized distance vs. detection rate plots; all plots show model accuracy for normal-
ized distance in the range 0.01 to 0.1. Plot (a) is created for the model depicted in figure 12, that
took about 60% less time to train than the original model (figure 8) on car door handle dataset.
(b) shows performance of figure 12 model on dog-walking images to identify “hand-holding-leash”
relationship. (c) represents accuracy of a model that was trained to localize on “hand-holding-
leash” relationship in five steps, instead of three. (d) represents performance of figure 12 model
when trained using pool3 layer of the VGG-16 network, instead of pool4 that was used in (b). (e)
represents performance of the figure 8 model, but trained on same size of data as in (b).
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Chapter 7

Conclusions and Future Work

In this chapter I discuss the results of experiments from the previous chapter and draw conclusion

about efficacy of various models discussed above for localization of a small object in an image. I also

suggest future extensions to methods discussed in this thesis that can be used to make detection

of a small object in an image more effective.

7.1 Discussion

As I discussed in the introduction, little landmarks in an image do not have very distinctive fea-

tures and the use of context is an effective technique for their detection. I demonstrated this by

implementing the architecture originally proposed by Singh et al. As I explained in chapter 4, I

trained and tested this model on the car door handle dataset and observed model performance

similar to reported by Singh et al. [25]. In another implementation I modified Singh et al.’s model

[25] by incorporating transfer learning (experiment 1, chapter 6). In this implementation I used a

pre-trained VGG-16 model [24] to initialize weights of the model. By using transfer learning I was

able to achieve about 60% improvement in training time without performance degradation of the

model. The normalized distance vs. detection accuracy plot of this experiment is shows in figure

13(a). The result of this experiment demonstrated that generalizations learned by a well trained

network can be exploited to reduce the training time of another model.

In another experiment (experiment 2(a)) I attempted to exploit transfer learning to overcome

the problem of overfitting because of insufficient training data in the Portland State Dog Walking

Images dataset. Although many researchers [19, 1, 5] have been successful in using similar transfer
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learning methods to make up for small datasets, but this approach was not effective for localiz-

ing “hand-holding-leash” relationship in dog-walking images. Plot 13(b) shows detection rate of

a model trained for experiment 2(a) for about 23 hours for different normalized distances. As ex-

plained in the previous chapter since location of small objects can be determined by their context, I

performed another experiment (experiment 2(b)) where I tried to localize the “hand-holding-leash”

relationship in dog-walking images in five steps instead of three. This method also did not result

in performance improvement as is evident from the plot in figure 13(c). Results of experiments

explained above indicated that although transfer learning may result in faster model training, but

availability of more training data is still important to avoid overfitting. To test this theory I per-

formed experiment 3 where I used the car door handle dataset to train the model represented in

figure 8, but with same size of data as I used in experiment 2(a). The plot of this experiment is

shown in figure 13(e). The performance of localizing door handle of the car in this experiment was

inferior as compared to experiment 1 (plot in figure 13(a)) — underlining the fact that availability

of more data for training is essential to overcome the problem of overfitting — however, the detec-

tion rate in this experiment was still much better that the detection rate in experiment 2(a) (plot in

figure 13(b)). I performed one more experiment, the plot of which is shown in figure 13(d). In this

experiment I used activations from pool3 layer of the VGG-16 network for transfer learning, instead

of pool4 layer that I used in experiment 2(a). The rationale for this approach was that, since little

landmarks are not characterized by their distinct features, activations from a lower layer on CNN

(attuned to more generic features of an image) may perform better. The plot of this experiment

shows that this approach also did not result in performance improvement to localize hand-holding

part in dog-walking images.

Based upon the discussion above, I now explain why the approach that worked for identifying

Figure 14: Representative Images from Car Door Handle Dataset. Image source [25]. This figure
is best viewed in color.

32



Figure 15: Representative Images from Dog Walking Images Dataset. This figure is best viewed in
color.

the handle of car doors in car images did not work for localizing “hand-holding-leash” relationship

in dog-walking images.

The comparison of results between experiment 1 and experiment 3 (Table 1) demonstrates

that lack of data does impact a model accuracy. Experiment 1 as well as experiment 3 were

performed on Singh et al.’s model (figure 8); whereas 1920 training images were used in experiment

1, only 310 training images were used in experiment 3. The model was trained for the same

amount of time in both experiments, but the performance of the model in experiment 3 is inferior

to experiment 1, underscoring the importance of availability of data. Additionally, comparison

between results of experiment 2(a) and experiment 3 shows that lack of training data resulted in

much worse performance in dog-walking images as compared to cars images. Figure 14 shows some

representative images of cars used in the training to localize the door handle of a car. In all these

images location of the door handle has such a regular spatial configuration that latent landmarks

can be consistently found; in other words, the context for little and latent landmarks are consistent

across images. I discovered that in most cases the first latent landmark localized either near the

front or the rear wheel of the car, the second latent landmark localized somewhere on the door of

the car, which helped localize the door handle of the car. Whereas in dog-walking images (Figure

15), the context around the “hand-holding-leash” landmark is not consistent between images. Dog-

walking images have varied background and settings which may be the reason that latent landmarks

cannot be localized effectively in first and second step of the model. More experiments need to be

performed to conclusively infer this and can be future extension of this work.
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7.2 Future Work

A hallmark of CNN models is their ability to learn invariant features of an image so that the

prediction or classification accuracy is not impacted by variability in an image. Xu et al. [28]

explain that representations in very top layer of a CNN distills information in an image down to

the most salient objects. However this property of CNN is not very useful for tasks like small

object detection since they are defined more by the context. Xu et al. propose an attention based

model [28] where they argue that using low level representations may help preserve the semantic

information in an image. In their work they draw a parallel between this approach and presence of

attention in the human vision system. They use this insight to create a Long Short Term Memory

(LSTM) based CNN system that automatically learns to describe the content of images. I argue

that a similar approach of using attention based model can be explored for identification for small

objects in an image.

The variant of transfer learning that I used is supervised transfer learning where the source

network 3 was trained with supervision. Another form of transfer learning uses unsupervised

pre-training, which is a possible topic for future work. Unsupervised pre-training restricts the

model parameters to regions that correspond to capturing structure in the input distribution.

Erhan et al. [7] explain that greedy layer-wise unsupervised pre-training overcomes the challenges

of deep learning by introducing a useful prior to the supervised fine-tuning training procedure,

which effectively puts parameter values in an appropriate range for further supervised training.

Use of this approach makes unsupervised learning a special kind of regularizer that minimizes the

variance at the cost of introducing some bias in the model. This is another promising method for

small object localization specially in cases where training data is scarce and context around the

small object is not consistent.

Another possible topic for future work is the development of a better metric to measure the

effectiveness of small object detection. Chen et al. [3] point out that one of the challenges of small

object identification is that we do not know how difficult this task is or how well existing object

detectors work. I found that the metric used for measuring performance of small object detection

is not consistent between research groups — some researchers use Intersection over Union (IoU),

3source network in this case is the pre-trained network whose weights are used to initialize the model under
development.
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whereas others use some sort of normalization for Euclidian distance between the prediction and

the ground truth. Because of this it’s difficult to compare performance of different small object

localization models and a metric that can be used for such comparison would be very useful tool

in this area of work.
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