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               The Link Between Image Segmentation and Image Recognition 

                                                     Abstract 

A long standing debate in computer vision community concerns the link between 

segmentation and recognition. The question I am trying to answer here is, Does image 

segmentation as a preprocessing step help image recognition? In spite of a plethora of the 

literature to the contrary, some authors have suggested that recognition driven by high 

quality segmentation is the most promising approach in image recognition because the 

recognition system will see only the relevant features on the object and not see redundant 

features outside the object (Malisiewicz and Efros 2007; Rabinovich, Vedaldi, and 

Belongie 2007).  This thesis explores the following question: If segmentation precedes 

recognition, and segments are directly fed to the recognition engine, will it help the 

recognition machinery? Another question I am trying to address in this thesis is of 

scalability of recognition systems. Any computer vision system, concept or an algorithm, 

without exception, if it is to stand the test of time, will have to address the issue of 

scalability. 
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                                                        Chapter 1                                                                                                                                                             

                                          Introduction                                                                                                                                    

We humans recognize images rapidly and effortlessly. Millions of years of evolution 

have shaped and improved our visual recognition machinery. However, for computers, 

recognition remains an extremely difficult venture, and unresolved challenges face the 

computer vision community. Many computer vision researchers and psychologists have 

hypothesized that recognition is and should be driven by segmentation. 

Image segmentation is partitioning of an image into various sets depending on 

certain criteria. Segmentation divides the image into constituent regions where each 

region might represent some meaningful characteristic.  For example, if an image 

contains multiple objects, and our goal is to recognize each object, then if we segment out 

each object, then it will presumably be easier to recognize each object separately. It is 

thought that image segmentation can extract shape information and reduce the 

background noise, which will facilitate recognition (Malisiewicz and Efros 2007). 

It has been a long standing debate in a computer vision community about the 

connection between image segmentation and recognition. The question that I am trying to 

answer in this thesis is, does image segmentation as a preprocessing step help the 

recognition? We know from the literature that recognition without segmentation and 

sliding windows approaches have had their successes in various environments 

(Malisiewicz and Efros 2007). Thus, why should segmentation be helpful? The idea of 

segmentation has some aesthetic and intuitive appeal to it. In an ideal world, it would be a 

http://www.cs.cmu.edu/~efros/
http://www.cs.cmu.edu/~efros/


 

great to segment out the object and feed it to recognition engine. Since the recognition 

engine will only see the features of the object, and will not see any redundant features 

from background, the recognition accuracy should increase. In other words, it is thought 

that segmentation will help recognition by capturing spatial information and reducing the 

background noise (Malisiewicz and Efros 2007). However, what we know of 

segmentation algorithms is that none of them are authentically good at segmentation. 

What they do is "sometimes" give "good enough" segmentation.  

Malisiewicz and Efros (2007) argued strongly for the case of segmentation. 

According to them, in spite of impressive successes of sliding window approaches, 

segmentation is still the superior approach. The sliding window approach is successful 

under very limited settings. Sliding windows don't have any spatial information and 

redundant information from the background can creep in that hinders the recognition 

accuracy significantly. Moreover, sliding windows will only capture objects that are 

compact and somewhat rectangular in shape.  Segmentation is clearly the superior 

approach because capturing the spatial information and eliminating redundant 

information will help the recognition machinery in its task. However, since none of the 

segmentation algorithms known to us perform very well in general, Malisiewicz and 

Efros (2007) suggested the use of multiple segmentations for the purpose of recognition.  

In the segmentation-driven-recognition paradigm, the most extreme position has 

been taken by Rabinovich, Vedaldi, and Belongie (2007). They demonstrated the utility 

of segmentation for both single object and multi-class object recognition. Through their 

experiments, they demonstrated that segmentation-driven recognition yields superior 

results than recognition without segmentation. Some of their results show that even 

http://www.cs.cmu.edu/~efros/
http://www.cs.cmu.edu/~efros/
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random segmentation, where a block of image is randomly extracted from an image, can 

also help the recognition.  

There are three possible ways in which segmentation can interact with 

recognition. In the bottom-up approach, segmentation precedes recognition. In the top-

down approach, detection of an object precedes segmentation. In the third approach, 

segmentation and recognition occur simultaneously.  

In my research, I conduct three experiments. The crux of the experiments is to 

segment an image using some segmentation algorithm and then feed the results to a 

recognition engine. The purpose of the experiments is to measure whether segmenting an 

image leads to an increase in recognition accuracy. In my first experiment, a Bag of 

Features recognition approach follows a stable segmentation algorithm. This experiment is 

similar to the experiments conducted by Rabinovich et al. (2007, 2009). In the second 

experiment, recognition by an HMAX network (Serre et al. 2007) follows segmentation. 

Another area of experimentation is “scaling up” .One of the major problems 

facing the computer vision community is the problem of scaling-up. Many computer 

vision algorithms that perform well on toy problem are not able to perform well on more 

complex tasks. Many times it is hard to scale up principles, algorithms and techniques 

that made a small problem succeed to a more complex and larger problem. Hence, I will 

experiment with scaling up of these algorithms to larger sets of categories (e.g. 10 vs 20 

vs 30 vs 35). 

In chapter 2, I review the previous work done with respect to the link 

between image segmentation and recognition. In chapter 3, I describe various 

algorithms used in this thesis. In chapter 4, I describe the experimental 

methodology and results. In chapter 5, I describe the conclusion and directions for 



 

future work.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

                                    Chapter 2 

The Link Between Image Segmentation and Recognition 

 

2.1 What is Segmentation? 

Image segmentation is one the most significant and difficult aspects of computer 

vision applications. Image segmentation is often used as a preprocessing step. The 

purpose of the segmentation is to divide the image into meaningful constituent parts so as 

to facilitate further processing. For example, if an image contains a tree and a book, and 

our goal is to recognize both, then if we segment out the tree and the book, then it will 

presumably be easier to recognize both separately.  

Of course, what constitutes the meaningful part of an image is highly dependent 

on the application. The image of a car can be segmented in many different ways. The 

entire car may be segmented as a single image. Another possibility is segmenting the 

windows, tires, and the body of the car. Which possibility is used is dependent on the 

application. 

Different cues will lead to different segmentations. The segments we obtain by 

applying color cues may be entirely different from the segments we obtain from applying 

texture cues. Different cues may be combined to produce segmentation. How to best 

perform cue combination is still an unresolved problem.  

2.2 Segmentation Approaches and Methods 

A brief survey of some segmentation approaches follows in this section.  

One of the simplest segmentation methods is thresholding. A category is assigned to 



 

pixels based on their range. For example, considering grayscale images, if a pixel’s value 

lies between 128 and 180, it may be assigned to one category. If there are two categories 

only, then, if a value of a pixel is above a certain value, it is assigned to the first category. 

If it is below that value, it is assigned to the second category. The threshold values can be 

chosen manually or automatically.  

Edge-detection-based segmentation is one of the well-studied fields in computer 

vision that is used as an early processing mechanism to detect discontinuities between 

objects. The purpose of edge detectors is to detect sharp changes as the image transitions 

from one entity to another. Ideally, the boundaries of each unique entity should be 

detected.  

Another popular approach is clustering-based segmentation. It is very intuitive 

and natural to use clustering as an approach to segmentation. In clustering, we want 

similar datapoints to be grouped in the same clusters. Hence, depending on various 

criteria, such as texture or brightness or color, the datapoints that are similar to each other 

are assigned to the same set. One of the popular methods used in clustering based 

segmentation is k-means.  

Similar to clustering is a graph-theoretic segmentation approach. Here the image 

is modeled as a graph. Each pixel acts as a node, and each node is connected to every 

other node. The edge between two nodes has a weight measure. The weight measure may 

depend on many factors such as color, texture, motion, brightness, etc. The goal here is to 

group similar pixels into the same set.  

Region-growing is another popular segmentation method. Here we start with seed 

pixels spread across the image. The eight neighbors of each seed pixels are measured for 



 

their similarity to the seed pixel. If a neighboring pixel is sufficiently similar to the seed, 

it is assigned the same label. Hence, the region is grown for each seed pixel. 

2.3 The Link Between Segmentation and Recognition 

There is a long standing debate on the nature of the link between image 

segmentation and recognition.  Why does this question matter at all? In an ideal world, it 

would be very nice if we could get the absolutely correct segmentation of each object and 

then simply feed it to a recognition engine, and the job is done. However, that is far from 

reality. What we know is that many image segmentation algorithms do not produce the 

absolutely correct segmentation. Hence, the question of does segmentation affects 

recognition becomes critical. And especially segments obtained in a strictly bottom-up 

fashion are most likely to be the ones that can go wrong. 

A new trend in object recognition, popularized by Rabinovich et al. (2007a, 

2007b), is segmentation-driven recognition. The authors assert that recognition preceded 

by segmentation is better than recognition without segmentation, for both multi-class and 

single-object recognition. The authors ask four questions: 

1.) Can segmenting an image improve object recognition? 

2.) How does the number of segments affect recognition accuracy? 

3.) Does the quality of segmentation affect recognition accuracy? 

4.) Is it beneficial to perform localization and multi-class recognition using 

segmentation? 

According to Rabinovich et al. (2007a, 2007b), the answer to all these question is 

yes. In their approach, low level cues exclusively decide the segmentation. Any higher 

level information is completely disregarded. The image is segmented using low level 



 

cues of brightness, texture, color, or motion. These segments are fed to the recognition 

engine. This approach is known as bottom up segmentation, where segmentation 

precedes recognition.  

Another approach is top-down segmentation. The crux of top down segmentation 

is that recognition precedes segmentation. In other words, object detection drives 

segmentation (Borenstein and Ullman 2002). In this technique, object specific 

information is used to segment the images. Consider for example, Figure 1. The task is to 

segment the input image of the horse. In Borenstein and Ullman’s system, various 

fragments that are specific to the horse class are stored. For example, a foot of the horse 

is one of the segments. Using some statistical criteria, the fragments that are typical and 

most representative of the horse set are learned and stored in memory. These sub-

segments act as building blocks for creating a larger segment. The foot is detected, the 

leg is detected, the mouth is detected, and finally, in jigsaw puzzle fashion, the image is 

completed.  

 

Figure 1 Segmentation driven by object detection (figure from Borenstein and Ullman 2002) 

 



 

However, this approach has several shortcomings. It is based on an assumption 

that a limited number of fragments can capture the necessary information to capture any 

information of a class, but this is not how the world works. There is very high variability 

in the ways an object can be presented. For example, a horse can exhibit many colors, 

shapes, sizes and texture. Moreover, a horse can be in many poses. In addition, there can 

be background noise and clutter interfering with recognition.  

Another class of models is where recognition and segmentation go in tandem. 

One of the famous models is Textonboost (Shotton et al. 2009), developed at Microsoft 

Research Center, Cambridge. The model uses shape, appearance, and context 

simultaneously to recognize and segment an image. Paradoxically, all recognition and 

segmentation occurs at pixel level. The authors introduce new features called texture 

layout filters that capture texture, spatial information and textural context simultaneously. 

Even in human visual recognition, the connection between image segmentation 

and recognition is not clear. However, Vecera and Farah (1997), through their 

psychological experiments, have shown that segmentation and recognition in human 

visual system is an interactive process. That is, segmentation in bottom-up fashion is not 

preceded by recognition. 

In their brilliant examinations of segmentation algorithms, Pantofaru (2008) and 

Unnikrishnan, Pantofaru, and Herbert (2007) showed that no image segmentation 

algorithm was better than any other.  There are substantial differences among the type of 

information captured by each algorithm. Empirically, they showed that no existing 

segmentation algorithm is perfect and each algorithm has its own strength and weakness. 

Moreover, each algorithm’s performance is itself sensitive to parameters and image 



 

datasets. The problem is so profound that even for a single image, the choice of 

segmentation algorithm and parameters could alter results significantly. In short, no 

generalizations with respect to segmentation algorithms are plausible and possible.  

Hence, they suggested the need for multiple segmentations (and multiple segmentation 

algorithms) for recognition.  

In their approach, multiple segmentations are generated using multiple 

segmentation algorithms. Furthermore, learning occurs on the features extracted from 

different types of segmentation obtained from various segmentation algorithms. 

However, testing is complicated. Each test image is fed to different types of segmentation 

algorithms, obtaining different kinds of segmentations.  The set of pixels that are in the 

same region of different segmentations are termed Intersection-of-regions. The goal is to 

obtain the label of each region in the intersection of regions by combining the 

information from different segmentations. 

 

 

 

 

 

 

 

 

 

 



 

                                          Chapter 3 

                Image Segmentation and Recognition Algorithms 

In this chapter, we explain the segmentation and recognition algorithms used for 

the purposes of this thesis.  

3.1 Normalized Cuts    

The normalized cuts algorithm (Malik & Shi 2000) models an image in a graph-

theoretic fashion. Each pixel is a node in a graph and each node is connected to every 

other node by an  edge. Each edge is assigned a weight, which is a measure of similarity 

or dissimilarity between the connected pixels. For example, if brightness is the only 

criteria used, the weight between the pixels will be high if both are equally bright. If one 

is brighter than the other, the weight will be less. Our goal is to partition the graph in a 

way so that all the similar pixels are in the same set. In other words, intra-set pixels have 

a higher similarity measure with one other than those outside the group.  More formally, 

the pixels are modeled as the nodes of a graph G = (V,E), and an edge exists between 

each  pair of nodes. The weight w(i,j) on the edge, is the measure of similarity between 

the two nodes i and j. Our goal is to partition the graph into disjoint sets of vertices V1, 

V2….Vn, such that intra-set similarity of all the vertices in Vi is high and is low for all the 

vertices in the different sets.  

If we want to partition the graph V into two disjoint sets A and B, we do this by 

disconnecting all the edges between the two parts. Of course, there are many such 

partitions and our goal is to obtain the partition that minimizes the cut(A,B) as shown in 

Eq. 1, where cut(A,B) is the sum of all the edge weights from each node in set A to set B. 

In Eq. 1, if u is a node in A and v is a node in B, then w(u,v) is the weight between nodes 



 

u and v. Minimization of the cut is computationally expensive, however, many efficient 

algorithms have been proposed in the literature. 

 

   (   )   ∑  (   )                                                            Eq. 1 

           

    (   )   
   (   )

     (   )
 

   (   )

     (   )
                                            Eq. 2 

 

     (   )   ∑  (   )                                                          Eq. 3       

 

 

 

 

Figure 2 Minimum cut gives bad partition by favoring isolated points as separate sets (figure from Malik et al. 2000)  

 

The problem with minimizing the cut is that it will partition some isolated points, 

an undesirable condition, as shown in Figure 2. This problem is resolved by the 

normalized cuts algorithm. The normalized cuts algorithm favors sets of nodes over 

isolated points, as is evident from Eq. 2. Here assoc (A,V), in Eq. 3, called associativity, 

is the measure of associations of the cost of all the nodes emanating from set A with the 



 

entire graph. It is easy to see from the Eq. 2 that if associativity is high, Ncut value will 

be low, hence, larger sets will be favored over smaller sets. Unfortunately, minimizing 

normalized cuts is an NP hard problem. But an approximate solution is possible. 

If graph V is partitioned into two sets A and B, and if x is an N dimensional 

indicator vector, such that x є{-1,1}
N
, and xi = 1, if node i is in A, and -1, if it is not in A. 

Let d(i) = ∑w(i,j) represent the total weight of nodes emanating from  node i. The Eq  2 

can be rewritten as: 
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After simplification of the above equation, we get a Rayleigh quotient which is a 

generalized Eigenvalue problem. The goal is to find x such that     ( ) is minimized, 

which can be approximated by finding a real-valued vector y such that 

                           
  (   ) 

    
                                                                                             Eq. 5 

is minimized, where        , D is a diagonal matrix having d as diagonal, W = 

∑w(i,j)  is a similarity matrix, and   is an     matrix of 1s. 

3.2 Stability-Based segmentation       

Cue combination and model order are two of the unresolved challenges for 

computer vision community (Rabinovich et al. 2006). For segmentation, we may use a 

wide variety of cues. It is unknown which cues – color, texture, brightness, motion, etc. – 

lead to high quality segments. Moreover, if we combine cues – such as color and 

brightness- how much weight should be given to each of them to obtain high quality 



 

segments. Another unresolved problem is the problem of model order (Rabinovich et al. 

2006). Model order (denoted by k) is the number of clusters that we must obtain from an 

image such that further processing is facilitated. Stability based segmentation is able to 

circumvent the problem of model order and cue combination by searching through the 

parameter space.  

In our experiments, following Rabinovich et al. (2006), we use a stable 

segmentation algorithm. The premise is that if the segmentation remains stable under 

perturbations, then it might be a useful segmentation. For a particular cue combination 

and value of k, normalized cuts is used to segment the image. The image is segmented 

multiple times and each time perturbations (in the form of a small amount of noise) are 

introduced (Rabinovich et al. 2006, Rabinovich et al. 2007a, b). If the segmentation 

remains consistent, in spite of perturbations, it is considered to be stable. If there are n 

pixels and the image is segmented multiple times, then the stability score is calculated as: 
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where si is the measure of pixel label remaining the same over multiple 

perturbations. The segmentations for which this score is high are retained. Some of the 

example stable segmentations are shown in figure 3. In our experiments, each segment 

obtained by this algorithm becomes an image on its own. The implementation used was 

of Galleguillos (2009).  

 

 



 

 

Figure 3. Some sample stable segmentations obtained by using stable segmentation algorithm for different 

values of k on Caltech-101 images. Caltech-101 is one of the standard datasets in computer vision. 

Qualitatively, we can see that some segments are good and some are bad. 

 

 

 

 



 

 

3.3 Bag of Features 

In the Bag of Features approach, low-level cues, the cues that have no object 

specific information, decide the segmentation exclusively. Low-level cues of brightness, 

texture, color or motion segment the image; these segments are then fed to some 

recognition engine.  In the approach of Rabinovich et al. [2006, 2007a, 2007b], segments 

obtained from a stability based segmentation algorithm are fed to a recognition engine.  

The Bag of Features approach is inspired by the Bag of words algorithm in natural 

language processing. Every document is assumed to have words that are typical of a 

particular class of document. For example, physics documents will have different words 

than political documents. In the Bag of Words algorithm, the structure and context of the 

words is ignored and some statistic that is typical of the occurrence of those words in a 

particular class of document is learned. Hence, the categorization of a new document 

occurs exclusively on the statistics of the words, ignoring any other information. This 

approach has been known to work well in natural language processing.  

A similar approach has been adopted by the computer vision community. The 

algorithm starts by extracting features from the training images. Since the number of 

features can be very large, clustering is used to significantly reduce the number of 

features. These features are clustered to form visual words; the resulting collection of 

visual words is called a visual vocabulary or codebook of visual words. Given a test 

image, features are extracted and the closest visual word is assigned to the test image.  

The Bag of Features model in computer vision stands as one of the most popular 

recognition algorithms. It is based on the premise that similar objects contain similar 



 

parts and the relative location of parts is not very important in recognition. Even with no 

spatial information used in recognition, surprisingly, this method works well empirically 

Imagine, for example, that the recognition of images of horses is our problem. The Bag of 

Features algorithm, when trained on images of horses, will learn statistics of various parts 

of horses. That is, the classifier will be trained to recognize feet, mouth, legs, eyes, etc. of 

a horse. When the trained classifier receives a new image of a horse, the classifier will 

verify that the image contains feet, legs, mouth, eyes, and other parts typical of a horse. If 

it finds these parts, it will recognize the image as a horse. There is one downside: the 

algorithm does not care about the relative locations of these parts. Hence, a weird 

creature that looks like a horse but has eyes located on its foot will be recognized as a 

horse too. Nevertheless, statistically, this algorithm works surprisingly well in some 

cases.  

In the implementation for the purpose of this thesis, the first stage is extraction of 

SIFT (Scale Invariant Features Transform) features (Lowe 1999). SIFT features, one of 

the most widely used features in computer vision, are known to extract the most 

distinctive features from an image. SIFT features are invariant to scale, orientation and 

translation, while being partially invariant to illumination and noise. The first stage in the 

extraction of SIFT features is scale-space-extrema detection to detect various interest 

points in the image. The image is first blurred by applying a Gaussian filter and 

subsequently applying a Difference of Gaussian filter at various scales and obtaining 

local scale space extrema (interest points) at different points in the image. In the second 

stage, the interest points that are low contrast and poorly localized along the edges are 

discarded. Then for each interest point, the gradient orientation histogram  is computed  



 

around  the interest point, and  the most dominant orientation, that is, the one with highest 

magnitude (peak in the histogram),  is assigned to the interest point. A 16x16 pixel 

window is taken around this point and split into 16 4x4 windows. In each 4x4 window, 

the gradient orientation histogram of 8 bins  is computed.   Finally, an interest point 

descriptor is computed by taking the values of all the bins, that is, 4x4x8 = 128. The 128 

length vector is normalized to obtain the final descriptor vector.  

The next stage of Bag of Features is clustering of features in an unsupervised 

manner. Clustering algorithms such as vector-quantization or k-means may be used for 

this purpose.  From the feature vectors of training images, a dictionary of visual words is 

constructed. A “visual word” is a patch in an image, and it is used here in analogy to Bag 

of Words models in natural language processing, where we have actual words.  The 

feature vectors obtained from the training  images are clustered to form a visual words 

dictionary, where each cluster center represents a visual word.  That is, each visual word 

is representative of similar feature vectors. For each category, a histogram is constructed 

by learning the frequencies of the visual words in that category. The test image is 

recognized by measuring its distance from the histograms of all categories in the training 

images. The distance measure used could be Manhattan, Euclidean or any other useful 

measure. 

The performance of the Bag-of-Features algorithm may depend on various design 

issues (Hara & Draper 2011). The designer has to make a decision on the choice of 

features such as SIFT, SURF (Bay et al. 2008) or any other feature. Another decision is 

on the choice of clustering algorithm such as k-means, vector-quantization, or any other 

similar algorithm. Another decision is about the distance measure such as Manhattan 



 

distance, Euclidean distance, or any other. All of these decisions have the potential to 

affect the performance of the algorithm.  

In spite of its success, the Bag of Features algorithm is not free from problems 

(Hara & Draper 2011). There are several challenges that need to be addressed. There is 

no spatial information, hence, the algorithm can be challenging for applications in which 

spatial information or relative location of objects is critical. Recognizing relationships 

between various objects could be hard with this algorithm. Another challenge is that there 

is no semantic meaning attached to the visual codewords. A single visual word may be 

composed of features that may have come from different parts of an image.  

In the approach used in this thesis, segmentation as a preprocessing step can be 

combined with the Bag of Features algorithm. Using the stable segmentation algorithm 

described above, each segment becomes a stand-alone image. Each segment is fed to a 

Bag of Features recognition engine for classification. For each segment, a label is 

obtained. Finally, using some voting criteria, each segment votes for a label and finally 

based on the maximum score on the voting criteria, the test image is classified. 

3. 4  HMAX  

The HMAX model (Serre et al. 2007) accounts for the rapid categorization 

abilities of the human brain. In particular, it accounts for object selectivity and 

invariance. Recognition of images in a given class is often hard because a new image in 

the class can have a wide variety of poses, sizes, colors, textures, clutter and background 

noise. Hence, it becomes important that we tune for object selectivity and invariance. 

HMAX is a hierarchical model with several layers, where the layers alternate between 



 

selectivity and invariance. The HMAX model (Figure 4) is composed of S units and C 

units, which are described below.  

The Simple Units:  Simple (S) Units are used to build object selectivity. S-units 

are implemented as Gabor Filters that are tuned to various stimuli at several scales and 

orientations.   Gabor filters are used for the purpose of the pattern matching between the 

input and the prototype represented by that filter. More specifically, S units compare the 

input to the stored prototype using a Gabor function, thus obtaining the activation, which 

is a measure of the similarity between the input obtained and the prototype. Across all 

units, activation map is obtained. Gabor filters have been used to model simple cells in 

the visual cortex of the brain. 

In image processing, Gabor filters are used in edge detection, feature extraction 

and texture representation. Mathematically, Gabor filters, in the context of HMAX are 

described in (Mutch and Lowe 2008) as: 
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where X = x cos θ− y sinθ and Y  = x sin θ+ y cos θ 

and parameter γ is aspect ratio,   is wavelength, σ is effective width and  θ is the    

orientation with respect to origin. Here x and y are the coordinates of the pixel of  

a particular patch under consideration.  

 

The Complex Units: Complex (C) Units are used to provide invariance to position 

and scale. The input to a C unit is a small group of S-responses. C units compute the max 

function on the responses of S-units that have the same orientation but different scales 

and positions.  

 



 

The HMAX model is built by alternating between S and C units. There are four 

layers in most implementations – S1, C1, S2, and C2. S1 units may correspond to edges 

in an input image, whereas S2 units correspond to more complex groupings of edges.  

 

 Figure 4. The HMAX model (Figure from Isik et al. 2011). S units act as feature detectors and C units are 

used to build invariance to position and scale for a particular orientation.  

 

 

 

 

 

 



 

 

3.4 Dataset 

The dataset used for the purpose of all the experiments in this thesis is Caltech-

101 (Fei-Fei et al. 2004). Caltech 101 has emerged as one of the standard datasets in the 

computer vision community. There are 101 categories in the dataset. Researchers use this 

datasets to evaluate and compare their systems. However, the dataset has few 

shortcomings. According to the Griffin et al. (2006), the dataset is too easy because 

images are left-right aligned and it will saturate performance. Another problem with the 

dataset is that images cover most of the area, however, in real world images; this may not 

be the case. In addition; there is not enough noise or clutter in the images. We use 35 

categories from this datasets. Examples of images from the dataset are shown in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

                          

                           

 

                         

                            Figure 5, Sample Caltech -101 Images 

 

 

     



 

 

                                                Chapter 4 

                           Experimental Methodology and Results 

In this chapter we describe the methodology and results of various experiments. 

4.1 Experiment 1: Segmentation Preceding Bag of Features 

This experiment is to test the hypothesis that segmentation as a preprocessing step 

helps recognition. For this experiment, the Bag of Features algorithm was trained as was 

described above in Section 3.3. As described in that section, the features are extracted 

from the training images using the SIFT algorithm. The features are clustered using a 

clustering algorithm called hierarchical k-means. The cluster centers act as visual words. 

The frequencies of these visual words are learned for each category and a histogram of 

visual word representing each training category is formed. When a test image is fed to 

Bag of Features algorithm, its features are extracted using SIFT and a histogram of visual 

words is constructed. The test image is assigned the category whose histogram most 

closely resembles the histogram of the test image.   

The experiment is divided into three parts. In the first part, the training is on 

unsegmented images and testing is also on unsegmented images. In the second part, the 

training is on manually segmented images and testing is also on manually segmented 

images. One may ask why test on manually segmented images? In an ideal world, we 

want our original segmentations obtained from the segmentation algorithm to resemble 

the manual segmentations. However, as of current state-of-the-art in the segmentation, 

this is far from reality. Someday, when progress is made in segmentation driven systems, 

we will have ideal segments resembling ground truth segmentations. Hence, we would 



 

like to have a crisp idea of how much better we can do with such ideal segmentations. In 

addition, this experiment can provide us with an idea of how far the segmentation driven 

recognition paradigm is from its original goal.  

 In the third part, the training is on manually segmented images and testing is on 

stable segmentation images. Ideally, here training should also have been on stable 

segmentation images. However, most automatic segmentation algorithms of our era yield 

horrible segments. To make valid training, I trained on manually segmented images. In many 

ways, this experiment is similar to the one conducted by Rabinovich et al. (2007a, b).  

The implementation and parameters used for the Bag of Features algorithm were 

default in the implementation of Andrea Vedaldi (2010). The dataset used was Caltech-

101. Ten categories were selected from this dataset. Thirty training images and ten test 

images were used for each category.  

For the stability based segmentation algorithm, the only cues used were brightness 

and texture. Each test image is segmented into 54 segments. The number 54 is obtained 

by the model order value of parameter k= 10 (Rabinovich et al. 2007). This means that in 

the first round, each image is segmented into two segments only. In the second round, 

each image is segmented into three segments. In the third round, each image is segmented 

into four segments, and so on. Hence, for k=10, we obtain (2+3+4 +5+…+10 = 54) 54 

segments. Note that some of the segments will be very small and some of them will be 

large, whereas others will be of medium size. Each segment obtained by this method is 

made into a standalone image, and is fed to the Bag of Features algorithm for 

categorization. Once the category of all segments corresponding to a particular image is 

obtained, a final label is assigned to a test image by plurality voting by all the segments.   



 

Plurality voting is used in these experiments. This scheme has many advantages. It is 

simple and direct. It helps us in capturing insights that will help us in designing a powerful 

recognition system. If we are to adopt some segmentation-recognition scheme, where many 

segments occur in ensembles, then at least plurality must be attainable by the segments, if 

absolute majority is not possible. What is aimed at here is direct insight into segmentation 

algorithms of our era. If we are to build and compete with state-of-the-art recognition 

systems, we do not seriously want to rely on any segmentation algorithm that will not even 

produce segments that are even capable of attaining a plurality vote. The real problem is how 

to get a good segmentation when getting a good segmentation depends on getting a good 

recognition, and getting a good recognition depends on getting a good segmentation. This 

calls for feedback in such systems. 

The results for the Experiment 1 are shown in Table 1. The results are described 

in the form of confusion matrices. The results for recognition without segmentation are 

shown in Table 2. The Y-axis represents the actual category and X-axis represents the 

predicted category. For example, in Table 2, of the 10 test images of an ant, 3 are 

recognized as an ant, 2 as beaver, 1 as crab, 1 as crayfish and 3 as crocodile_head. The 

results of recognition with manual segmentation are shown in Table 3. The results of 

recognition with stable segmentation are shown in Table 4. The confusion matrix is 

useful in many situations as a visualization tool. It can capture information that other 

types of measurement may not be able to capture. For example, Table 2 tells us that 5 

crab images were recognized as crocodile_head. This information of inter-category 

confusion can be critical information about the behavior of a system.   

 

 



 

 

 

Summary of Experiment Methodology for Stable Segmentation 

Unsegmented Images 

  Training: Unsegmented images 

  Testing: Unsegmented images 

  Classification of test images: Bag of Features 

 

Manually Segmented Images 

  Training: Manually segmented images 

  Testing: Manually segmented images 

  Classification of test images: Bag of Features 

 

 

Stable Segmentation Images 

  Training: Manually segmented images 

  Testing: Stable segmentation images.   

  Classification of test images: Each segment is fed to Bag of Features  

 algorithm to obtain its own label.  The final classification of the 

   image is decided by plurality vote of the segments 

 

 

 

Segmentation 

Method 

Unsegmented Manually 

Segmented 

Stable 

Segmentation 

Accuracy        37%         45%      33% 

Table 1: Bag of Features, Comparison of methods using unsegmented, manually segmented, and stable 

segmentation images. Accuracy is defined as the percentage of the test images that were correctly 

classified. The experiments were conducted on 10 categories from caltech-101. The random guesser would 

obtain an accuracy of 10%.  

 

 

 

 

 

 



 

 

 

                               

  

Table 2: Confusion Matrix: 10 categories (Bag of Features, No Segmentation). Y-axis is actual category 

and x-axis is predicted category. The matrix shows what number of test images of actual category were 

classified as the predicted category.  The color scale used is Blue-Green-Red, where blue represents the 

lowest numbers and red the highest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 
 

   

 

 

Table 3: Confusion Matrix: 10 categories (Bag of Features, Manually Segmented). Y-axis is actual 

category and x-axis is predicted category. The matrix shows what number of test images of actual category 

were classified as the predicted category.  The color scale used is Blue-Green-Red, where blue represents 

the lowest numbers and red the highest. 

 

 

 

 

 

 

 

 

 



 

 

 

 

                         

Table 4: Confusion Matrix: 10 categories (Bag of Features, Stable Segmentation). Y-axis is actual category 

and x-axis is predicted category. The matrix shows what number of test images of actual category were 

classified as the predicted category.  The color scale used is Blue-Green-Red, where blue represents the 

lowest numbers and red the highest. 

 

Another result of significance is of the change in the model order with the recognition 

accuracy. Here, model order is the number of segments that participate in the recognition. In 

Table 5, model order of 2 means that if an image is partitioned into 2 segments only, the 

recognition accuracy is 16%. Model order of 3 implies that if an image is partitioned into 3 

segments plus the 2 segments of model order 2, than an accuracy of 16% is achieved. Hence 

the number of segments accumulates with increasing value. For each model order, plurality 

vote is used. In a similar analysis, Rabinovich et al. (2007) had shown that  beyond 35 

segments, the recognition accuracy is not significantly impacted.  

 



 

 

Model Order Number of 

Segments 

Recognition 

accuracy 

stable 

(Segmentation 

of test images, 

Bag of Features 

with plurality 

voting) 

Random 

Guesser 

Accuracy 

           2    2 16% 10% 

           3   5 16% 10% 

           4   9 19% 10% 

           5   14 22% 10% 

           6   20 18% 10% 

           7   27 19% 10% 

           8   35 20% 10% 

          9   44 19% 10% 

         10   54 21% 10% 

                         Table 5: Change in recognition accuracy with increasing model order for stable  

                         segmentation test images. 

 

4.2 Experiment 2: Segmentation preceding HMAX 

The experiment is exactly similar to the Experiment 1 except with few differences. The 

Bag of Features algorithm is replaced by HMAX and multiclass SVM. HMAX acts as a 

feature extractor, and multiclass SVM acts a classifier. The HMAX model is initially 

trained with training images of all the 10 categories with 1000 prototypes. After training 

of HMAX is finished, it is switched to the inference mode. In the inference mode, the 

feature vectors of all the training images are obtained from HMAX. Separately, the 

feature vectors of testing images are obtained from HMAX. The feature vectors of 

training images are used to train the multi-class support vector machine (SVM). SVM is a 

machine learning algorithm that divides the datapoints in the plane in a way so that the 



 

partition between two classes of data is maximum. This can be used to classify one 

category vs another. It is possible to extend such binary class SVMs to multi-class SVMs. 

This can be clarified with help of an example. For example, our goal is to classify 

categories A vs B vs C vs D. Multi-class SVMs will first classify A vs All. If the category 

is not A, then it will classify B vs All, and so on. After the SVM is trained with training 

feature vectors obtained from HMAX, it is fed with the feature vectors of the testing 

images obtained from HMAX. Each testing image is classified by the SVM. The rest of 

the set-up of this experiment is similar to that of Section 4.1. The HMAX implementation 

used for the purpose of this thesis was of Mick Thomure (2011). The SVM 

implementation was of Thorsten Joachims (2008). The results for Experiment 2 are 

shown in Table 6. The results for recognition without segmentation are shown in Table 7. 

The results of recognition with manual segmentation are shown in Table 8. The results of 

recognition with stable segmentation are shown in Table 9. 

Summary of Experiment Methodology for Stable Segmentation 

Unsegmented Images 

  Training: Unsegmented images 

  Testing: Unsegmented images 

  Classification of test images: HMAX followed by multi-class SVM. 

 

 

Manually Segmented Images 

  Training: Manually segmented images 

  Testing: Manually segmented images 

  Classification of test images: HMAX followed by multi-class SVM. 

 

 

 

Stable Segmentation Images 

  Training: Manually segmented images 

  Testing: Stable segmentation images.   

  Classification of test images: Each segment is fed to the HMAX  



 

algorithm to obtain its feature vector. The feature vector of each 

segment is fed to the multi class SVM for labeling. The final 

classification of the image is decided by plurality vote of the segments 

 

 

 

 

 

Segmentation 

Method 

Unsegmented Manually 

Segmented 

Stable 

Segmentation 

Accuracy        29%         21%      9% 

Table 6: HMAX, Comparison of methods using unsegmented, manually segmented, and stable 

segmentation images. Accuracy is defined as the percentage of the test images that were correctly 

classified. The experiments were conducted on 10 categories from caltech-101. A random guesser would 

obtain an accuracy of 10%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Table 7: Confusion Matrix: 10 categories (HMAX, No Segmentation). Y-axis is actual category and x-axis 

is predicted category. The matrix shows what number of test images of actual category were classified as 

the predicted category. The color scale used is Blue-Green-Red, where blue represents the lowest numbers 

and red the highest. 

 

 

 

 

 

 

 

 

 

 



 

                

  

             

Table 8: Confusion Matrix: 10 categories (HMAX, Manually Segmented). Y-axis is actual category and x-

axis is predicted category. The matrix shows what number of test images of actual category were classified 

as the predicted category. The color scale used is Blue-Green-Red, where blue represents the lowest 

numbers and red the highest. 

 

 

 

 

 

 

 

 

 

 

 



 

 

                            

Table 9: Confusion Matrix: 10 categories (HMAX, Stable Segmentation). Y-axis is actual category and x-

axis is predicted category. The matrix shows what number of test images of actual category were classified 

as the predicted category. The color scale used is Blue-Green-Red, where blue represents the lowest 

numbers and red the highest. 

 

4.3 Experiment 3: Segmentation preceding Bag of Features (Scaling up) 

One of the purposes of this experiment is to explore the scalability of recognition 

algorithms. Traditionally, many computer vision algorithms have not had success with 

respect to the scalability. If we are to build the state of the art object recognition systems, 

we need to have algorithms that scale up on many aspects. Here, we test the scalability of 

the recognition algorithms with the number of categories. The experiments are conducted 

for a certain number of categories, 10, 20, 30, and 35.   

Unlike previous experiments, these experiments are conducted by training on 

unsegmented images, and testing on both segmented images and unsegmented images. 

Since the training is only on unsegmented images, the experiments are bit biased towards 



 

unsegmented images. However, there are two reasons why training on unsegmented 

images may be a better idea. First, if our goal is of making large scale general purpose 

computer vision system with large number of categories, it may not be pragmatic to 

obtain manually segmented images for training. Second, training on automatic segmented 

images may not be a good idea as the number of categories becomes very large. The 

automatic segmentation algorithms of our era do not yield segments that are good only 

few times. Hence, for training, it will only make sense to select segments that contain an 

actual object. This extra selection step may not be a feasible option if we are dealing with 

very high number of categories. Hence, the case for training on unsegmented images.  

The results for Experiment 3 are shown in Tables 10 and 11. The results for recognition 

without segmentation are in Table 10 and results for the recognition with segmentation 

are in Table 11. The results are described in the form of confusion matrices. The Y-axis 

represents the actual category and X-axis represents the predicted category. The results 

for recognition without segmentation are shown in Tables 12, 13, 14 and 15. The results 

of recognition with segmentation are shown in Tables 16, 17, 18 and 19.  

 

Summary of Experiment Methodology 

(Comparison of 10, 20, 30, 35 categories)  

 

Unsegmented Images 

  Training: Unsegmented images 

  Testing: Unsegmented images 

  Classification of test images: Bag of Features 

 

 

 

Stable Segmentation Images 

  Training: Unsegmented images 

  Testing: Stable segmentation images.   



 

  Classification of test images: Each segment is fed to Bag of Features  

algorithm to obtain its own label.  The final classification of the 

  image is decided by plurality vote of the segments 

 

                             Results (Experiment 3) 

 

Categories 10 20 30 35 

Accuracy   37% 30.5% 21.3%  21.7% 

 Table 10: Bag of Features, Recognition with No Segmentation (Control). Accuracy is defined as the 

percentage of the test images that were correctly classified.  Training is on unsegmented images and testing 

is on unsegmented images.  

 

 

Categories 10 20 30 35 

Accuracy   36%  24.5% 15.3%  15.7% 

Table 11: Bag of Features, Recognition with Segmentation. Accuracy is defined as the percentage of the 

test images that were correctly classified. The label of each test image was obtained by voting among its 

segments. Training is on unsegmented images and testing is on stable segmentation images.  

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Table 12: Confusion Matrix: 10 categories (Bag of Features, No Segmentation). Y-axis is actual category 

and x-axis is predicted category. The matrix shows what number of test images of actual category were 

classified as the predicted category. The color scale used is Blue-Green-Red, where blue represents the 

lowest numbers and red the highest.  
 

 

 

 

 

 

 

 



 

 

 

 
 

 
Table 13: Confusion Matrix: 20 categories (Bag of Features, No Segmentation). Y-axis is actual category 

and x-axis is predicted category. The matrix shows what number of test images of actual category were 

classified as the predicted category. The color scale used is Blue-Green-Red, where blue represents the 

lowest numbers and red the highest.  
 

 

 

 

 

 



 

 

       

             
    

                   

 
Table 14: Confusion Matrix: 30 categories (Bag of Features, No Segmentation). Y-axis is actual category 

and x-axis is predicted category. The matrix shows what number of test images of actual category were 

classified as the predicted category. The color scale used is Blue-Green-Red, where blue represents the 

lowest numbers and red the highest.  
 

 

 

 

 

 

 

 

 



 

 
 

 
 

 
Table 15: Confusion Matrix: 35 categories (Bag of Features, No Segmentation). Y-axis is actual category 

and x-axis is predicted category. The matrix shows what number of test images of actual category were 

classified as the predicted category. The color scale used is Blue-Green-Red, where blue represents the 

lowest numbers and red the highest.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

                
 

 
Table 16: Confusion Matrix: 10 categories (Bag of Features, Segmentation). Y-axis is actual category and 

x-axis is predicted category. The matrix shows what number of test images of actual category were 

classified as the predicted category. The color scale used is Blue-Green-Red, where blue represents the 

lowest numbers and red the highest.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 
 
 Table 17: Confusion Matrix: 20 categories (Bag of Features, Segmentation). Y-axis is actual category and 

x-axis is predicted category. The matrix shows what number of test images of actual category were 

classified as the predicted category. The color scale used is Blue-Green-Red, where blue represents the 

lowest numbers and red the highest.  
 

  

 

 

 

 

 

 



 

 
   

   

  
 
Table 18: Confusion Matrix: 30 categories (Bag of Features, Segmentation). Y-axis is actual category and 

x-axis is predicted category. The matrix shows what number of test images of actual category were 

classified as the predicted category. The color scale used is Blue-Green-Red, where blue represents the 

lowest numbers and red the highest.  
 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 
                        

         
 

 
Table 19: Confusion Matrix: 35 categories (Bag of Features, Segmentation). Y-axis is actual category and 

x-axis is predicted category. The matrix shows what number of test images of actual category were 

classified as the predicted category. The color scale used is Blue-Green-Red, where blue represents the 

lowest numbers and red the highest.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

4.4 Experiment 4 : Segmentation preceding HMAX (Scaling up) 

The experiment is similar to the experiment 3 except that it is conducted on HMAX 

features and multi-class SVM, instead of the Bag of Features. The results for the 

Experiment 4 are shown in Tables 20 and 21. The results for recognition without 

segmentation are in Table 20 and results for the recognition with segmentation are in 

Table 21. The results are described in the form of confusion matrices. The Y-axis 

represents the actual category and X-axis represents the predicted category. The results 

for recognition without segmentation are shown in Tables 22, 23, 24 and 25. The results 

of recognition with segmentation are shown in Tables 26, 27, 28 and 29.  

 

Summary of Experiment Methodology 

(Comparison of 10, 20, 30, 35 categories)  

 

Unsegmented Images 

  Training: Unsegmented images 

  Testing: Unsegmented images 

  Classification of test images: HMAX followed by multi-class SVM. 

 

 

 

 

 

Stable Segmentation Images 

  Training: Unsegmented images 

  Testing: Stable segmentation images.   

  Classification of test images: Each segment is fed to the HMAX  

algorithm to obtain its feature vector. The feature vector of each 

segment is fed to the multi class SVM for labeling. The final 

classification of the image is decided by plurality vote of the segments 

 

 

 

 



 

 

 

 

           

 

 

                   Results (Experiment 4) 

 

Categories 10 20 30 35 

Accuracy   29% 27.5% 16%  15.7% 

Table 20: HMAX, Recognition with No Segmentation (Control). Accuracy is defined as the percentage of 

the test images that were correctly classified. Training is on unsegmented images and testing is on 

unsegmented images.  

 

 

 

Categories 10 20 30 35 

Accuracy 21%  11% 8.3%  5.4% 

Table 21: HMAX, Recognition with Segmentation. Accuracy is defined as the percentage of the test 

images that were correctly classified. The label of each test image was obtained by voting among its 

segments. Training is on unsegmented images and testing is on stable segmentation images.  
 

 

 

 

 

 

 



 

 

 

 

 

 

 

  

                             

 

Table 22: Confusion Matrix: 10 categories (HMAX, No Segmentation). Y-axis is actual category and x-

axis is predicted category. The matrix shows what number of test images of actual category were classified 

as the predicted category. The color scale used is Blue-Green-Red, where blue represents the lowest 

numbers and red the highest.  
 

 

 

 

 

 



 

 

 

 

 

 

 

 

 Table 23: Confusion Matrix: 20 categories (HMAX, No Segmentation). Y-axis is actual category and x-

axis is predicted category. The matrix shows what number of test images of actual category were classified 

as the predicted category. The color scale used is Blue-Green-Red, where blue represents the lowest 

numbers and red the highest.  

 



 

 

 

 

 

 

 

 

 

Table 24: Confusion Matrix: 30 categories (HMAX, No Segmentation). Y-axis is actual category and x-

axis is predicted category. The matrix shows what number of test images of actual category were classified 

as the predicted category. The color scale used is Blue-Green-Red, where blue represents the lowest 

numbers and red the highest.  
 

 

 

 



 

 

 

 

 

 

 

 Table 25: Confusion Matrix: 35 categories (HMAX, No Segmentation). Y-axis is actual category and x-

axis is predicted category. The matrix shows what number of test images of actual category were classified 

as the predicted category. The color scale used is Blue-Green-Red, where blue represents the lowest 

numbers and red the highest.  

 

 

 

 

 



 

 

 

 

                            

 

Table 26: Confusion Matrix: 10 categories (HMAX, Segmentation). Y-axis is actual category and x-axis is 

predicted category. The matrix shows what number of test images of actual category were classified as the 

predicted category. The color scale used is Blue-Green-Red, where blue represents the lowest numbers and 

red the highest.  
 

 

 

 

 

 

 

 

 

 



 

 

 

 

Table 27: Confusion Matrix: 20 categories (HMAX, Segmentation). Y-axis is actual category and x-axis is 

predicted category. The matrix shows what number of test images of actual category were classified as the 

predicted category. The color scale used is Blue-Green-Red, where blue represents the lowest numbers and 

red the highest.  
 

 

 

 

 

 



 

 

 

  

Table 28: Confusion Matrix: 30 categories (HMAX, Segmentation). Y-axis is actual category and x-axis is 

predicted category. The matrix shows what number of test images of actual category were classified as the 

predicted category. The color scale used is Blue-Green-Red, where blue represents the lowest numbers and 

red the highest.  
 

 

 

 

 

 

 

 



 

 

 

 

 Table 29: Confusion Matrix: 35 categories (HMAX, Segmentation). Y-axis is actual category and x-axis is 

predicted category. The matrix shows what number of test images of actual category were classified as the 

predicted category. The color scale used is Blue-Green-Red, where blue represents the lowest numbers and 

red the highest.  

 

 

 

 

 

 

 



 

4.5. Results and Discussion 

The results obtained on the Bag of Features and HMAX algorithms (Tables 1 – 

29) show that in our experiment, automatic segmentation as a preprocessing step does not 

increase recognition accuracy. One reason could be that the stable segmentation 

algorithm was not able to obtain very high quality segments. Segmentation should in 

principle help recognition if we are able to extract spatial information specific to object 

and eliminate background noise (Malisiewicz and Efros 2007). However, if in the most of 

the segments that we obtained, we are only able to extract partial spatial information and 

unable to reduce background noise, then the performance will be adversely affected.  

For the training on manually segmented images and testing on the manually segmented 

images, in the Bag of Features approach, the manually segmented images outperformed the 

unsegmented images. This is expected because the training and testing occurs exclusively on 

the actual objects and there is no hindrance from background noise. However, in a weird 

result, for the HMAX model, the unsegmented images outperformed the manually segmented 

images. This was unexpected. However, there are two explanations. It could be that the 

HMAX not only learned the background noise for the unsegmented images, but it learned it 

in a way so as to positively affect the recognition accuracy. Another explanation is that 

experiments of this nature will always be sensitive to the choice of the data. Maybe on 

another data set this will not happen. 

What we know of the segmentation algorithms is that each of them have their own 

advantages and disadvantages, and the results obtained are highly sensitive to parameters, 

type of image and a plethora of other factors (Pantofaru 2008).  It may be that we may 

not have a single segmentation algorithm that is single-handedly capable of extracting 

useful spatial information and reducing background noise. In order to circumvent the 



 

problem, some authors have suggested using multiple segmentation algorithms and 

combining their results to form high quality segments (Malisiewicz and Efros 2007, 

Pantofaru 2008 ).  

Another significant question that I intended to answer was of scalability. It is clear 

from Tables 9, 10, 19 and 20 that recognition accuracy does not scale well with increase 

in number of categories This is not surprising because as we increase the number of 

categories, various categories are likely to get confused with one another. For example, 

dogs and cats can easily get confused with each other. 

Looking at the qualitative results of the stability based segmentation in chapter 3 

(Figure 3), we see that some segmentation are very good while others are bad. 

Subjectively, the segmentation algorithm does indeed produce good segmentation in 

some cases; however, bottom-up segmentation algorithms cannot be relied upon to 

always produce useful segmentations.  

 

 

 

 

 

 

 

 

 

 

 



 

        

                                        Chapter 5 

                         Conclusion and Future Work 

The take home message of this thesis is simple: Automatic segmentation as a 

direct preprocessing step to recognition does not seem to improve recognition. However, 

does segmentation still have something to contribute to recognition?  Using multiple or 

blended segments (Malisiewicz and Efros, 2007, Pantofaru 2008, Russell et al. 2006, Tu 

et al. 2005) may yield high quality segments that may actually increase recognition 

accuracy. This popular approach that is gaining in prominence makes the use of multiple 

segmentations obtained from multiple segmentation algorithms. The specific information 

captured by each algorithm is different from another. Hence, we need to find a way to 

leverage the advantages of each type of algorithm in a single setting. If we use multiple 

segmentation algorithms, then each algorithm can correct and compensate for the others’ 

weaknesses, and thus possibly obtain a better segmentation. Significant progress has been 

made in this direction by Malisiewicz and Efros (2007) Russell et al. (2006), Tu et al. 

(2005), and Pantofaru (2008). 

Another reason that segmentation might not produce good results is because of 

intra-category confusion. We know that segmentation is as yet an unsolved problem and 

determining high quality segments is not always possible with current segmentation 

algorithms. Hence, most algorithms will not be able to correctly segment-out a given 

object for the requisite application. This can possibly lead to intra-category confusion. 

For example, imagine a segment that contains a dog's body parts except for the head. 

Imagine another segment that contains a cat's body parts except the head. Since body 



 

parts of both dogs and cats are very similar, there is a chance for confusion by a 

recognition engine. One of the goals of segmentation is to successfully capture spatial 

information, which if correctly captured, could possibly lead to successful recognition. 

But even minute failure to capture spatial information might significantly curtail any 

benefits that we might accrue for segmentation. 

Incorporation of feedback is the most natural next step in segmentation-driven 

recognition models. Psychologists and neuroscientists have long known the role of 

feedback in the human recognition processes. By incorporating feedback, segments will 

have a shot at self-correction and self-modification based on the feedback. The feedback 

coming from the recognition system can improve the quality of the segmentation. Thus, 

by forming an interactive process of top-down and bottom-up segmentation, recognition 

accuracy can be increased. There are obvious challenges for such a system. Such a 

system will have to address time and space complexity issues. Moreover, we do not yet 

know how to algorithmically create such a system, though there is a great deal of current 

research on the subject.  
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