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Abstract

For the last several years, convolutional neural network (CNN) based ob-

ject detection systems have used a regression technique to predict improved

object bounding boxes based on an initial proposal using low-level image

features extracted from the CNN. In spite of its prevalence, there is little

critical analysis of bounding-box regression or in-depth performance evalu-

ation. This thesis surveys an array of techniques and parameter settings

in order to further optimize bounding-box regression and provide guidance

for its implementation. I refute a claim regarding training procedure, and

demonstrate the effectiveness of using principal component analysis to handle

unwieldy numbers of features produced by very deep CNNs.
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Chapter 1

Introduction

State-of-the-art object detection employs a suite of techniques and strategies

in pursuit of two fundamental questions about an image: what salient ob-

jects are in it, and where are they within the image? The task is seemingly

effortless for most humans, but poses a perennial challenge for computer vi-

sion. Results from the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) [1] show that machines have finally surpassed humans at the clas-

sification task—choosing an appropriate label for an image from a set of of

1000 diverse categories—but that only describes what is in the image, not

where it is. Potential applications such as autonomous driving and robotics

further demand precise object localization, which is a more challenging and

complex task to solve [2].

The localization task introduces two separate but closely related chal-
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lenges. First, it requires finding a number of candidate objects within the

image, generally referred to as proposals. The classifier can only select one

label for any given input image, but an image might contain any number of

significant objects, so it is necessary to generate enough proposals to capture

all the potential objects in an image. Second, these proposals provide coarse

localization and must be refined. Consider that the most basic mechanism

for generating proposals is a sliding-window approach that creates a large

number of candidates by methodically sampling regions at a variety of scales

and aspect ratios. There is no guarantee or likelihood that any of these

will precisely match a target object’s dimensions, even when thousands of

proposals are created in this manner.

This is the motivation for bounding-box regression (BBR), a technique

for fine-grained localization developed by Girshick et al. for R-CNN, a de-

tector based on “regions with CNN (convolutional neural net) features” [3].

Figure 1.1 outlines the basic architecture of their system: a region proposal

method such as selective search [4] or the sliding-window approach mentioned

above, a CNN trained for the classification task, and a set of class-specific

bounding-box regressors trained on image features extracted by the CNN

(not pictured). Furthermore, Hoiem et al. show that poor localization is

the dominant error-mode for CNN-based object detectors [5]. Bounding-box

regression is a simple, computationally inexpensive technique applied after

a proposal has been classified that can compensate for a CNN’s potential

weakness at localization.
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Figure 1.1: R-CNN architecture from [3]. Figure best viewed in color.

An object is considered correctly localized if its proposal bounding-box

sufficiently overlaps with ground truth—a human-labeled bounding-box thought

best to encapsulate the target object. Accuracy is measured by intersection

over union (IOU) of the two bounding-boxes, and a successful localization

must be above a certain threshold, generally set to 0.5 [6] [7]. Anything less

is a mislocalization error. Figure 1.2 shows overlaps at a variety of IOUs on

test data, demonstrating what counts as a successful localization. The left-

most image shows that it is possible to capture a significant and recognizable

part of the object, in this case the dog’s head, and still fail to successfully

localize it.

BBR learns a transformation that attempts to map a proposal bounding-

box’s coordinates to the ground truth values using image features extracted

by the CNN. That is to say, it uses complex image features to adjust the

bounding-box and better capture the target. Along with pushing proposals

above the localization threshold, BBR can reduce the frequency of multi-
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Figure 1.2: An example of IOU differences using actual results from my tests
on the dataset from [8]. The blue rectangle represents the ground truth for
the dog, and the red rectangle shows a sample detection with the given IOU.
The leftmost image shows a mislocalization, the other two show acceptable
localizations. Figure best viewed in color.

ple detections for the same object, each of which counts as a false positive

during performance evaluation. Figure 1.3 illustrates some of the problems

endemic to object detection. The top-left image shows a single armadillo

that has been classified correctly but incorrectly detected twice. When two

proposals with the same class overlap one another with IOU above a certain

threshold, non-maximal suppression is used to keep only the highest scoring

proposal. In this case, a smaller threshold could prevent the redundant de-

tection, but the top-right image illustrates the ambiguity in selecting such

a threshold—several cars share significant overlap within the frame, so sup-

pressing those overlapping bounding-boxes would prevent a correct detection.

On the other hand, rather than try to modify the threshold, BBR can as-

sure that boxes move closer to the ground truth, causing multiple detections

to overlap at a higher IOU and be more easily discarded. In the case of the

dogs in the bottom-right image, one detection captures only the left dog’s
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Figure 1.3: Detection results from R-CNN [3] on ILSVRC. Labels show pre-
dicted class and detection score. Figure best viewed in color.

head, while the other is too large. Successfully applying BBR would result

in the head bounding-box expanding and the other tightening, allowing both

to be automatically recognized as detections of the same target.

Bounding-box regression provides a cheap, adaptable method to solve

multiple problems arising from poor localization. It has been used in several
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different object detectors; however the literature suggests that BBR has not

been evaluated in detail, and recent implementations use many of the same

settings as those initially proposed by Girshick et al. [3]. Given the simplicity

of the method and the continuing popularity of CNN-based object detectors,

I assert that BBR warrants a detailed study in its own right. This thesis

attempts to validate the original findings from [3] regarding optimal image

preprocessing, training, and regularization. In addition, recent implementa-

tions of BBR use features from different CNN layers—I examine whether the

feature layer has any effect on performance, and investigate principal com-

ponent analysis (PCA) as an alternative to ridge regression for handling the

large feature dimensions found in some of the CNN layers.
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Chapter 2

Background and Previous Work

2.1 R-CNN and Its Successors

My work is based on the bounding-box regression method developed by Gir-

shick et al. for R-CNN—an architecture combining bottom-up region pro-

posals with a convolutional neural network to achieve state-of-the-art perfor-

mance in object detection [3]. Although CNNs have been around for decades,

prior to R-CNN most visual recognition tasks were performed using SIFT [9]

and HOG [10] to generate features for images. These methods can be compu-

tationally very fast and are still used for many tasks, but rely on hand-tuned

filter banks and produce only a top layer of features for the image. CNNs, on

the other hand, are able to learn their own filters and further convolve and

pool stacked layers to generate deep, non-linear features. Krishevsky et al.
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demonstrated significant performance gains on the ImageNet classification

task [7] using a CNN in 2012 [11], and afterward R-CNN showed how to

translate the application to the more complicated object detection task.

The results from [3] also indicated that the rich features generated by a

CNN could be used for the localization task, via BBR, as well as for classifi-

cation without retraining the CNN for a separate task. Overall, they found

that most of the features learned in the convolutional layers were general

purpose, whereas the final fully-connected layers responded most highly to

domain-specific fine-tuning. Thus, they were able to take a CNN pre-trained

on the large ImageNet dataset and tune it for the much smaller, 20-class

PASCAL VOC challenge [6] with minimal modification. The other implica-

tion of this is that the convolutional layers are sufficiently general purpose to

produce quality features for BBR, although they were not trained specifically

to detect object bounds.

Over the last four years, R-CNN has been fine-tuned, sped-up, and tweaked

into numerous evolutions, but it remains the base for many top-performing

object detection models. Its two direct successors, Fast R-CNN and Faster

R-CNN, both increase the efficiency of the system and train the CNN using

multi-task loss [12] [13]. In both cases, the network is trained jointly for

classification and bounding-box regression. This increases the CNNs ability

to score better-localized proposals more highly, and thus prioritize quality

localization. Nonetheless, results from Fast R-CNN show that adding BBR

increases performance further, even when the CNN has been trained for lo-
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calization.

Compare Fast R-CNN’s architecture in Figure 2.1 to the original R-CNN

in Figure 1.1. BBR has been explicitly built-in, and shared features speed up

computation time. Yet, it makes use of the same basic structure and process.

Figure 2.1: Fast R-CNN Architecture [12]. An input image and multiple
proposals, labeled here as regions of interest (RoIs), are input into a fully
convolutional network. Each RoI is pooled into a fixed-size feature map and
then mapped to a feature vector by fully connected layers (FCs). The network
has two output vectors per proposal: softmax probabilities over object classes
and per-class bounding-box regression offsets.

In order to simplify my experiments and make the results as widely ap-

plicable as possible, I use a stripped down architecture based on R-CNN. I

simulate the region proposal module by creating randomly jittered bounding-

boxes from an object’s ground truth, use a deep CNN pre-trained on the

ImageNet dataset that is not fine-tuned for localization, and attach an inde-

pendent BBR module.
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2.2 VGG-16 Architecture

I use VGG-16, a deep CNN used in both Fast and Faster R-CNN, for all of

my experiments. It was first proposed by Simonyan et al. and was runner-

up in the 2014 ImageNet Challenge [14], showing that small convolutional

filters and increased network depth can significantly improve performance.

Although there are more advanced CNN designs at the point of writing,

I use VGG-16 because there are several easily accessible pre-trained mod-

els available and it has been used prevalently enough that there are robust

benchmarks for comparison. In addition, VGG-16 is directly based on the

AlexNet CNN architecture used in R-CNN [11]. It seems appropriate to use

the descendants of the initial models in order to generate results that are

applicable and relevant in my experiments.

The network has been pre-trained on ImageNet’s 1000-class dataset. In

order to compute features from an object proposal’s image region, it must

first be converted to the 224 × 224 input size required by the CNN. There

are a number of possibilities for transforming the image region, including

scaling then center-cropping and padding out to a square aspect ratio then

scaling; I use a simple affine warp, as was used in [3], scaling the proposal to

the correct dimensions regardless of aspect ratio. In addition, R-CNN adds

enough context padding to the proposal such that the warped result has

exactly 16 pixels of padding on all sides, which I replicate in my setup and

refer to as proportional padding. I also test BBR performance with constant
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and no context padding for reference.

Figure 2.2: VGG-16 Architecture [14]. Figure best viewed in color.

VGG-16 has 16 weighted layers and 5 max pooling layers, visible in Figure

2.2. Convolutional filters are learned via mini-batch gradient descent, and

several layers of 3 × 3 filters followed by ReLU non-linearity precede each

max pooling operation (see [11] for a description of ReLu). Network layers

are named by type and stacked position, such that pool5 refers to the fifth

max pooling layer, fc6 is the fully connected layer directly following pool5,

and conv5 2 is the second convolutional layer in the stack directly preceding

pool5.
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2.3 Bounding-Box Regression

As opposed to classification, which outputs a discrete class label, linear re-

gression predicts a continuous real number value from a given feature vector.

It uses ordinary least squares as a loss function to predict weight coefficients

for each feature. It has the advantage of being mathematically simple and

computationally cheap, but is prone to over-fitting data sets with large num-

bers of features. BBR uses ridge regression to counteract this tendency to

overfit, which shrinks the weight coefficients by a regularization penalty, λ.

The greater λ, the more high-value coefficients are penalized and pushed

toward zero.

The first instance of BBR was used in the deformable part models [15]

and was later adapted for R-CNN [3]. Each proposal is first scored and

classified by the CNN, then a class-specific regressor is applied to predict a

refined bounding-box. The regression relies on image features computed by

the CNN for the proposal. The model of VGG-16 I use was not trained with

regards to localization accuracy, so it is likely that the features it produces are

not optimal for object bound detection; however, in practice the computed

features are sufficient to produce significant localization improvement.

Training a model for BBR attempts to learn a transformation that maps

a proposal box to the ground truth box, where P is the proposal, G is the

ground truth, and Ĝ is the predicted bounding-box, which I refer to as the

prediction. All equations come from [3] unless otherwise stated. Each box
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is specified as a set of top-left coordinates and a width and height in pixels,

where P = (Px, Py, Pw, Ph). Four learnable functions, d∗(P ), transform P

into Ĝ :

Ĝx = Pwdx(P ) + Px (2.1)

Ĝy = Phdy(P ) + Py (2.2)

Ĝw = Pw exp(dw(P )) (2.3)

Ĝh = Ph exp(dh(P )) (2.4)

Here, dx(P ) and dy(P ) are scale-invariant translations of the coordinates

(x, y). As shown in equations 2.1 and 2.2, dx(P ) and dy(P ) learn an ad-

justment factor which is then multiplied by the proposal’s width and height,

respectively. dw(P ) and dh(P ) are log-space translations of width and height,

which produce better results on the wide range of bounding-box dimensions.

The set of functions d∗(P ) = wT
∗ φ(P ), where φ(P ) is the feature vector

for proposal P , and w∗ are the weight coefficients learned by ridge regression

for each function d∗(P ). In R-CNN, φpool5 is used, whereas later iterations

use φFC6 or φFC7 . There is no discussion of this decision in the literature,

but it is likely because, in the deeper networks such as VGG-16, the size

of the pool5 feature vector is 25k, an order of magnitude larger than the

fully-connected layers.

In my experiments, I pre-compute features for all proposals before ap-

plying BBR; thus, the regression can be solved efficiently in the standard
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regularized least squares closed form [16]:

w∗ = (ΦTΦ + λ(I))−1ΦTY∗ (2.5)

In Equation 2.5, Φ is the n×m matrix of features, where n is the number

of training examples and m is the number of features (φ). Recall that λ is

the regularization constant. Y∗ is a n× 1 matrix of regression targets, t∗ for

each training pair (P,G):

tx = (Gx − Px)/Pw (2.6)

ty = (Gy − Py)/Ph (2.7)

tw = log(Gw/Pw) (2.8)

th = log(Gh/Ph) (2.9)

Girshick et al. found that high regularization was necessary for good

results and set λ = 1000, counteracting a strong tendency for this model to

overfit. They also found that it was important to carefully select the training

set such that P had significant overlap with G, and only used training pairs

(P,G) in which the IOU of the two was greater than a threshold of 0.6. BBR

is only performed on classified proposals; it makes no sense to attempt to

localize a non-object for which the ground-truth is undefined.
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2.4 Performance of Bounding-Box Regression

on PASCAL VOC

The PASCAL Visual Object Challenge [6] was the canonical object detection

competition for several years, and its datasets and benchmarks are still used

to compare detector performance. R-CNN and its successors, as well as

SPPnet [17] among others, report results on the PASCAL VOC detection

challenge for networks both with and without BBR. The standard evaluation

metric for the object detection task is mean average precision (mAP), which

takes the mean of average precision (AP) across 20 object classes. AP for

PASCAL VOC classes is calculated by averaging the precision at 11 discrete

points in a single class precision-recall curve.

The previous results on PASCAL VOC show that in all cases, BBR is able

to improve mAP by 2-4 percentage points [3] [12] [13]. In many cases, this

is as much a margin as the state-of-the-art model has over its competitors,

so it is a significant difference. Girshick et al. further divide their results

into performance on all 20 PASCAL VOC classes, so it is possible to see that

BBR improves the average precision of some classes far more than others. For

example, BBR increases the AP of detecting trains by 8.4 points, from 52.8%

to 61.2%, but only increases detection of chairs by 0.9 points. It should be

noted that regardless of magnitude, BBR has a positive effect on all classes.

15



Chapter 3

Methodology

In this chapter, I outline my experimental setup and describe in detail the

dataset used in all my experiments, the method I use for generating object

proposals, and the performance metrics I use to evaluate the results. One

overarching design decision is to separate BBR as much as possible from any

specific system or architecture; this allows me to examine BBR on its own

and keeps the computational costs of running a wide variety experiments low.

The most complete and extensive discussion of BBR occurs in Girschick et

al. [3], thus their analysis and results serve as the baseline for my experiments.

Where possible, I compare my findings to theirs, as well as note any cases

where our methodology differs.
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3.1 Experimental Setup

I examine the effects of training set IOU distribution, context padding, CNN

feature layer, PCA, and object class on BBR performance, in that order. I

assume that the results of these experiments are independent, and in each

subsequent experiment use the best parameters from the previous. That is to

say, I assume that if proportional context padding has the best performance

of all the padding methods using fc6 features, it will also have the best

performance on pool5 features.

I divide the data into a training set (3000 proposals), validation set (1000

proposals), and test set (1000 proposals). The validation set is used in each

experiment to determine the best hyper-parameters—λ for ridge regression

and number of components for PCA. Each dataset is generated using the

method described in Section 3.3, and new training, validation, and test sets

are created for each experiment to avoid overfitting to a single test set.

In all experiments I use a pre-trained VGG-16 model written in Tensor-

flow [18] [19] to compute image features. This model was trained on the

ImageNet dataset and I perform no additional fine-tuning. Its only role in

my system is to produce image features; I discard all of its classification

scores. I assume each proposal is correctly classified and apply the appro-

priate class-specific regressor. In real use cases, BBR is applied to misclassi-

fied proposals. However, there is no way to localize an incorrectly classified

object—the problem inherently does not make sense. For all but the last
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experiment, I use the same object class: in particular, I train the regressor

to localize dogs within images.

3.2 Portland Dog-Walking Dataset

I use The Portland Dog-Walking Images dataset described in [8] for training

and testing in all of my experiments. This dataset is by and for the Mitchell

Research Group, and I use it here as part of that research corpus. Each of the

500 images contains a labeled dog, dog-walker, and leash with human-drawn

bounding box; additional pedestrians, cars, buildings, and objects may be

present, but are not labeled. For my initial experiments, I only use the dog

class, but later obtain results for both people and leashes. Dogs are present

in both the ImageNet and PASCAL VOC datasets, and have almost exactly

the same average improvement as a class (3.4 percentage points) from BBR

in [3], thus are a natural choice for baseline testing. These images are split

into a training set of 300 and validation and test sets of 100 images each.

3.3 Generating Proposals for Training and Test

Sets

Rather than rely on selective search or another specific algorithm to generate

region proposals, I simplify the process by randomly jittering the ground

truth bounding box to create a proposal box. This method allows me to
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easily specify the quality-level of proposals, i.e., how close to ground truth

proposals tend to be, and the spread of proposal IOUs.

My algorithm generates proposals using the same set of parameters for all

experiments, unless otherwise specified, to ensure that results are comparable

among experiments. For each dimension (x, y, w, h), I generate a random

amount of skew drawn from a normal distribution with a standard deviation

of one-quarter width or height, depending on the dimension. Any proposals

below a minimum IOU threshold are discarded; for the test sets, the minimum

IOU is 0.05 and the median IOU is 0.43. Proposals tend toward a similar

aspect ratio, but Figure 3.1 shows the wide variety of proposals generated

from a single ground truth box.

Hypothetically, it is possible to generate an arbitrarily large quantity

of training data this way. There are no studies to indicate at what point

oversaturation would occur and the benefits of increased sample size would

be outweighed or negated by overfitting to the specific image batch, so I opt

for a very conservative estimate and generate 10 samples per ground truth

‘dog’ box.

3.4 Measuring Performance

Recall that successfully localizing an object requires finding a bounding box

that overlaps at least 0.5 IOU with ground truth. The percentage of initially

low IOU proposals that BBR is able to localize is in some ways the most rel-
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Figure 3.1: Automatically generated proposals from one of the test sets,
showing a variety of scales and aspect ratios. Figure best viewed in color.

evant performance measurement, since being able to increase an IOU from

0.2 to 0.4 ultimately has no effect on the localization performance of a sys-

tem, nor does increasing the IOU of an already-localized proposal. However,

localization improvement is sensitive to the exact distribution of proposal

IOUs, e.g., if there are more proposals in the 0.4-0.5 IOU range for a given

test set, a model with low mean improvement (prediction IOU - proposal

IOU) may still achieve a high localization percentage. Thus, I also track

mean improvement and mean relative improvement (MRI).

Given that Plow is the set of proposals where IOU(Pi, Gi) < 0.5, localiza-

tion percentage is the percentage of Plow where for a proposal in the set, Pi, its
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BBR prediction Ĝi has IOU(Ĝi, Gi) ≥ 0.5. Similarly, I measure mislocaliza-

tion as the percentage of proposals in the set Phigh where IOU(Ĝi, Gi) < 0.5.

Mislocalization can be characterized as the error measurement for BBR. MRI

is calculated as the mean of (IOU(Ĝi, Gi)−IOU(Pi, Gi))/IOU(Pi, Gi), which

rewards improving low IOU proposals more highly. It can also serve as an in-

dicator of whether two models improve proposals similarly, or have different

performance depending on proposal IOU.
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Chapter 4

Experiments and Results

In this chapter I describe the details and results of my five experiments: the

effect of training set IOU distribution, context padding, CNN feature layer,

PCA, and object class on BBR performance. The first two experiments val-

idate claims made in [3] about BBR performance. In the CNN feature layer

experiment, I notice that different systems extract features from different

layers and test whether this has any effect on BBR performance. Then,

I examine PCA as an alternative for regularization. Finally, I look at the

other two object classes present in the Portland Dog-Walking dataset: people

(dog-walkers) and leashes.
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4.1 Effect of Training Set IOU Distribution

Girshick et al. claim that it is important to only use training examples with

a sufficiently high overlap with ground truth, noting that the problem of

transforming a far away box doesn’t make sense. R-CNN implemented this

by only using proposals with ground truth overlap of IOU ≥ 0.6 in the

training set. However, I posit that attempting to improve a low IOU proposal

makes little sense when the regressor has only seen high IOU examples, and

improving low IOU bounding boxes should be higher priority than improving

those which have already been successfully localized.

In order to test the claim made in [3], I create six different training

sets—all are derived from the same 300 training images, but each has a

different minimum ground truth IOU cutoff threshold and independently

generated proposals. The goal of this experiment is threefold: (1) Validate

or refute the claims made in [3] regarding the optimal range of training

proposal IOUs. (2) Investigate what the optimal training data looks like,

and if different use cases call for different training methods. (3) Determine

whether or not the optimal training distribution is dependent on the test

set distribution. Is there really some magic cutoff point that produces the

best results, or will each system need to optimize BBR depending on the

average quality of proposals it tends to produce? And, if the latter is true, is

it possible to predict the best-performing parameters if we know something

about the object-proposal module?
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I use features from fc6 and 16px proportional padding (recommended

in [3]). The test set always contains a full range of proposal IOUs distributed

between 0.05 and 1.0. All results from this section use individually tuned λ.

Early experiments suggested that performance continued to improve with λ

well above the value of 1000 given in [3], so I ran BBR on the validation set

with a range of 0.1 ≤ λ ≤ 18000.

The literature’s recommended 0.6 IOU threshold for training data not

only under-performs other training set distributions in most cases, but the

optimum threshold varies by usage—namely, the quality of proposals pro-

duced by the object detection algorithm. Surprisingly, optimum λ was be-

tween 8000-18000 for each IOU threshold. Although heavy regularization

makes sense given the fact that training set is smaller than the number of

features (3000 vs 4096), such a high value is rarely seen in practice for ridge

regression.

IOU Thresh. Mean Improvement MRI % Localized % Mislocalized

0.05 0.113 0.469 56.6 30.7

0.2 0.144 0.513 59.6 14.7

0.3 0.147 0.477 59.0 9.4

0.4 0.145 0.450 55.4 6.6

0.5 0.138 0.402 52.4 3.6

0.6 0.126 0.350 46.3 1.9

Table 4.1: Effect of training set IOU threshold on performance on test set.

A summary of results on the effect of IOU thresholding is given in Table
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4.1. This table demonstrates that the idea of training the regressor only

on samples that are sufficiently close to the ground truth is helpful, but 0.6

is not necessarily a magic number. All thresholded groups outperform the

0.05 group, which from here out I will refer to as the full-range training

set. However, the regressor trained on samples above 0.6 IOU performs the

second worst in all but one category: percentage of test samples mislocalized.

The relationship between training IOU, performance (percent localized),

and error (percent mislocalized) can be seen in Figure 4.1. Localization peaks

at the 0.2 threshold, and both localization and mislocalization decrease as

threshold increases. Thus, higher training thresholds have fewer errors but

have less ability to improve low IOU proposals. These results make sense; a

BBR model trained to improve high IOU proposals will learn lower magnitude

transformations (since the greatest possible IOU improvement it must learn

during training is 0.4), but will be trained specifically on high IOU proposals

and thus be less likely to mislocalize them.

If it were possible to apply BBR only to low IOU proposals, which would

require an omniscience that never exists in practice, the models trained on

a larger range of IOUs would have an even greater performance advantage.

Such idle speculation is rarely useful, except that in this case it reveals an

important point: if we have some prior knowledge about the quality of pro-

posals the object detector outputs, we can choose an appropriate training

regime. For example, if the region proposal algorithm uses a sliding-window

approach and most proposal IOUs are low, it makes sense to use a BBR
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Figure 4.1: Trade-off between performance and mislocalization. Percentage
localized is calculated as the number of samples from the test set where
proposal IOU < 0.5 and prediction IOU ≥ 0.5 divided by the total number
of proposals with IOU < 0.5. Mislocalization is the opposite calculation.

model trained at IOU threshold 0.3. On the other hand, if the region pro-

posal algorithm regularly produces high-quality, well-localized proposals, it

would make sense to use the 0.6 IOU threshold.

The mean improvement based on proposal IOU is given in Figure 4.2.

The plots shows a curious relationship: the shape is the same for all groups,

but as the training IOU threshold increases, the magnitude of improvement

is squashed while the point at which the magnitude flips from positive to

negative moves to ever higher proposal IOUs. Of course, as the proposal
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Figure 4.2: Test proposal IOU plotted against mean improvement from BBR.
Each bar shows the expected prediction improvement based on initial pro-
posal IOU. Error bars show standard deviation to demonstrate expected
variation.

IOU increases, the amount that it is possible to improve decreases, as the

maximum is 1.0—ground truth. In practice, mean IOU improvement does

not come close to the ground truth limit, but it highlights an important facet

of BBR: it is easy to improve a box with low IOU, and hard to improve one

that is already good.

Figure 4.3 illustrates this is another way. Looking at proposal IOU vs

final IOU again, the two form a conical shape that is tighter as training IOU
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Figure 4.3: Proposal IOU vs Predicted IOU on Test Set. The green line
represents the baseline of no improvement, and the red line shows the local-
ization threshold. Figure best viewed in color.

increases. The training set with 0.6 IOU threshold produces consistent, even

results, but may not provide enough improvement to get low IOU proposals

past the localization threshold of 0.5 IOU. Lower IOU training sets produce

sloppier, less predictable results, especially on higher IOU proposals, but are
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more often capable of localizing proposals with low IOUs.

I combined all six training sets to briefly examine the effect of a larger

training set on performance; note that this set has a very different IOU dis-

tribution from any of the individual training sets. Thus, the results in Table

4.2 aren’t directly comparable to those in Table 4.1. The combined training

set, which contains 60 proposals from each image, out-performs every other

category. This result suggests that 10 is a conservative estimate on the num-

ber of jitters than can be sampled from a single image before oversaturating

the training set. It demonstrates that some of the largest performance gains

can be obtained simply by generating more training examples.

Training Set Mean Improvement MRI % Localized % Mislocalized

All Data 0.157 0.536 62.8 10.8

Table 4.2: Effect of training set size on performance on test set.

It seemed possible that a larger training set might also not require such a

large amount of regularization, in the form of the λ value, since the training

set size is several times larger than the feature vector; however, that proved

false. Even with a training set several times larger than the number of

features, the optimum λ was still 18000 as determined by the validation set.
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4.2 Effect of Context Padding

In this experiment, I test the findings in Girshick et al., who claim that

16px of proportional context padding around the proposal produces the best

results. This means that enough context padding is taken from the image

around a proposal such that once scaled to 224×224, there are exactly 16px of

padding on all sides. If the proposal is taken from the edge of an image, I use

zero padding (black pixels) to fill in that edge. I test proportional padding

against constant context padding and no context padding. For constant

padding, I take 16px of context padding around a proposal before scaling,

regardless of size or aspect ratio, and for no context padding I crop the image

directly at the proposal bounding box coordinates.

Results in Table 4.3 show that context padding improves performance,

although proportional padding only has a 4% higher mean improvement rel-

ative to constant padding. It is a small edge, enough to localize 2.5% more

of the test set. Context padding has little significant effect on performance,

but the proportional padding recommended in [3] outperforms other variants

slightly and is used in the remaining experiments.

4.3 Effect of CNN Feature Layer

It is possible to use features from any layer of a CNN for BBR—R-CNN uses

pool5 features whereas Faster R-CNN uses fc7 features. SPPnet uses conv5 1
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Context Padding Mean Improvement MRI Loc. Improvement

No Padding 0.129 0.412 0.31

Constant Padding 0.136 0.453 0.317

Proportional Padding 0.142 0.459 0.342

Table 4.3: Effect of context padding on test set. Model trained on proposals
≥ 0.3 IOU, features from fc6, and λ = 18000.

features [17]. Girshick et al. suggest using pool5 because it captures more

general features than the fully-connected layers, but none of the literature

explicitly discusses how the CNN feature layer was chosen. Thus, I examine

the effect of features from different layers of VGG-16 on BBR performance.

Networks continue to deepen, so it is difficult to say if pool5 in AlexNet

(used by R-CNN) is equivalent to pool5 in VGG-16 (used here and in Faster

R-CNN) in any meaningful way. Instead, I focus on relative network depth

in the same network and perform BBR with features from pool4, pool5, fc6,

and fc7.

For general classification problems, the last several years of improvements

show that deeper networks produce better results. However, many networks

are not trained to localize, so deeper layers will not necessarily be tuned in

any meaningful way for BBR. They may even focus on complex, fine-tuned

features that are irrelevant to the task of determining if an object has been

adequately localized. As mentioned above, [3] suggests that earlier layers are

more generalizable, but in deep networks these layers may have hundreds of

thousands of features, which may only exacerbate the overfitting problem.
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Feature layer tests all use the mid-range (IOU threshold ≥ 0.3) training

data found to be highest performing in the previous experiment. Initial runs

using the validation data to determine λ for each layer revealed that pool5

and pool4 features performed almost identically across the entire range of

lambda, potentially due to the large number of features, 25,088 and 100,352,

respectively. fc7, on the other hand, was the first set of features to reach a λ

cap and start degrading for values over 2000.

Feature Layer Mean Improvement MRI % Localized % Mislocalized

fc7 0.139 0.436 54.8 8.3

fc6 0.147 0.477 59.0 9.4

pool5 0.133 0.453 57.9 18.0

pool4 0.140 0.437 57.4 10.2

Table 4.4: Effect of extracting features at different CNN layers on regression
performance. Layers displayed here from deepest to shallowest.

The results of the final tests in Table 4.4 show that fc6 outperforms all

other feature layers by a small margin. Notably, pool5 and pool4 have com-

parable localization performance, but pool5 especially suffers from a much

higher mislocalization rate. Using features from deeper in the network and

closer to the output decreases performance, although it marginally decreases

errors as well.
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4.4 Effect of PCA

The huge number of features in pool5 and pool4 motivated me to test whether

ridge regression is sufficient for regularization, especially given that the train-

ing set is many times smaller than the feature vectors. I look to principal

component analysis (PCA) to perform dimensionality reduction. PCA finds

linear combinations of features, known as components, with the greatest vari-

ance then discards all but the n most important features—essentially creating

the most descriptive set of features in n-dimensions from the given data.

I use the validation set to determine the best number of components for

each CNN feature layer. Validation runs showed reduction to 1000 principal

components optimal for pool5, 2000 components for pool4, and 1500 compo-

nents for fc6 and fc7. The value of λ has no effect on the results; although

PCA and ridge regression work quite differently, both perform regularization

and feature selection. All values of λ produced the same results in validation

tests with PCA. In this experiment, ridge regression could be replaced with

unregularized linear regression, but I use ridge regression with λ = 0.1 both

for consistency, and because it ensures the matrix Φ is invertible.

A summary of the effects of applying PCA to each feature layer is pre-

sented in Table 4.5. Compared to the results in Table 4.4, both pooling

layers demonstrate significant performance increase and a significantly lower

percentage of mislocalizations. After PCA, pool5 shows the greatest improve-

ment, and outperforms all layers (both with and without PCA) at all metrics.
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Feature Layer Mean Improvement MRI % Localized % Mislocalized

fc7 + PCA 0.145 0.436 55.9 10.0

fc6 + PCA 0.123 0.426 54.0 16.1

pool5 + PCA 0.161 0.495 60.7 3.9

pool4 + PCA 0.145 0.439 57.6 5.3

Table 4.5: Effect of extracting features at different CNN layers on regression
performance using PCA. Layers displayed here from deepest to shallowest.

The two fully connected layers perform worse after PCA than before. This

supports my hypothesis that ridge regression is not sufficient to handle the

unwieldy number of features in the pooling layers, but both contain effective

features for BBR once reduced to a meaningful and manageable number.

4.5 Effect of Object Class

Finally, I compare the leash, person, and dog classes from the Portland Dog-

Walking dataset. As one might expect, person and dog, which are both

present in the ImageNet dataset VGG-16 used for training, perform much

better than leash, which has no analogue in the training classes. Table 4.6

summarizes the findings: dog and person have similar results, while leash

has less than half the percentage of localizations and more than three times

the percentage of errors. This sounds more dismal than it really is; the leash

regressor still has a net gain in localizations. It is not impressive performance,

but neither is it a loss.
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Class Mean Improvement MRI % Localized % Mis-Localized

Dog 0.161 0.495 60.7 3.9

Person 0.151 0.439 63.2 4.1

Leash 0.056 0.198 28.6 15.2

Table 4.6: Performance comparison across object class. Pool5 features +
PCA are used for all tests.

It is possible, and even likely, that having a CNN trained to recognize

leashes would improve the features produced for BBR; however it is still

an intrinsically hard problem to find what is, essentially, a very small edge

connecting person and dog. Appendix A contains image sets of the best and

worst bounding box predictions, and it would seem that one of the features

the regressor prioritizes is finding the hand in the image. Such predictions

are hard to eyeball, and would require a carefully crafted batch of inputs to

validate.

4.6 Good Proposals and Bad Proposals

One question lingers: What makes a proposal easy or hard to regress from?

The previous experiments show that the initial proposal IOU and object class

are significant factors, but is there anything else that might help predict how

a given proposal will fare? It seems likely that the initial image itself would

affect the difficulty of the problem, but examination of the best and worst

predictions shows that not only does the same image rarely crop up more
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often than is probable in each set, the same image sometimes shows up in

the top 10 best and worst. Figure 4.4 shows one example of this from the

dog set. Further illustration of this can be seen in Appendix A.

Figure 4.4: Localizations on the same image. One of the best and one of
the worst predictions on the dog dataset come from the same original image.
The red rectangle is the proposal bounding box and the blue is the predicted
bounding box. IOU is given for the predicted box against ground truth.

No other obvious characteristics link the proposals that produce high

quality predictions or those that do not. Examining the proposal bounding

boxes reveals nothing: aspect ratio or direction(s) of skew from ground truth

do not appear significant. Further answers must lay in the low-level image

features themselves, analysis of which is beyond the scope of this work. The

proposal IOU remains the most telling factor, which makes sense. It is easier

to improve a bad box than a good one. Figure 4.5 demonstrates this; some

of the worst predictions were on proposal boxes that were already bad to
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begin with, but overall most of the bad predictions come from already local-

ized proposals. The median proposal IOU for the worst predictions is 0.67,

compared to a median 0.30 for the best. (Notably, exactly at the training

IOU threshold for this dataset.)

Figure 4.5: Best and worst predictions on the dog class by initial proposal
IOU. Best and worst predictions as measured by IOU improvement of the
prediction from proposal IOU, demonstrating that the best predictions gener-
ally come from unlocalized proposals, and the worst predictions from already
localized proposals.
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4.7 A Note on Performance Speed

Although speed is a critical factor in all but the most trivial applications, I

choose not to discuss it here for a number of reasons. First and foremost,

the most time-consuming aspect of this process is extracting image features

with the CNN. In any serious implementation, the features should be shared

between the CNN during classification and the bounding box regressor, so

that the overhead of adding a regression stage is only the time to perform the

regression itself and some extra memory to store the features for as long as

they are needed. The time needed for a prediction is trivial, the predictions

can be performed efficiently in batches, and any quality machine learning

library will have an optimized ridge regression function.
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Chapter 5

Discussion

5.1 Conclusion

Bounding-box regression has been incorporated into many different object

recognition systems as a cheap way to compensate for localization errors. In

spite of its prevalence, there is little discussion or analysis of its performance

in the literature. This thesis presents a survey of techniques for optimizing

BBR, which used in conjunction with one another produce a 14.7 percentage

point increase in localizations over my default method1, from 46.3% to 60.7%.

I show that pool5 features produce the best results, as first suggested by

Girschick et al. [3], even on a much deeper CNN architecture than AlexNet

used in R-CNN. More recent implementations of BBR have switched to using

1FC6 features, proportional padding, training on samples greater than 0.6 IOU.
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features from the fully-connected layers, since pool5 is an order of magnitude

larger in deep CNNs; however, I show that PCA can be used to reduce

feature dimensionality from 25k to 1k and get superior results. This has the

additional benefit of eliminating the need for regularization.

Further results from my experiments reject the prevailing wisdom that

it is necessary to choose training samples with high ground-truth overlap;

rather, a training IOU threshold is useful but should be chosen carefully by

use case. Training on a greater range of samples increases performance on

low IOU proposals, at the expense of greater likelihood of mislocalizing high

IOU proposals. Thus, some knowledge of the general quality of proposals

produced by the object detection algorithm can help choose an appropriate

training regime. It is possible that BBR could be paired with an extremely

efficient but not particularly accurate detection method to great effect.

5.2 Future Work

The next step is to integrate this work with an actual object detection system,

such as R-CNN, in order to be able to compare these results in a meaningful

way. It is unclear how an increase in localization percentage translates into

mAP for a system as a whole, and until then the significance of my findings

remains unknown.

Object classes also merit further study; in-depth analysis of bounding

box regression for some of the PASCAL VOC classes which benefited from it
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least, such as chair and tv, might reveal important class-specific parameters

that can be tuned to further increase performance. My experiments only

briefly examine the results on different object classes, and do not delve into

whether the optimum settings I have selected vary based on object class.
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lur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,

M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,

V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-

tenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale ma-

chine learning on heterogeneous systems,” 2015. Software available from

tensorflow.org.

45



Appendix A

Visualizing Best and Worst
Predictions

Best and worst predictions are chosen by prediction IOU improvement from

proposal IOU out of a test set of 1000 proposals extracted from 100 images.

The best are defined as the those with the greatest IOU improvement (pre-

dicted IOU - proposal IOU), similarly the worst are those with the least IOU

improvement.
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The twelve best dog predictions, based on IOU improvement. Red box is
proposal, blue box is prediction.
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The twelve worst dog predictions, based on IOU improvement.
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The twelve best leash predictions, based on IOU improvement.

49



The twelve worst leash predictions, based on IOU improvement.
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