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Abstract

Much research as of late has focused on biologically inspired vision models that

are based on our understanding of how the visual cortex processes information.

One prominent example of such a system is HMAX [17]. HMAX attempts to

simulate the biological process for object recognition in cortex based on the model

proposed by Hubel & Wiesel [10].

This thesis investigates the ability of an HMAX-like system (GLIMPSE [20])

to perform object-detection in cluttered natural scenes. I evaluate these results

using the StreetScenes database from MIT [1, 8]. This thesis addresses three

questions: (1) Can the GLIMPSE-based object detection system replicate the

results on object-detection reported by Bileschi using HMAX? (2) Which features

computed by GLIMPSE lead to the best object-detection performance? (3) What

effect does elimination of clutter in the training sets have on the performance of

our system?

As part of this thesis, I built an object detection and recognition system us-

ing GLIMPSE [20] and demonstrate that it approximately replicates the results

reported in Bileschi’s thesis. In addition, I found that extracting and combin-

ing features from GLIMPSE using different layers of the HMAX model gives the

best overall invariance to position, scale and translation for recognition tasks, but

comes with a much higher computational overhead. Further contributions include

the creation of modified training and test sets based on the StreetScenes database,

with removed clutter in the training data and extending the annotations for the

detection task to cover more objects of interest that were not in the original an-

notations of the database.
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Chapter 1 Introduction

Computer vision has been an area of research for many years, tackling the problem

of developing algorithms and systems to recognize and understand visual infor-

mation. Such algorithms can range from trying to recognize pictures of particular

objects to more recent work on finding and understanding what the underlying

context and meaning in a picture is. Naturally, much research focused on try-

ing to understand how we as humans use our eyes and brains to understand and

recognize visual information rather than trying to develop completely “new” algo-

rithms. Hubel and Wiesel pioneered work on understanding how the visual cortex

does recognition in cats, and it is from this work that HMAX was born. HMAX

was also inspired by the Neocognitron proposed by Fukushima [9] and further

extensions of HMAX were developed by Serre et al. [17, 18, 19].

In computer vision, object recognition and object detection are sometimes

considered separate (though related) tasks. Recognition deals with the task of

feeding an image of a single object into some recognition system and seeing if it is

correctly identified in the image or not. As an example, we might show the system

an image of a car and an image of a tree and see if our system can recognize which

one is the image of the car.

Object detection, though similar to recognition, is a much harder task because

we are asking our algorithm to find all the locations of some object in an uncon-

strained setting. These settings can be anything from finding a pair of glasses on a

table full of objects to trying to develop software for security cameras to detect the

location of all people walking by in real time. The task addressed in this thesis is
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to find the location of all cars in a given outdoor image (a “street scene”). Figure

1.1 shows an example of object recognition while Figure 1.2 shows an example of

object detection.

Figure 1.1: Sample image from the training set showing an ideal case of the
problem of object recognition. Notice that the object is fairly centred in the
image and that there is not much else to potentially add clutter when extracting
features.

Figure 1.2: Sample image from the test set showing the type of natural settings
in the dataset. In a perfect scenario for object detection our system would find all
the bounding boxes that surround the cars while returning no incorrect detection
locations.

Figure 1.1 has a car centred in the image and the car is the only object, besides

some background clutter at the edges. Given enough training data showing this

object class, here ,“car”, modern computer vision systems can learn a model that

describes a car. We can then show the model a new “car” image and it should be

able to tell that the image is that of a car. Figure 1.2 illustrates the much harder

task of finding the location of cars and surrounding each car with a bounding box.

Now the task has changed from identifying a single object (without explicitly

2



locating that object in the image) to finding the locations of all instances of the

object in a cluttered scene. I use the term “cluttered” to mean images taken in

natural settings that contain many different types of objects in the foreground and

background.

Humans perform this sort of task fairly easily because we are able to learn

generalities about certain types of objects such as cars and other people. This

generalization helps us to be able to tell that a Cadillac and a Subaru are both cars

of some sort. On top of being able to identify common features between different

instances of the same object categories, our brains are able to recognize these

objects given different translations and even recognize them if they are occluded.

Current-day computer vision systems are ,as yet, unable to come close to matching

human performance on such tasks.

The work presented in this thesis looks at the application of the HMAX vision

model to recognition and detection tasks in natural settings. When I say natural

settings I mean images that have not been “staged” or setup in a way that might

make the task easier. Essentially this means just taking images that were shot on

the street and using them for training and testing of HMAX.

Bileschi [1] applied HMAX to the object detection task for three categories:

Person, Bike, and Car. The object-detection system I built is based on Bileschi’s

StreetScenes system. Bileschi’s code is freely available online [8], but is written in

MatLab.

My system is implemented in Python and uses Thomure’s GLIMPSE imple-

mentation of HMAX [2, 20] (written in C++ and Python). Reimplementing

Bileschi’s system has allowed me to attmept to verify his published results as

well as to modify the system for additional experiments not currently supported

in the original source code.
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1.1 Thesis Contributions

The contributions of this thesis include:

• The development of a Python implementation of object recognition and de-

tection algorithms based on Bileschi’s StreetScenes project [1]. My imple-

mentation consists of the recognition and detection scripts, and uses Tho-

mure’s GLIMPSE HMAX system [20].

• Experiments to test the model’s recognition capabilities and test the detec-

tion algorithms ability to find object locations.

• Modification of the training and testing sets from the original StreetScenes

database to create new training and testing sets to be used with our exper-

iments. Training sets were created from the original StreetScenes database

for each of the three object classes and then I manually removed training

images that contained “clutter”. What I call clutter in the training sets is

when a negative example contains an object of interest for that class. For

example a negative crop contains part of a car for the car classes training

set.

• Additional annotations of 100 plus test images used in our car detection

experiments, in order to make up for the lack of object annotations in the

original StreetScenes database. I found that many of the images in the orig-

inal database contained up to a dozen objects of interest but only two or

three annotations. This was noted as an area for future work and improve-

ment by Bileschi [1]. In Section 5.3 I discuss the main differences between

my version of the data set and Bileschi’s original data set.

All code and training and testing sets developed for this thesis will be made

available for anyone to use on GitHub.
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1.2 Background

Much work has been done to develop algorithms to recognize and detect objects

in a way that is invariant to position, scale, and translation. The field of com-

putational neuroscience has tried to fuse the world of neuroscience and computer

science to help understand how humans process visual information. This has

lead to biologically inspired computer algorithms based on the work of Hubel and

Weisel [10] which has come to be known as the standard model. Hubel and Wiesel

demonstrated the existence of simple and complex cells in cortex that are stacked

in a hierarchical fashion so as to build a cascading layered network of recognition.

Simple cells are cells that respond to oriented edges and act as filters on the input.

Complex cells are cells as well respond to oriented edges but have a certain degree

of invariance for their responses. The complex cells are an aggregate of many sim-

ple cells and respond to information from the simple cells [10]. This alternating

structure of simple then complex cells has become the basis for many computer

vision systems. One of the first computational models of this neural network, was

the Neocognitron [9].

The Neocognitron, developed by Fukushima, is a hierarchical multi-layered

neural network designed to learn patterns that are invariant to position and scale

[9]. The Neocognitron was influential for the computer vision field because it

showed that a network could be built using alternating layers of simple and com-

plex cells to perform recognition tasks such as character recognition[9]. Further

work from Poggio et al. at MIT extended the model by taking a Neocognitron

style hierarchical model and focusing on improving the complex cell layer of the

network. Their work modified the computation at the complex layer by chang-

ing from a linear (SUM) to a non-linear MAX operation, selecting the input to

the complex cell that had the strongest activation value. Using a MAX function,

verses say a SUM, helps to determine preferred features when extracting object
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information from images [17]. Even further extensions to the HMAX model came

with the addition a learning phase that learned combinations of edges, or proto-

types, at the higher levels of the model [18]. This addition morphed the model

into what it is today which allows for a final vector of features to be sent to a

support vector machine for classification tasks.
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Chapter 2 The HMAX Model

HMAX is a biologically inspired computer model using feedforward neural net-

works to process an image to extract relevant features. The network architecture

is a simulation of the model proposed by Hubel and Wiesel [10] that alternates

layers of simple cells with complex cells and was first demonstrated in the Neocog-

nitron by Fukushima [9]. HMAX was further extended to include a learning step

[18] which extends the model to build object feature vectors that can be used to

learn an object class.

Figure 2.1: A generalized illustration of the HMAX computer vision model pro-
posed by Serre et al. [18]. This model consists of simple and complex layers that
first find a series of edges at the S1 layer and then learn prototypes at S2. The C2
layer is an N-component vector, where N is the number of learned prototypes in
the model. This vector can then be sent to well-known classification algorithms
such as a Support Vector Machine to build a classification model of an object.
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HMAX at its simplest consists of four network layers, see Figure 2.1, consisting

of simple and complex units, which we shall from now on just call S and C layers.

The job of these layers is to extract interesting image features that are invariant to

position, scale, and orientation [1, 2, 15, 19]. In our system the layers are known,

respectively, as S1, C1, S2,and C2.

The S1 layer: This is the initial layer of the model and consists of an array

of S cells, each one being activated by a particular edge at a given scale and

orientation (See Figure 2.1). Each S1 cell has a receptive field associated with its

particular edge detector. Another way to look at this layer is that a receptive field

can be thought of as associated with a “column” of S1 cells that each look for a

particular activation at a given scale and orientation. The number of scales and

orientations used in the model are parameters that can be set in the GLIMPSE

framework very easily [20]. In our experiments we are using the default parameters

of 4 scales and 8 orientations at S1.

The C1 Layer(Pooling stage): At this layer of the network each C1 unit

pools over a neighborhood of S1 units at a particular position and scale. Pooling

is the act of learning some invariance in the features by finding the maximum

activation over the neighborhood of S1 units.

The S2 Layer: S2 is a layer that learns shape prototypes. A prototype is

essentially a particular combination of edges. An S2 unit has high activation if

similar combinations of edges are found in the input image as were learned from

training data. Following [18], “learning” in the S2 layer consists of “imprinting”,

where patches are sampled from C1 activations on training set images. GLIMPSE

has the ability to learn multiple prototypes as well as use different prototype

learning methods in addition to imprinting [20].

The C2 Layer (Pooling stage): The C2 layer is the final pooling stage of

the model. Each C2 unit pools over an S2 prototype that has been applied to all

parts of an image. The output from the C2 layer is a one-dimensional vector that

8



captures the generalized object’s shape information [16]. These features are then

passed to a classifier, in our case a linear support vector machine.

There are many different variants of HMAX and each one has its own strengths

and weaknesses. The GLIMPSE system, used in this thesis, allows for the easy im-

plementation of computer vision tasks in Python and comes with a parametrizable

HMAX-like framework[20] and additional libraries.
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Chapter 3 Methodology

In this chapter I discuss the implementation details of my object detection and

recognition code, and the evaluation metrics I used. I also describe the reasons

behind certain design choices I made. Most of the work discussed in this chapter

involves my direct port of Bileschi’s StreetScenes object detection and recognition

algorithms [1] to use with GLIMPSE [20]. Even though Bileschi provided his

original Matlab code for his algorithms [8], I found that many design choices were

not easy to understand until I wrote my own version and then corresponded with

Bileschi.

3.1 Dataset Creation

To test and train my object detection system I built additional support code similar

to that used in the original StreetScenes system [1] to create training and testing

sets from the larger image database. See Figures 3.5 and Section 3.4 for a detailed

explanation on how my system extracts training examples and trains the SVM

classifier. The StreetScenes database consists of 3500+ annotated images that

were taken in and around the Boston area. The images were then hand annotated

by Bileschi by drawing polygons around objects of interest given certain criteria,

e.g., no objects are occluded by other objects [1]. All of the annotations are then

stored in associated XML files which contain the x and y coordinates of all objects

of interest in any of the 3500 images. For a more in-depth explanation on how

StreetScenes training and testing sets were created, see [1].

For my implementation, since I did not use any of the original source code,
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I had to build my own training and testing sets from the larger StreetScenes

database. To build these sets the scripts took all 3500 annotated images from

the database and split them in half, resulting in about 1750 images each used for

training and for testing. These will be known as our training and testing database

splits. From the training split of the database, I then wrote scripts to extract

grayscale crops to be used for training sets for the car, bike, and pedestrian object

classes. This code follows the same methodology that Bileschi used for building

his training sets [1].

Figure 3.1: Sample positive class training crops taken from the StreetScenes
Database for Car, Pedestrian, and Bike. During the extraction process I attempt
to keep the object of interest as centred as possible in the crop. All crops are
taken from the training split in the database and are scaled to 128x128 grayscale
images.

Figure 3.2: Sample negative class training crops taken from the StreetScenes
Database for Car, Pedestrian, and Bike. All crops are resized to 128x128 and
randomly sampled from the StreetScenes database making sure to not include
objects of interest.

My training set creation scripts extract positive examples from the training

split by using the associated XML annotations to crop out all objects of inter-

est, such as a car. My code takes these polygonal annotations, and calculates a

bounding box that centers the object in the bounding box, or as best as possible.

Each bounding box is additionally resized to have the same width and height. The
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image is then cropped at the location of the bounding box. All extracted crops

are resized to 128x128 so as to have the same size and aspect ratio, to simplify

training the model and ensure that the number of features extracted remains the

same. Some examples of positive and negative crops are shown in Figures 3.1 and

3.2.

Negative class examples (“distractors”) are randomly taken from all images

sampled from the training split. I randomly generate square bounding boxes over

the image and randomly set the scale of the bounding-box from 128 to 920 pixels.

This simulates sampling from the same set of scales that objects are extracted

from, since objects in the database are all different sizes. My code ensures that

none of the generated bounding boxes intersect or contain an object annotation

by more than 10%.

If the code does extract a negative bounding box that contains part of an

object that was annotated, it throws out that box and extracts another random

bounding box from the image. This is done until n instances for the negative

set have been extracted. I made sure to have the same number of positive and

negative crops for the training sets. For the training sets that were constructed for

each class there were 1000 positive and negative examples for car; 742 positive and

negative examples used for Pedestrian; and 102 positive and negative examples

for Bicycle.

It should be noted here that there are still some instances where a partial

object of interest may be contained in a negative crop (clutter) due to lack of

annotations for all object classes in an image. Due to the process described in

[1], the number of objects that are annotated in each image is small compared

to the total number of actual objects in an image by visual inspection. Thus by

using the above mentioned method, to build our training sets we are prone to

potentially adding some background clutter into our negative sets which can add

some confusion into the model. I will explain further how clutter may affect our
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results in the chapter 5.

3.2 Object Recognition Task

To evaluate the learned object models on recognizing objects that are not in

“clutter”, I performed a series of object recognition tasks. Clutter is a term that

Serre et al. used to describe natural images where objects are not cropped out or

localized already[1, 19]. I wrote scripts to perform cross validation experiments

as described in 3.5.3 for all three object classes. The scripts randomly split the

object classes training set into 2
3

training, and 1
3

validation splits. From the 2
3

split,

I trained GLIMPSE to learn an object class and then evaluated the trained model

on the 1
3

validation split. This is done for k times (“folds”), where at each “fold”

a new randomly generated training and validation split are trained and evaluated.

In my experiments we do this for five runs, so I generate five different training

and validation sets in total. The scripts then calculate the average accuracy and

average Area under the Curve from the ROC curve from all five experimental runs.

AUC and ROC curves are explained in section 3.5.1.

3.2.1 Feature Extraction

In addition to wanting to see how well our models perform on a simple recog-

nition task (i.e. object “present” or “absent”) I also wanted to get an idea of

which features are best for representing the object classes of interest. I extracted

image features from the C1 layer as well as the C2 layer to determine if vital

object features are more pronounced at lower layers than higher network layers.

Additionally I was interested in the performance of a combination of C1 and C2

features.

Extracting features from the C1 layer of GLIMPSE produces a multi-dimensional

feature vector of about 18,000 plus features for a 128x128 pixel example crop. The

reason for a high number of features is because C1 still contains explicit feature
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information for each orientation and scale. I ensure that all examples used for

training are 128x128 pixels so the feature vectors extracted at C1 are consistent

in size.

The C2 layer extraction generates a single one-dimensional feature vector of

prototype activation’s that represent an object. Prototypes are combinations of

edges to form shape parts learned from the training set. For my experiments I

use the default prototyping rule explained in Section 2, learning 1000 prototypes.

Finally for the combination of features, I extract features from the C1 and C2

layers and then concatenate the two vectors together. This process does involve

flattening the C1 vector so I end up with a final one-dimensional vector that

contains about 19,000 features per example.

3.3 Object Detection

Object detection consists of code to locate objects in much larger images (1280 by

960 pixels) from the test set. The test set consists of images that were not used

for extracting training examples. Object detection involves the implementation

of a well-known, but exhaustive technique of sliding a fixed size window over

the entire image. This involves taking a fixed size square box and moving it over

every position extracting crops from the image, then processing all of the extracted

crops with GLIMPSE and classifying the resulting features with a trained support

vector machine (SVM) [13, 16, 19, 20]. This is done for multiple scales of the

image by downsampling the input image after each round of extracting crops.

Downsampling is the act of resizing an image to be smaller while maintaining the

aspect ratio.

To find object locations in an image the algorithm goes through the following

steps:

1. Compute C1 activation’s by running the whole image through GLIMPSE.

This produces a multi-dimensional feature vector representation of the im-
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age.

2. Extract sub-sections out of the feature vector at every position. Each sub-

section corresponds to a bounding box of a particular size at a particular

location in the image.

3. Send sub-section feature vectors from image to trained SVM for classifica-

tion. Get back a series of decision values from the SVM.

4. Save decision values and associated bounding boxes.

5. Repeat the first step, but downsample the input image on this round. Down-

sampling consists of resizing the image by a certain percentage while main-

taining aspect ratio. The purpose of downsampling the input image is to

be able to extract crops at a different scale than before, without having to

resize the window.

6. Once all scales of the image have been processed, apply the local neigh-

borhood suppression algorithm, explained in Section 3.3.1, on all of the

bounding boxes extracted from the image.

The above steps are performed on all images in the test set. Section 3.3.1

discusses in more detail how the detection scripts find potential locations in the

image. For my code to make a positive detection, the detection’s decision value

must be greater than zero. Additionally I limit the number of detection’s extracted

per image, so if the script finds a new detection but it is over the maximum allowed

number, the system stops looking. For my experiments I set the detection limit

to 20 per image.

The problem with this strategy is that since the system is evaluating bounding

boxes at all possible locations and several different bounding box scales, the search

for object locations becomes a very computationally expensive task when applied

on a test set of large images. Since this is can be an exhaustive technique, the run
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times for processing a single image can be long. Bileschi states his code was able to

process an entire image in around 300 seconds [1]. I found that my implementation

can process an image in under 3 minutes, but can take much longer depending

on the number of scales and bounding-box step size parameters that are set for

an experiment. The parameters in Bileschi’s thesis were not explicitly stated

which unfortunately means there is much leeway in how the system will perform

compared to the original StreetScenes code.

Further communication with Bileschi about StreetScenes confirmed similar is-

sues with trying to perform a search at a very fine level. For my implementation it

can take up to 10 hours total to process 100 images using 65 scales and a bounding

box step size of 15. This makes the detection step a very computationally expen-

sive task to perform when dealing with many large images and thus some fine

tuning must take place to balance computation time with system performance.

3.3.1 Local Neighborhood Suppression

When performing object detection using a sliding window, the likelihood for de-

tections to cluster around a particular object are very high [1, 15]. This is not

necessarily a flaw of the system or classifier itself but more due to objects that are

detected showing similar decision values from bounding boxes that also contain

parts of an object. Given that our task is to find a bounding box that best de-

scribes where an object is, returning results that are stuck in a particular region of

an image does not tell much about where other objects might be. To try to over-

come this issue, Bileschi implemented a local neighborhood suppression algorithm

to reduce the chance for duplicate detections of the same object [1]. A similar

suppression algorithm was used by Mutch & Lowe in their HMAX variant, but

was more fine tuned to specific detection tasks and datasets [15].

My version of the algorithm is modeled after Bileschi’s and works by taking the

bounding boxes and decision values extracted by my windowing code, and finds a
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global maximum over all decision values, checking that the decision value is greater

than zero. The algorithm then picks the associated bounding box containing a

possible detection location. I then take the bounding box and build a matrix

of size N x N where N is the size of the bounding box plus 35% of the length

of a side of the bounding box. This neighborhood is filled with Gaussian values

generated by 1 - G(x,y) (see Equation 3.3,) at that x,y position in the matrix. Any

detection’s that then have their center points fall inside this matrix get multiplied

by the value of the associated Gaussian suppression value in the neighborhood

map.

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2

Figure 3.3: Equation for the 2D Gaussian function used in my neighborhood
suppression algorithm to build the suppression neighborhood map. π and σ are
tunable parameters that are set in each experiment. The x and y values correspond
to x and y coordinates from the origin of the matrix.

Figure 3.4: A visual rendering of what happens with the local suppression algo-
rithm if you were looking at it with your eyes as a region of the image is suppressed.
The suppression region within the bounding box will be blacked out so that the
system cannot look in that area again because as far as the system knows, nothing
is there.

The algorithm repeats this step until all possible detection locations are found,

or until some pre-set stopping point is reached, such as number of detection lo-

cations returned or a decision value threshold. The advantage of this suppression
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technique over just flattening large regions to zero is that there might be objects

of interest close or partially inside the local region being suppressed. Using the

Gaussian gives us the ability to suppress detection’s by a greater amount if their

center point is closer to the center of the neighborhood, while suppressing border-

ing detection’s far less. Flattening a region to zero is an easy approach to this task

but is too “destructive” to the search space for our needs for objects that might

be right next to each other.

3.4 Training and Testing workflow

Figure 3.5: Object classification training stage workflow. The system first extracts
objects, such as cars, from the training images split using the annotations for the
image. The system extracts negative crops by randomly cropping sections of the
image at random scales between 128 and 960 pixels. All crops extracted are
resized to 128 by 128 pixels. Learning occurs by sending the image crops through
GLIMPSE and then sending the feature vectors to a support vector machine. The
final stage is the saving of the svm model used for classification in the recognition
and detection experiments.

The workflow of my system can be broken down into two main stages: the

training stage, Figure 3.5, and testing stage, Figure 3.6. To train an object model,

my system extracts positive and negative image crops, as described in Section

3.1. The system takes the extracted positive and negative example crops and then
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processes all of them inside GLIMPSE. The processing in GLIMPSE can be done

to any layer of the network, S1 through C2, so we can specify what features we

are wanting to learn. Each crop’s feature vector is then sent to the support vector

machine where the learning of the object model occurs. After the model is learned,

the GLIMPSE code then saves the learned SVM model to disk for reuse in the

testing stage.

Figure 3.6: Image processing work flow used for the detection of object locations
in clutter.

The testing stage is the application of the object detection steps to multiple

images as described in Section 3.3. After all images are processed by GLIMPSE,

the system takes the returned detection locations and checks to see if any of them

intersect with ground truth annotations by more than 50 percent in area. From

this evaluation check stage I generate precision recall graphs that give, for each

detection threshold the system’s precision and recall for the set of objects that

were detected at that threshold.
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3.5 Evaluation Metrics

I follow the same set of evaluation metrics as used in Bileschi’s thesis but shall

explain them in further detail here for the reader. The two main evaluation metrics

I used are the ROC curve and precision-recall curves. Both of these metrics

have been used before for vision challenges and have been used in the PASCAL

computer vision challenge for the last six years [6].

3.5.1 ROC and AUC Metrics

The Receiver Operator Characteristic (ROC) curve is used as a measure of results

for a binary classification problem [5]. ROC curves plot the changes in the true-

positive rate verses the false-positive rate of a classifier. TP-rate is the number

of true positives over the number of true positives plus false negatives and the

FP-rate is the number of false positives over the number of false positives plus

the number of true negatives. This curve is used in determining the best perform-

ing classification models based on the TP-rate and FP-rate from the validation

data. Perfect classification is found in the top left corner of the curve while worse

classification is towards the bottom right.

From the ROC curve a single value can be calculated that will tell us how well

our classifier is performing. The area under the curve (AUC) is a score of the

discrimination quality of the classifier to label a random example correctly. The

higher the AUC score is, the more likely the classifier is to rate a randomly selected

positive instance as a positive class and a randomly selected negative instance as

a negative class. Using accuracy results alone may be misleading because it does

not really say anything about how a classifier performs as the number of incorrect

classifications increases [7]. Because of this the AUC has become a standard metric

used with the ROC curve to evaluate classification algorithms.
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3.5.2 Precision-Recall Metrics

Precision-Recall is a standard evaluation metric used mostly in the information

retrieval field to test how well a system does at returning relevant information at

different levels of recall [5]. Precision is calculated as the number of true positives

over the number of retrieved detections and recall is the number of true positive

detections over the number of objects in the test set. For my detection experiments

this is a good measure of how many objects are being detected by my system as

the support vector machines decision value threshold is lowered. The precision-

recall graph tells us the trade off between the loss of precision with the increase

in recall.

3.5.3 Recognition Evaluation

For the evaluation of Bileschi’s object recognition code, he employed a cross-

validation technique known as repeated random sub-sampling. Repeated random

sub-sampling works by using an objects training set and creating fixed sized,

random training and testing splits from the original training set. This is repeated

a certain number of times, for instance five, and then AUC scores are calculated

for each run. From the AUC of all these runs we can then take the average AUC

score from the five runs and have a single value that tells how good of an object

classifier GLIMPSE was able to learn.

In my experiments I perform repeated random sub-sampling on each object

classes training set. To perform random sub-sampling validation, an objects train-

ing set is randomly split into training and validation splits, the size of each being

2
3

training, 1
3

validation. The flow of the algorithm is described below:

1. Repeat for five runs.

(a) Split original object class training set into 2
3

training and 1
3

validation

splits.
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(b) Train GLIMPSE on the training split.

(c) Evaluate the GLIMPSE model using the remaining validation split.

(d) Plot the ROC curve on this run and calculate the AUC score for this

run.

2. Calculate the average AUC from all five runs.

Figure 3.7: Visual example of cross-validation performed for the evaluation of my
system. Gray areas represent the training split while the white areas represent
the validation split for the round.

After all five runs have been performed, I then have an average AUC score

which predicts how well the learned object classifier from GLIMPSE should per-

form on new data. This is used to help evaluate not only object recognition

performance, but also which features from GLIMPSE give the best classification

performance.

3.5.4 Detection Evaluation

Object detection in my system consists of ranking and evaluating a set of crops

out of a series of test images. In our test set we use 100 images so the problem then
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becomes the evaluation of a set of crops from 100 images. For each image used

in the test set I made sure that there is at least one annotation that represents

the object class that we are testing for. Evaluation of this task breaks down to

a simple classification problem that is very similar to an information retrieval

problem from the database field. Essentially this detection task becomes a ranked

retrieval task once all the crops have been evaluated by the SVM. I can rank all

the crops by their SVM decision value’s, from highest to lowest, and calculate a

precision-recall graph on this data.

By sorting the list of detection locations by each detection’s decision value, I

calculate a running precision-recall score that uses the decision value of each de-

tection as a threshold in the graph. This generates a very detailed plot from which

I can see, in general, what level of system performance I should get depending on

how much relevant information the system retrieves.

This metric was used in the original StreetScenes work but is also a key metric

used in the Pascal Vision Challenge [6]. In the Pascal challenge they take an

interpolated precision recall graph of all the detection results, which is easier to

visualize and understand, but evaluates at a much coarser grain.

To calculate the precision and recall values we need to know which detection’s

are true positive and which ones are false positive. The Pascal challenge gives

fairly straight forward guidelines as to what to consider a true or false positive

classification. For a true positive classification of a crop I calculate the intersection

of the ground truth , A in equation 3.1, and the crop’s bounding box, B in equation

3.1. Then the evaluation scripts find the area of the intersection between the

ground truth and bounding box and divide that by the area of the union of the

ground truth and bounding box. A true positive detection occurs if equation 3.1

is greater than or equal to β.
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area(A ∩B)

area(A ∪B)
≥ β (3.1)

In my experiments, β is set to .5 which is the same value used by Bileschi and

in the Pascal challenge [1, 6]. I found that changing β to be low, β = .35, did not

make a huge difference in the detection tasks results.
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Chapter 4 Results

The work described in this thesis consisted of building recognition and detection

algorithms based on Bileschi’s StreetScenes project. My focus was on checking

for comparable results as well as testing which features work best when using

GLIMPSE to perform recognition and detection tasks on natural images. I looked

more deeply than Bileschi at how different prototypes and combinations of features

may affect performance. My results contribute to the overall knowledge of how to

best use HMAX systems for recognition and detection tasks.

4.1 Object Recognition Task

I performed a series of object recognition tasks looking to see how well GLIMPSE’s

HMAX models do at classifying image crops as containing an object of interest or

not. I discuss the experimental setup in section 3.2 above.

4.1.1 Object Recognition at C1

I performed a series of object recognition experiments for the car, pedestrian, and

bicycle object classes using the method described in Section 3.5.3. For this first

experiment I used my scrubbed training sets to extract features from the C1 layer

in GLIMPSE. The number of features extracted from each 128x128 example was

over 18,000, due to all the scale and orientation information that is retained in

the feature vector.

Figure 4.1 and Table 4.1 shows the ROC curves and average AUC for five

random sub-sampling validation runs for each object class. In Section 3.5.3, I
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Figure 4.1: ROC Curves for five cross validation runs of car, pedestrian, and
bicycle classes using features from the C1 layer of GLIMPSE. Each curve in the
graph shows the plotted true-positive and false-positive rate of the object classifiers
on the testing split described in section 3.5.3.

discuss the details of how I generate the ROC curves and their use in the evaluation

of my classification results. The ROC curves show the classification performance

of GLIMPSE on the car, pedestrian, and bicycle object classes (see Figure 4.1).

Looking at Figure 4.1 and Table 4.1, out of the three object classes, GLIMPSE

performs the best with the car class, achieving the largest average AUC and the

most consistent ROC curves for each of the five experimental runs. For the Car

class this could easily be attributed to having the largest number of training

examples available. Classification performance on the other two classes, was rather

high as well, with the worst performing class being Bicycle, with an average AUC

of 0.883.
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Model Avg. AUC C1 Bileschi C1
Car 0.978 (0.0017) 0.99
Bike 0.883 (0.006) 0.908
Pedestrian 0.957 (0.0004) 0.983

Table 4.1: Average AUC for five random sub-sampling validation runs using C1
layer features. Values in parenthesis are standard error. Bileschi does not state
the standard error in his results.

Bileschi’s results showed similar average AUC results for the car class, but

differing results for pedestrian, and bicycle classes. In Bileschi’s thesis, he noted

that for C1 object recognition, Pedestrian was the worst performing class with an

average AUC of .908 [1], while my results show Pedestrian performing second best

with an average AUC of .954. For the classification results of the Bicycle class,

Bileschi was able to get an AUC of .98, but GLIMPSE gets an AUC of .883.

It should be noted that my system was only able to get comparable performance

to Bileschi after I manually removed clutter from the negative examples in the

object class training sets. Originally when performing object recognition with the

non-scrubbed sets, my system was only able to achieve around .95 average AUC

when classifying cars. After the scrubbing of the sets the average AUC rose to

.976 which is much closer to what Bileschi was able to achieve. The differences

in AUC results most likely are due to parameter differences in the underlying

HMAX model of StreetScenes compared to GLIMPSE. Unfortunately the exact

parameters of Bileschi’s HMAX system are not noted in his thesis.

4.1.2 Object Recognition At C2

I performed another round of recognition experiments using the experimental

method described in section 3.5.3. Instead of using features from the C1 layer

of GLIMPSE, I extract features from C2 and compare these features to the fea-

tures used at C1. I then did experiments that combined C1 and C2 features to see

if a combination of features from different layers help classification performance
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in GLIMPSE.

Class Avg. AUC C2 Bileschi C2
Car 0.970 (0.0021) 0.978
Bike 0.859 (0.0243) 0.96
Pedestrian 0.913 (0.0059) 0.944

Table 4.2: Average AUC for five cross-validation runs at C2 using 1000 imprinted
prototypes for the three object classes car, pedestrian, and bicycle. Values shown
in parenthesis are standard error.

Figure 4.2: ROC curve showing recognition performance of five-fold cross-
validation on all three object classes using 1000 imprinted prototypes at the C2
layer. Each curve in the graph shows the plotted true-positive and false-positive
rate of the object classifier’s performance on the testing split described in section
3.5.3.

The AUC results of the C1 layer and C2 layer models, seems to show that there

is some loss in classification accuracy using C2 with 1000 prototypes. This was
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(a) Car Object Class

(b) Pedestrian Object Class (c) Bicycle Object Class

Figure 4.3: Average AUC for object classes verses the number of imprinted pro-
totypes learned at C2.
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noticed in Bileschi’s results [1] and could be due to C2 being a highly generalized

feature vector, where as C1 still contains raw scale and orientation information in

the feature vector. I should note that even though the results for C1 performing

better have been noted in previous papers, I did further experimentation by see-

ing how the performance of the classifier changed as we increased the number of

prototypes learned at S2 and noticed from Figure 4.3 that there is an increase in

classification performance for 2000 or more prototypes learned.

4.2 Object Recognition C1+C2

Figure 4.4: Object Recognition of Cars using C1 layer features concatenated with
1000 C2 imprinted prototypes.

By combining C1 and C2 features, there is an increase in recognition perfor-

mance compared to just using C1 or C2 alone. For the car and pedestrian classes
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Class C1 + C2
Car 0.982 (0.0008)
Bike 0.904 (0.0162)
Pedestrian 0.9602 (0.002)

Table 4.3: Average AUC of five cross validation runs using C1 features concate-
nated with C2 features. An increase is noted in the AUC scores for all prototyping
schemes compared to just C2 alone (Table 4.2).

there is only a boost in classification performance by about less than a percent,

while the bicycle class sees an improvement of nearly 2 percent. While there is

increased performance combining these features, the downside to using this fea-

ture combination is an increase in computational overhead by having to learn

and process S2 prototypes in GLIMPSE. Again the car object class has the best

performance and pedestrian is second best.

4.3 Object Detection At C1

For the object detection experiments (see Section 3.3), I focused on the car object

class due to limited occurrences of the other object classes in the test set. Cars

are the most frequent object in the database since all of the images were taken on

streets during busy times of the day [1].

The precision-recall graph in Figure 4.5 shows how well the detection system

did at finding the objects of interest out of the set of possible detection’s found

in all of the test images. I noticed from the graph that the detection results

are far below those reported in Bileschi’s thesis [1]. My detection system is only

getting about 20 percent precision at about 10-15 percent recall and then drops

off dramatically. Additionally the system is only finding about 50 percent of the

objects in the whole test set, which is rather disappointing considering Bileschi’s

system could find all objects eventually [1].
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Figure 4.5: Precision-Recall graph for detecting cars in 100 images using C1 layer
features.

4.4 Object Detection At C2

I performed another round of detecting cars in the test set, but this time extracted

features from GLIMPSE at the C2 layer using 1000 imprinted prototypes. Figure

4.6 is the resulting precision-recall graph from the experiment. What is interesting

about the graph is that there is a loss in both recall and precision, which indicates

that not only is the system doing poorly at classifying crops that are extracted

from the images, but that most of the detection’s that are being returned do not

even contain the actual objects.

From the graph we see that we are only finding about 30 percent of the total

objects and at most getting 10 percent precision for about 5 percent recall. These

results are not totally surprising though, considering the results obtained when
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Figure 4.6: Precision-Recall graph for detecting cars in 100 images using C2 layer
features. C2 features were generated using 1000 imprinted prototypes.

classifying crops using C2 features alone in as seen in Section 4.1.2.
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Chapter 5 Discussion

5.1 Recognition and Detection Discussion

In Chapter 4 I presented results on how well my object recognition and detec-

tion algorithms performed using GLIMPSE’s HMAX implementation. From the

results I was able to look at which layers in the HMAX network would be best for

extracting object information. This contribution distinguishes my work from that

of Bileschi, who focused more on trying to detect objects in images rather than

what feature layers best work for HMAX [1].

5.1.1 Object Recognition Experiments

My object recognition experiment results showed comparable AUC results to those

of Bileschi’s thesis when using my manually scrubbed training set on the Car object

class [1] for both C1 and C2 layers (Tables 4.1 and 4.2). The data indicates that

GLIMPSE builds models that are similar to those of the StreetScenes system for

cars, and builds a better classification model for the pedestrian class than reported

by Bileschi. For the Bicycle class there is a loss of classification performance by

about 10% from Bileschi’s .98 average AUC to my systems .88 average AUC [1].

Between the recognition experiments extracting C1, C2 and a combination of

C1 and C2 features, I found that concatenating the C1 and C2 layers performed

the best for all three object classes, as seen in the results in Tables 4.1, 4.2, and 4.3.

However this came with the downside of extra computational overhead in terms

of image processing times due to having to learn and process C2 prototypes. C2

performed fairly well but was a few percentage points less than C1 for each of the
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object classes.

What is interesting from these results is that it would seem C1 is more invari-

ant and robust to orientation and scale changes than C2 (using 1000 prototype

features). This most likely is due to C1 still containing orientation and scale

information while C2 has tried to generalize the features to higher level represen-

tations by learning shape prototypes. My results seem to show that GLIMPSE

is comparable to that of StreetScenes for the Car object class and performs bet-

ter than StreetScenes on the Pedestrian object class. The Bicycle object class in

my experiments perform the worst, but I attribute this to having fewer training

examples than what Bileschi had for training. The Bicycle class had in total in

my training set 102 positive and negative examples, and Bileschi had about 60

additional positive and negative examples [1]. Further examples of bicycles would

no doubt help to improve model performance.

Both my results and those of Bileschi [1], seem to show that the C2 features

alone lose some invariance in the object models when applied to new examples. I

found that the only solution to gaining similar or better performance at the C2

layer alone is to learn thousands of prototypes, upwards of four thousand (Figures

4.3). This however again increases the computation time of GLIMPSE.

The results from testing the classification performance of GLIMPSE using

different numbers of prototypes ( Figure 4.3 ) differ somewhat from the conclusions

of Bileschi for his recognition experiments using C2 features. It appears that

if enough prototypes are learned, recognition performance will not degrade as

previously noted in Bileschi, and in fact may improve as more prototypes are

learned. This could then mean C2 would produce better performance than C1 if

enough prototypes are learned for an object class. One argument against learning

so many prototypes at C2 is that there is an increase in computation time as the

number of prototypes increase. The overhead happens from GLIMPSE having to

learn prototype information from the training data before GLIMPSE can finish
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building the feature vector and process the images to C2. This overhead may not

be an issue for some tasks, but having to process images to a higher network layer

and using a much larger number of prototypes will increase processing times. More

experimentation will likely be needed to see how much of an overhead on average

could be expected when using C2 features verses C1 features. The final recognition

experiment I performed examined GLIMPSE’s performance when combining C1

and C2 layer features into one feature vector. Figure 4.4 and Table 4.3, the system

does gain some performance over just using C1 or C2 by themselves. However what

was noticed in GLIMPSE is only a marginal increase in model performance over

just using C1 and the extra computation time needed to build this vector for every

extracted crop does not seem to make the use of combined layer features viable for

close to real time tasks. It seems that the boost in performance mostly comes from

the C1 layer doing most of the “heavy lifting” because it contains the most rich

feature information which is supplemented by the imprinted prototype features of

the C2 layer.

5.1.2 Object Detection Discussion

For the object detection task I found worse performance than that of [1, 15]

using both C1 and C2 features. Mutch and Lowe [16] noted that this task is

highly dependent on the construction and implementation of the neighborhood

suppression algorithm [16]. I experimented with different suppression methods,

including zeroing out whole regions or setting larger parameters in the Gaussian

to help make the suppression algorithm remove more redundant crops. I found

through my parameter experimentation that the best way to handle this task was

to set the neighborhood to the size of the bounding box plus some extra amount

so as to reduce the number of crops that are overlapping in a detection region.

However, as seen in the precision recall graph, this still did not produce great

results since the system is unable to find all objects across the test set and has
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very poor precision at all recall levels.

Even with a somewhat tuned suppression algorithm, I still found poor detec-

tion results compared to Bileschi. His results showed 50 percent precision for

50 percent recall [1], when my algorithm achieves 20 percent precision for 10-15

percent recall using C1 and only about 10 percent precision at 20 percent recall.

This is fairly disheartening because the object models and methods used should be

comparable based on our recognition results. However there can be many reasons

for the poor detection performance of my system compared to that of Bileschi.

What I found was that for many of the images that contained car the system

tended to detect bounding boxes around or near these objects (Figure 5.4). In

fact most of the bounding boxes found by my algorithm clustered around the car

objects. Unfortunately most of the cars in the images were not annotated and

thus counted as false-positive detections against my system when I evaluated my

results. This is an unfortunate symptom of the database when used to evaluate

detection algorithms and was noted in Bileschi’s thesis [1].

5.2 Computational Issues

Both StreetScenes and my system run into the problem of how to efficiently handle

an exhaustive search task when trying to detect object locations. This has been a

noted concern for object detection in general, not just with HMAX itself [1, 13].

Some computer vision algorithms, such as SIFT [14], have been able to avoid the

need to perform a search at every position and scale of the image, but SIFT does

not show as much robustness to invariance in object orientation as compared to

HMAX-based recognition [18].

To detect objects in natural settings, without any prior expectation for their

locations, a detection algorithm has to perform the sliding window technique,

mentioned earlier in the thesis, over the input image at many different positions

and scales. Sliding a window over the image is a fairly standard practice for almost
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all object detection algorithms proposed [1, 13, 16].

The biggest hindrance to using a sliding window for detection is that it has

to search over the entire image and rerun the same set of tests for each extracted

window from an image. The search technique clearly turns into a brute force

exhaustive search task that can explode in computation time as the number and

size of images increase. A paper by Lampert et al. [13] on object localization

mentions that sliding a window in a small image over all positions and scales, in

their example 320x240, can yield up to two billion crops that would have to be

examined. My system does not extract crops at such a fine-grained level, but

Lampert et al.’s calculation shows how much potential information there is to

process per image.

To put it in the context of my object detection experiments, if it takes a little

less than a second to process one crop from an image to the C1 layer, and the

detection algorithm cropped out 500,000 possible locations from the input image,

that would end up taking nearly 5 days to fully process all the crops in that one

image alone. Granted the previous example is on the extreme end of what would

be extracted by my system, but it shows how bad of a computational issue we risk

with this brute force technique. While developing the initial version of my system

I ran into this exact problem were it took 20 to 30 minutes to process each image

due to having to process each individual crop through GLIMPSE.

To combat the long compute times, I employed an easy optimization into the

detection algorithm that processes the entire input image through GLIMPSE first

and then extract “crops” out of the feature vector that GLIMPSE returns. The

algorithm can then extract sub-sections from the image vector which correspond

to crops in the original input image. This optimization then brings the running

time down to hours in the worst case, rather than days. In my experiments I set

a lower bound on the smallest crop the algorithm can take out of an image, 128

by 128 pixels, so this helps reduce the search space.
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Bileschi argued that one way to combat the long running times of the detection

algorithm is to just perform the detection algorithm by using fewer scales and a

larger spacing between crops, arguing that this small change should not hinder

overall performance [1]. However I have not been able to verify these claims

concretely. When building the detection system and trying to figure out a good

number of scales and step size for extraction, I noticed that my system can shave

off a great deal of time by decreasing the number of scales at which the system

extracts crops at. Increasing the step size between each extracted crop saves some

time when processing an image, but not as much as lowering the number of scales

does. More work will need to be done to figure out what number of scales and

steps are optimal for detecting objects.

5.3 Dataset

The StreetScenes database is a decent resource for computer vision experiments

and a lot of hard work went into its creation [1]. Image collection and annotation

can be a labor intensive and time consuming task. Being able to go through

all images and label objects of interest alone takes much time and effort. In

addition unless there are clearly defined rules for annotations, issues of ambiguity

on when to annotate an object in an image becomes a problem. StreetScenes was

no exception: such issues arose in the process of taking photographs in the Boston

area and annotating the photos with object, textural, and contextual information

[1].

For my experiments on the object recognition task, the dataset is fairly easy

to work with and I can pull any object I need from it to build training and testing

sets for all object classes. I found however that for the detection experiments, the

dataset was much harder to use and ran into some pitfalls. StreetScenes, it turns

out, is a fairly hard dataset to test object detection algorithms on since there is

much clutter in the background of these images (see Figure A.1). This background
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clutter tends to throw off the detection system and is an issue resulting in clutter

appearing in the training sets for the objects.

5.3.1 Training Set Clutter

Clutter is the addition of background visual information that appears in the train-

ing sets for the object class models. Clutter in the training sets for our objects

is hard to remove due to needing to extract positive and negative crop exam-

ples from the larger StreetScenes database. Examples of some crops from the car

classes training set that contain clutter can be seen in Figures 5.1 and 5.2.

Figure 5.1: Examples of clutter present in the positive examples of the car object
class training set. Clutter in the positive examples happens when background
information takes up portions of the image, such as trees, buildings, or when
other classes appear in the image. This last issue is seen with the two pedestrians
who are walking by cars. Removing these cluttered examples appears to help the
classification model, but becomes a very labor intensive task when dealing with
thousands of examples.

In my thesis I attempted to reduce the amount of clutter present in all training

sets, but only was really able to focus on the negative sets for each object class. The

reasoning behind removing as much clutter as possible from the negative examples

was for two reasons: (1) By removing examples of cars from the negative class it

should help reduce the confusion on the model as to what class a car really falls

into. (2) It is much easier to find and delete negative examples that contain the
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Figure 5.2: Examples of clutter present in the negative examples of the car object
class training set. Clutter in the negative examples happens when parts of the
car object class are still present in the negative set of examples. Removing these
cluttered examples appears to help the classification model, but becomes a very
labor intensive task when dealing with thousands of examples.

object class than trying to determine if an object part will hinder the classification

model or not. Bileschi’s training sets appear to run into the same problems with

clutter, but he does not appear to attempt to remove clutter as far as I can tell

from either the negative or positive examples.

When dealing with training sets that contain thousands of examples, a lot

of time and effort has to go into looking at each individual image to effectively

remove clutter. Thus to remove hundreds of example images with clutter takes

hours per training set, which is why I focused on the negative examples due to

time constraints. Unfortunately even with the manual scrubbing of the negative

training examples, I was not able to eliminate all clutter, only a majority from the

negative examples. For the car class close to 200 negative examples were thrown

out due to containing clutter. More work will need to be done in the future to

remove more clutter from the negative examples as well as the positive examples.

What was apparent from removing most clutter from the negative class exam-

ples was an increase in recognition performance, though a modest one at best. The

results reported in my thesis are that of models trained using the cleaned training

sets with reduced clutter in the negative examples. The initial performance of my

system for the recognition task when I was debugging, had car classification at
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.95 average AUC without any clutter removed, compared to the .978 reported in

Table 4.3. As shown in my results the increase in performance was not as big as

I was expecting but still showed how clutter can cause confusion in the model. If

more cluttered example images are removed from the training sets then it should

be possible to increase recognition performance even further to fall in line with

that of Bileschi’s work [1].

5.3.2 Testing Set Annotations

One issue that was apparent when testing my detection system is that there are not

very many annotations of objects in the original StreetScenes database. According

to Bileschi this was due to strict rules for when to annotate objects and when not

to. Bileschi attempted to only annotate objects that where not occluded by other

objects or clutter and objects that were not next to other objects [1]. Even with

these rules in place there was ambiguity between annotators as to when it is best

to annotate an object and when not to and this is a draw back to the current

annotations [1].

I found that the average number of annotations for an object such as car in

StreetScenes is only about 1.9 annotations per image. This means that on average

there will be two labeled cars per image even though by visually examining the

images for detection quality, there are typically more than two cars present per

image (see Figure 5.3). The lack of annotations seem to be contributing to my

system’s low precision-recall scores because the system is finding “false-positive”

locations based on the annotations, but these detections really are not actual

false positives. This makes the detection task using StreetScenes original object

annotations very tough because the object model that GLIMPSE has learned will

always try to return the location of cars whether the cars have an associated

annotation or not. Because of the lack of annotations, I manually selected 100

images as a test set and attempted to annotate extra instances of cars. The
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Figure 5.3: Example of a test image with only one car annotated, while there are
clearly more cars in the image. For many of the annotations in the StreetScenes
database, there was much ambiguity as to what to actually label as an object class
or not [1]. In this case only the least occluded vehicle was chosen leaving any other
detection’s that find the other cars as false positives.

hope being that with more annotations, there is a greater chance of reducing the

incorrect “false-positive” detections that was seen with the original annotations.

I attempted to rerun the C1 layer detection task using the new annotations

I created, however I noticed a reduction in the recall of my system and no real

increase in detection precision. The format of the new annotations are different

than that of the original StreetScenes database so I had to rewrite some of my

annotation code. There may be some error in this portion of my system that needs

to be corrected to be sure there is not some software issue lowering the system’s

performance. The lowering of the recall amount though is somewhat reasonable

since with the new annotations there is an increase in the number of objects for

my system to look for. If the original test set when performing detection using C1

only gave us 50 percent recall at most then it makes sense that if we double the

number of objects to return, the same system may have 25 percent recall given
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the same experimental parameters. This appears to be what might be happening

if there is not a bug in the system.

Looking at Figure 5.4, many of the detections my system makes appear to be

clustered around cars in some of the test images. From a qualitative analysis,

visually inspecting the detection results on the images, this seems very good be-

cause the top detections returned by the algorithm are indeed cars. However from

the quantitative analysis done using the precision and recall graphs, Figure 4.5, a

different story emerges. From the precision-recall graph, it appears that detection

algorithm does very poorly on the test data. I attribute this discrepancy partially

to the lack of annotations in the original StreetScenes dataset. The lack of anno-

tations of objects is noted by Bileschi, with the future work of StreetScenes having

more annotations or object classes [1] to help counter this issue with the dataset.

Having said that about the original StreetScenes annotations, that doesn’t

mean that all the false-positive detections returned by my system are not actual

errors. There are unfortunately still many instances where actual false-positives

are being labeled as a car. Figure A.3 shows a few test images that have a majority

of their detections being false positives. This is not completely surprising due to

the background clutter in the test images potentially having extracted features

that are similar to that of the learned car model.

Another reason my system may be losing performance is that the local neigh-

borhood suppression algorithm (described in Section 3.3.1) may not be suppress-

ing image regions well enough. What appears to happen in some cases is that

when suppressing the region around a global maximum detection (the potential

object location), if the detection crop is small, it leaves more room for duplicate

detections in that same region to be returned as another possible object detec-

tion. Looking at Figure A.3, there are many detection windows that not only find

incorrect locations, but also overlap with smaller windows. Unfortunately even

with the images that have detections clustering mostly around cars, the issue of
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overlapping larger with smaller detections happens as well (see Figure A.2 and

5.4). Most of these issues stem from needing to determine adequate parameters

for building the suppression neighborhood, for instance neighborhood size as some

function of the detection location size.

In the end I cannot easily determine if the poor performance for the detection

system results are mainly due to a dataset lacking annotations or a combination of

the lack of annotations and a non-optimal suppression algorithm. There are many

parameters used in the original StreetScenes experiments that were not given in

the StreetScenes publications [1]. It becomes apparent that to increase system

performance for object detection, additional experiments will be needed to deter-

mine a set of tuning parameters that work best to increase performance in the

suppression algorithm.

Figure 5.4: Results for the detection experiments for car using 100 images from
the StreetScenes database. Consistent detection of cars in the image with a few
stray detections.
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Chapter 6 Conclusion and Future Work

In my thesis I focused on a few key problems about how to use HMAX-like systems

for object recognition and detection in natural settings. First, my thesis explored

whether my GLIMPSE-based object detection system could replicate the results of

Bileschi’s StreetScenes system. Second, I explored what features from GLIMPSE

gave the best performance. Finally I created new training and test sets used for

experimentation by removing clutter from each of the object classes training sets

and hand annotated 100 test images. Unfortunately due to time limitations I do

not have detection results using the new annotations. My system potentially has

a bug when parsing the new annotation files that still needs to be fixed so future

work will need to address this issue.

The results of my thesis are somewhat mixed. Regarding the first question of

comparability, I found that for the recognition experiments we could get similar

or better results than Bileschi’s system. This was good because it showed that

GLIMPSE produces similar object models to that of the ones used in StreetScenes.

However the detection code that was developed to use these learned models did

not perform as well. There were many factors that could have played a role, such

as variances in the HMAX models, suppression algorithms, and annotations for

the test set.

From the results answering the first question, I was able to answer the second

with a little bit of extra work. Generally I found that when learning the object

models, one can pull features from either C1 or C2 or even a combination of C1

and C2 and get fairly good recognition performance. This was the general trend
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for all three object classes that I tested.

C1 was generally seen as the ideal choice by Bileschi [1], though my system was

able to get similar or better results by using C2 with 2000 or more prototypes,

or by using a combination of C1 and C2 features. In the end C1 still appears

to be the ideal layer for feature extraction since it contains the most rich feature

information for all object classes, and is not too computationally expensive to

process per image. C2 features do not show the same performance until they

have learned thousands of prototypes, which has a high computational overhead.

Combining C1 layer and C2 layer features performed the best out of all features,

but again this has additional computational overhead which make these features

expensive to work with.

Finally my work consisted of manually adding additional car object annota-

tions to the test set and manually removing clutter from the negative examples in

the training sets. When originally validating the recognition models, I saw lower

average AUC scores compared to Bileschi when using the training sets that still

contained clutter in the negative examples. I saw an increase in recognition perfor-

mance by a few points after I removed these bad examples, which allowed for the

GLIMPSE models to have similar performance to that of Bileschi (see Table 4.3).

By using the cleaned up training sets we ended up with increased classification

performance. It becomes clear that having a training set that has little clutter in

the negative examples leads to improvement in building object models.

6.1 Future Work

Much of the work contributed towards my thesis went into the development and ex-

perimental comparison of my recognition and detection algorithms to StreetScenes.

Initially I had very ambitious goals wanting to implement not only the StreetScenes

code in Python, but additionally try to implement some localization step to an-

swer the question left by Bileschi, of how to deal with the computational issues of

47



exhaustive windowing over a large input image [1, 15, 19]. However due to time

constraints for development and testing, one must always reign in the scope of

what can be done on such a project. Unfortunately due to a lack of time, I could

not get to testing my detection system using the new test set annotations. Also

due to the need to get the main experiments running I was not able to spend as

much time fine tuning parameters in my local suppression and detection code.

Developmental extensions to my detection and recognition system would be in

adding parallelization to help combat the long compute times for the detection

code. The current detection process is sequential due to processing images one

at a time, so an easy speed up would be to throw multiple images at the same

time onto different CPU cores and have each image process at the same time.

This step is essential for efficient detection of objects when using C2 features, or

a combination of image features from GLIMPSE.

One of the most helpful areas for additional research would be into how to cut

down on the exhaustive search problem I discussed in section 5.2. One extension

could be in adding a branch and bound algorithm that was proposed in [13]. A

by-product of having a robust localization step as a preprocessor to an image,

is that it may allow for more accurate detection’s because the system can easily

throw out areas that are not likely to contain an object of interest [13]. This would

be a very useful area to research as a next step and is probably the most critical.

Additional future work includes performing detection tasks for bicycle and

pedestrians for both C1 and C2 layers, after creating newly annotated test sets

for those two classes. One last area of work should additionally focus on seeing

if feature reduction techniques such as PCA [3] or ICA [4, 11] may help increase

the quality of features that are extracted from GLIMPSE, in terms of improving

GLIMPSE’s ability to recognize and detect objects.
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Appendix A Additional Figures and Detection Examples

The figures in this chapter show examples of the test set used for my experiments

and some detection results. Figures A.2 and A.3 show examples of detection

locations from my system, both good and bad. As well I include images showing

the differences between detections using C1 and detection’s using C2 features.

Figure A.4 shows some of the differences in my detection experiments from using

C1 features and C2 features.

Figure A.1: Sample test images from the StreetScenes database showing the task
of finding objects in clutter.
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Figure A.2: Object detection results showing my system’s performance on finding
Cars in the image using C1 features.

Figure A.3: Object detection results showing my systems performance on finding
Cars in the image using C1 features. These images show examples from the test
set where my detection system was highly confused in finding the locations of cars.
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(a) Detection using C1. (b) Detection using C2.

Figure A.4: Object detection results using C1 features and object detection results
using C2 features. For the C2 features, my system gets confused on some of the
paint on the street and corners of the buildings. The C1 detection results tend to
get more confused on the signs and some of the pedestrians on the sidewalk.
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