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Abstract

Image retrieval via a structured query is explored in Johnson, et al. [7]. The query is

structured as a scene graph and a graphical model is generated from the scene graph’s

object, attribute, and relationship structure. Inference is performed on the graphical

model with candidate images and the energy results are used to rank the best matches.

In [7], scene graph objects that are not in the set of recognized objects are not

represented in the graphical model. This work proposes and tests two approaches for

modeling the unrecognized objects in order to leverage the attribute and relationship

models to improve image retrieval performance.
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Chapter 1

introduction

It has been said that a picture is worth a thousand words. While the origins of this

phrase may be debated, the sentiment is clear: it is very challenging to generate

concise descriptions of an image with text. Any two individuals attempting to fully

describe a given image are likely to produce very different, yet valid, sequences of text.

This process of converting an image to text remains difficult in the reverse direction

as well. The difficulty of generating a representation for an image from a description

is extreme. Simple descriptions can be filled with ambiguity, implied meaning, and

vagueness.

Given these challenges, how can a machine learning system take a description and use

it to retrieve images that match thexs description from a pool of images? At its core,

retrieving images from a description requires some means of determining description-

to-image similarity and then ranking the images by the similarity metric. The process

of taking an image and determining its similarity to another representation remains

challenging. If a picture is worth 1,000 words, does it require 1,000 words to describe

an image? An unreasonable requirement for users, to be sure. If we are not willing

to describe desired images with a highly detailed description, we must be willing to

explore alternative representations and to accept some degree of imprecision in the

results that are retrieved from the system.
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In this thesis I investigate the image retrieval method proposed by Johnson et al. [7]

which describes a framework using scene graphs to represent the detailed semantics

of an image. In order to leverage the expressiveness of the scene graph representa-

tion, image retrieval queries are represented as scene graphs as well. The framework

captures the detailed semantics (objects, attributes, and relationships) of a desired

image with a scene graph. Scene graphs were chosen as the query representation for-

mat because they provide a means to explicitly model a set of objects, the attributes

of the objects, and the relationships between the objects at a high level of detail. An

example of an image with its corresponding scene graph is found in Figure 1. In the

training phase, structured scene descriptions generated by Amazon Mechanical Turk

(AMT) workers are used as the ground truth representations for training a pipeline

of models. To perform inference, a scene graph is used to represent the query and a

conditional random field (CRF) is generated from its structure. Each image in the

candidate set is processed by the pipeline of models, producing a set of scores that

are used by the CRF generated from the query. Belief propagation is used to perform

inference on the configured CRF and the energy value of the solution is used as a

measure of similarity for the candidate image to the scene graph query. The set of

energy values generated from the candidate images is used to rank the images, pro-

ducing an ordered arrangement of images for retrieval.

In this thesis, I propose two changes to the method of [7] in an effort to improve

retrieval results. The proposed changes provide a means for the IRSG model to make

judgments about object classes that it has not been trained to recognize. In [7] when

these types of objects are found in the scene graph they (and their attributes and re-

lationships) are not included in the energy calculation. I hypothesize that the changes

will improve image retrieval performance by allowing the modified model to make use
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Figure 1: An image and its corresponding scene graph from [7]. A subset of
the full scene graph depicts a grounding of the scene graph objects to specific
bounding boxes from the image. The grounded scene graph depicts the location of
the girl, racket, and cone objects within the image. Attribute groundings (e.g.
blonde, white, orange) are co-located with their parent object bounding boxes.
Also represented are the relationships between the objects: girl holding racket

and girl in front of cone.

of semantic content that is discarded by the original model. In the following chapters,

I will cover related work in scene graph based image search, explain the architecture

of the original and modified model, detail the experiments I performed, make con-

clusions about the effectiveness of the changes, and finally discuss avenues for future

effort in this area.
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Chapter 2

related work

In this chapter I review some recent work related to the topic of semantic image re-

treival with scene graphs.

Image Representation. Recent efforts in generation of text descriptions from

images often hinge on learning multimodal embeddings of the image features and

sentence features, and then using the image features and a neural network with some

manner of recurrent structure to determine the most likely next word [9, 20]. Johnson

et al.’s IRSG uses a similarity metric as well, but it is by means of a probabilistic

graphical model, and compares components of the model with a structured represen-

tation in the form of a scene graph, rather than a natural language sentence. The

work by Mitchell et al. [15] takes a different approach to caption generation by an-

alyzing a corpus of text to learn a probability distribution for the noun, adjective,

and preposition co-occurences and computer vision detections to generate the objects

and attributes. The detected objects and attributes serve as anchors in a tree that

is grown into a descriptive sentence through the learned syntactic dependency priors

and established sentence parsing guidelines. Evaluation of the generated captions

uses Amazon Mechanical Turk (AMT) resources to score the captions on a 5-point

scale over five different metrics.
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Semantic Information from Images. Understanding the semantic information

from images is an open problem. IRSG models the spatial relationships between ob-

ject bounding boxes and uses the spatial model in conjunction with object scoring

models to make judgments about similarity. Zitnick et al. [21] approach this problem

by learning from artificial scenes generated by AMT workers. The scenes do not make

any attempt to be photorealistic, but instead are generated from clip art figures and

objects arranged to match a text description. The authors hypothesize that an im-

age’s semantic content can be learned without requiring a photorealistic level of detail

in the source content. This use of clip art cartoons arranged by humans produces a

data set with human-generated and human-annotated scenes. The data consists of

1,002 scene descriptions, with 10 human-generated scenes per description resulting in

a total of 10,020 images in the data set.

After creating the data set, the objects are used to generate features from the objects

in the images: object presence, object location, object attributes, relative position

of objects, and what objects the people were holding and wearing. mutual informa-

tion and conditional mutual information scores were calculated for the features to

determine the relevance of objects and relationships to the scenes; these mutual in-

formation scores were then analyzed to determine which features were most relevant

to the scenes. Finally, the features are used to study semantic similarity of the scenes,

with the features used as values for a nearest-neighbor style image retrieval. Recall is

used as the primary metric for quantitative measurement of the performance of the

image retrieval task.

Chang et al. [3] use scene graphs for scene description, but the scene graphs are

generated from text and used as an intermediary step in the process of text to 3D
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scene generation. The primary focus is on learning spatial relationships between the

objects and representing objects that are implicitly part of the scene but not explic-

itly mentioned in the description. The text scenes are converted to scene graphs by

leveraging learned priors from a set of data. The priors inform the way that certain

object types physically support other object types, which objects are present in cer-

tain scene types, and the typical physical arrangement of objects in a scene type.

The scene graphs and learned features of objects and their relationships are used to

generate scenes from a set of stock 3D models. All measures of performance for this

effort are qualitative in nature. IRSG also uses its scene graphs as scene description,

but the scene graphs are used for image retrieval rather than for generation of scenes.

Chang et al. focus on learning spatial relationships and using them to achieve their

goals, but use the spatial relationship data to place objects in a scene in a natural

arrangement rather than scoring existing relationships.

NEIL. The Never Ending Image Learner [4] is a machine learning system that is

engaged in a cycle of image retrieval and learning, intended to run continually with-

out human intervention. It relies on Google Image Search for the retrieval phase,

during which it requests images from its known classes of objects, attributes, and

scenes. The labels of the objects, attributes, and relationships are drawn from the

Never Ending Language Learner [2], a Natural Language Processing model that in-

spired NEIL. The retrieved images are clustered to remove outliers, and the remain-

ing images are used to refine the detectors. Once the detectors have been trained,

relationships are extracted from the images through co-occurrence analysis for object-

object, object-attribute, scene-object, and scene-attribute relationships. NEIL uses

its learned relationships during the image refining stage to ensure that the retrieved

objects possess the expected characteristics (cars have wheels, pizzas are round, etc.),

this helps avoid the semantic drift that can occur as the system retrieves and refines
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its understanding of objects, scenes, and relationships.

Like IRSG, NEIL seeks to learn semantic information from images, but with the

use of clustering for classification of the known types (objects, attributes, scenes) and

a variant of linear discriminant analysis for generation of bounding boxes. In contrast,

IRSG uses convolutional neural networks and Gaussian mixture models for scoring

the objects and relationships, and a Probabilistic Graphical Model for determining

how well the image matches a scene graph description.
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Chapter 3

background

In this chapter I describe the details of the Image Retrieval using Scene Graphs

(IRSG) model proposed and implemented by Johnson et al. in [7]. The model is

composed of several components, depicted as a block diagram in Figure 2. Each of

the individual components will be described in this chapter in order to provide a

better understanding of how the parts contribute to the whole of the model.

The dataset used for the IRSG model consists of 5,000 images manually drawn

from the YFCC100m [19] and Microsoft COCO [13] datasets. Each of the 5,000

images is annotated by Amazon Mechanical Turk (AMT) workers, using an open vo-

cabulary rather than a pre-specified set of allowed terms. The annotations produced

by the human workers are corrected and verified by another set of AMT workers. This

ultimately results in each image having a detailed scene graph, as well as bounding

box coordinates for each object and attribute. The full data set is split into a 4,000

image training set and 1,000 image test set. The following subsections describe the

pipeline components in detail.
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Figure 2: Block diagram of the image retrieval pipeline. This high-level diagram
shows how the pipeline components process the input (image and scene graph) in
sequence in order to generate a graphical model that can quantify (through infer-
ence) the similarity between the image and scene graph. The various components

are described in detail in the text

3.1 geodesic object proposals

Every image needs its objects and attributes identified. In order to find candidate

objects/attributes, IRSG first processes each image and generates bounding boxes

around sufficiently interesting areas of the image. Each of these bounding boxes are

presumed to contain an object of some type. The framework uses Geodesic Object

Proposals [11] (GOP) to generate its candidate bounding boxes. A high-level depic-

tion of the input and output for GOP is found in Figure 3
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Figure 3: Input and output data for Geodesic Object Proposals. The image data
is composed of the image pixels. The output is a set of candidate bounding box

coordinates.

First, GOP oversegments the image into superpixel regions, where each superpixel

is defined as a small cluster of image pixels with similar color. The superpixels are

used as nodes in an undirected graph; each edge takes on the probability that the two

nodes it connects span an object boundary found by edge detections. A configurable

number of seed superpixels are selected with a linear ranking classifier trained to min-

imize an objective function. The objective function is designed to give a high rank

to superpixels that are part of objects that have not yet had one of thier superpixels

selected. The details of the dataset used for training are not described in [11].

After seed selection, a foreground set and background set of superpixels are gen-

erated for each seed, and the space between the foreground and background sets is

progressively filled by level sets of a signed geodesic distance transform. These level

sets are used to generate the object proposals. The number of object proposals is in-

fluenced by a parameter λ that determines how much signed geodesic distance should

be accumulated in order to generate a new object. The pipeline from image to object

proposals for a sample image is depicted in Figure 4. The geodesic object proposal

method is configurable by the number of initial seeds and the granularity of the level

set magnitude that defines a new object.
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Figure 4: Geodesic Object Proposal pipeline from [11]. The input phase (a)
depicts the edge detection used during the construction of the superpixel graph.
Once segmented into superpixel regions, seed superpixels are selected (b), and
foreground/background masks are generated (c). The SGDT phase (d) calculates
the Signed Geodesic Distance between the foreground and background regions.
These distance values are then used in the proposal stage (e) to generate the areas
corresponding to the proposed objects. Each proposal object is surrounded by a

bounding box; these boxes are the ultimate output of the method.

3.2 convolutional neural networks

Convolutional Neural Networks (CNN) are used in IRSG to generate object and at-

tribute class scores for each bounding box. These scores indicate how likely it is that

the box contains an item of the known object and attribute classes and attribute

classes. A high-level depiction of the input and output for the CNN model, called

R-CNN is shown in Figure 5.

Figure 5: Input and output data for the convolutional neural network (R-CNN).
The input image patches are generated from the bounding box coordinates provided
by Geodesic Object Proposals. The output is a vector of scores for the bounding

box, one element for each object class recognized by the CNN.

CNNs have been used as whole-image classifiers with great success, but only recently

have they been able to be effectively applied towards object classification within an
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image. A CNN works by a progressive conversion of high dimensional data through

a sequence of convolutional, pooling, and nonlinear transformations. The network’s

convolutional filters are learned through training to maximize classification perfor-

mance by backpropogation of error. The pooling layers reduce the dimensionality of

the data without the addition of parameters that would be incurred from additional

convolutional layers. This progressive reduction in dimensionality through convolu-

tional filtering and pooling leads to each layer identifying higher level features. The

final layer is typically a fully connected layer that maps a vectorized representation

of the input image onto a set of potential classes.

IRSG uses a CNN that is configured to generate scores for the contents of the bound-

ing boxes generated by the Geodesic Object Proposal model, rather than a single

classification for the entire image. This architecture is described in Girshick et al. [5]

and is referred to as “Regions with CNN features,” or R-CNN.

To train the scoring system used for objects and attributes in IRSG, the authors

mined the training data to determine which object and attribute classes occur fre-

quently enough to warrant scoring. Any object or attribute with 50 or more instances

would be included in the set of classes to be recognized by the R-CNN. The authors

train two CNNs for this task: one for object scoring, one for attribute scoring. Each

CNN is pre-trained on the ImageNet dataset [18], then fine-tuned on the object and

attribute classes identified in the training set. The bounding boxes generated by the

object proposal method are run through both of the R-CNN models when performing

inference on an image for retrieval. The resulting scores are used further down in the

pipeline when determining how well the image matches the query. The end result of

this process is that each of the B bounding boxes in the image produces a vector of

dimension |C| where C is the set of classes to be recognized (object classes or attribute

12



classes).

3.3 gaussian mixture models

Gaussian Mixture Models (GMMs) are used in IRSG to model the spatial relation-

ships between bounding boxes in the image. A high-level depiction of the input and

output for this model is shown in Figure 6.

Figure 6: Input and output data for the Gaussian mixture model. The input is a
pair of bounding box coordinates. The output is the probability that a relationship
between the input bounding boxes could be drawn from the data learned by the

Gaussian mixture model.

Given any two object bounding boxes, the x, y, width, and height values of the two

boxes are converted to a vector that express their relative position and scale. This

conversion process is depicted in Figure 7.

Figure 7: Converting two bounding boxes for the relationship “sandwich on plate”
to a single vector. The x and y values are the pixel locations of the lower-left corner
of each bounding box. w and h are the width and height (in pixels) of the bounding

box.
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The GMM is a model of the form [16]:

p(x|θ) =
K∑
k=1

πkN (x|µk,Σk)

where x is the relative position and scale vector generated from the two bounding

boxes and θ represents the learned parameters: mean (µk), covariance (Σk), and mix-

ing parameter (πk) for each of the K components. The model sums K multivariate

normal (MVN) distributions to arrive at the probability that the vector x would arise

from the parameters θ. The value of K is specified prior to training and can be

selected through a parameter selection method such as cross-validation.

In IRSG, the GMM is used to calculate the probability that any two bounding boxes

represent the relationships learned from the training data. Much like for the objects

and attributes, the authors mined the training data for commonly occurring relation-

ships. There were two types of relationships modeled: object-explicit and object-

agnostic. The object-explicit GMMs model the most frequently occurring object-

relationship-object configurations, e.g. man wearing pants, clock on wall, mouse

next to keyboard, etc. The object-agnostic relationships model any objects in the

specified relationship e.g. * wearing *, * on *, * next to *. The object-explicit

models are more accurate, but require specific objects to be in a specific order. For

instance, the mouse next to keyboard GMM cannot be used to model a keyboard

next to mouse relationship because the order of the bounding boxes matters in this

model. The object-agnostic relationships are more general-purpose and can be used

when there is a relationship in the scene graph that does not have an object-explicit

model, but is a common enough relationship to warrant a scoring model.
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3.4 probabilistic graphical models

Probabilistic graphical models (PGMs) are a powerful framework that use a graph-

based representation for compactly encoding a complex probability distribution over

a high-dimensional space [10]. PGMs employ a flexible system of notation that al-

low them to model a wide variety of dependence and independence configurations.

IRSG uses a factor graph representation [12] to model the objects, attributes, and

relationships expressed in the scene graph query. A high-level diagram of the input

and output for this model is found in Figure 8.

Figure 8: Input and output data for the graphical model. The three inputs are:
bounding box to score mappings for each object class recognized by the object R-
CNN model, bounding box to score mappings for each attribute class recognized by
the attribute R-CNN, and bounding box pair to score mappings for each relation-
ship recognized by the GMM. The three outputs are: energy, marginal probability
scores for each scene graph object, and scene graph object to bounding box mapping

A factor graph is a bipartite graph composed of an “object node” for each scene graph
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object (man, car, bench), and a “function node” for each set of scores from the R-

CNN or GMM. The object nodes, depicted as white circles, are connected only to the

function nodes, depicted as black squares. An example factor graph generated from

a scene graph is shown in Figure 9. Function nodes from the R-CNNs are referred to

as “unary potentials” because they affect just one object node, Function nodes from

the GMM are referred to as “binary potentials” because they impact the two object

nodes that constitute the relationship.

Figure 9: A factor graph generated from the scene graph query “man wearing
clear glasses.” Assume for the sake of this example that an image with 500 bounding
boxes is used to generate the scores for this factor graph. The scores for each of
the 500 bounding boxes from the R-CNN object model, R-CNN attribute model,
and GMM are depicted above the corresponding function node. In practice, these
scores vary for every image. The R-CNN object model provides scores for the man

and glasses function nodes. The R-CNN attribute model provides scores for the
clear function node. The GMM provides scores for the man wearing glasses

function node.

The OpenGM [1] Python library is used in [? ] to generate factor graphs. The

factor graph is generated by successively scanning the scene graph and adding struc-

ture from object nodes, to unary functions, to binary functions. The first step is
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to add object nodes, one for each object in the scene graph query (e.g. man and

glasses). Next, each bounding box is scored by the object R-CNN and the score for

the appropriate class is loaded into its function node. In the example from Figure 9,

all 500 bounding boxes are scored by the object R-CNN. The man class scores for each

bounding box are loaded into the man unary function node, and the glasses class

scores for each bounding box are loaded into the glasses unary function node.

The final step in configuring the factor graph is to load the binary function nodes

with scores from the GMM. Each pair of bounding boxes is processed by the GMM

for the specified relationship (man wearing glasses or * wearing *), resulting in

5002 scores that are loaded into the man wearing glasses binary function node.

Now that the object nodes, unary functions, and binary functions are generated

and loaded with scores, performing inference on the graphical model will result in

the object node placeholder values taking on the values that maximize the bounding

box to scene graph object mapping. An example of the conversion of scene graph to

factor graph is depicted in Figure 10. I cover the details of the objective function in

the Section 3.5.

The OpenGM library provides numerous algorithms for approximate and exact infer-

ence. IRSG uses the loopy belief propagation (LBP) approximate inference algorithm.

LBP is used because, in practice, it often reaches the same result as exact inference

methods but has a run time orders of magnitude faster than exact methods [8]. For

a factor graph with N object nodes and B bounding boxes, there are BN possible

configurations, each configuration having a different energy value. With the average

graph having 14 objects and the average image having 632 bounding boxes, we are

tasked with finding the lowest energy configuration among these 63214 ≈ 1.6 × 1039
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Figure 10: Converting a scene graph to a factor graph. The scene graph is
progressively altered to pull more information into the scene graph.

possible configurations. I tested a brute force exact inference in order to compare

the exact and approximate inference methods. Runtime for exact inference was over

six hours and generated the same results as LBP, which completed in less than a

second. After completing inference, the PGM returns an energy value that quantifies

the similarity of the factor graph generated from the scene graph to the arrangement

of objects, attributes, and relationships found in the image. This energy value is used

by IRSG to rank all the test images as a function of their similarity to the query

scene graph, where a low energy value indicates a high degree of similarity, and a

high energy value indicates low degree of similarity.

3.5 image retrieval model

As previously described, IRSG is composed of several models arranged in a pipeline.

The pipeline takes an image and a scene graph query as input and produces three

outputs: an energy value indicating the degree of similarity between the image and

scene graph, a “grounding” consisting of a mapping of the scene graph objects to
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image bounding boxes, and the marginal distributions for each object in the scene

graph. The grounding generated by IRSG corresponds to the configuration of bound-

ing boxes that give rise to the lowest energy configuration of the factor graph. The

components of the pipeline are briefly described in Table 1.

Component Purpose

Geodesic Object Proposal Generation of bounding boxes

R-CNN Object scores of bounding boxes

R-CNN Attribute scores of bounding boxes

Gaussian Mixture Model Relationship scores of bounding box pairs

Factor Graph Similarity calculation

Table 1: IRSG component descriptions

Notation. The images in the data set used for training the model components are

all annotated with detailed scene graphs, and these graphs are used to generate the

set of object classes C, attribute types A, and relationship types R. The scene graphs

used to describe the images and queries are composed of objects, attributes, and re-

lationship nodes. Each scene graph consists of a graph G with objects O and edges

E. Each scene graph object is composed of an object class from C and the set of

attributes for that particular instance of the object oi = (ci, Ai). This allows for

multiple instances of the same class of object in the scene graph e.g., white car,

black car, and blue car. When objects are connected by an edge, that edge ex-

presses a relationship (on, next to, wearing) between the two objects. An example

of a scene graph with 3 objects, 2 relationships, and 2 attributes is shown in Figure 11.

The geodesic object proposal method will generate a set of bounding boxes B,

and the process of mapping scene graph objects oi = (ci, Ai) to bounding boxes will

be a key element of the image retrieval process. The full mapping of objects to bound-

ing boxes γ : O → B is composed of a mapping for each object o ∈ O such that γo

represents the mapping of object o to a specific bounding box.
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Figure 11: A scene graph (left) corresponding to an image (right). The objects
are a sandwich, plate, and keyboard. The plate has the attribute paper, and
the keyboard has the attribute white. The sandwich and plate are connected
with the on relationship edge, and the plate and keyboard are connected with the

in front of relationship.

Model. As briefly described in Section 3.4, IRSG seeks a mapping γ with maxi-

mum probability conditioned on the scene graph G and set of bounding boxes B:

P (γ|G,B) =
∏
o∈O

P (γo|o)
∏

(o,r,o′)∈E

P (γo, γo′ |o, r, o′)

Since the system does not have models that express P (γo|o), Bayes’ rule can be ap-

plied to change P (γo|o) to P (o|γo)P (γo)/P (o). There are a vast number of possible

combinations for a given o, as there are 266 possible object classes and 145 attribute

classes. We can expect 266 ×
∑145

k=0

(
145
k

)
= 266× 2145 ≈ 1.2 × 1046 possible configu-

rations for o, where many arrangements are just as likely as any other. Furthermore,

there is not enough data to reasonably construct an appropriate prior for this distri-

bution. Given this, we will assume an uninformative prior for P (o), and for similar

reasons I assume an uninformative prior in the form of a uniform distribution for

P (γo). With uniform priors for P (γo) and P (o), these terms become constant and

can be dropped from consideration when performing inference. After application of
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Bayes’ rule and dropping the constants, we have:

P (γ|G,B) =
∏
o∈O

P (o|γo)
∏

(o,r,o′)∈E

P (γo, γo′ |o, r, o′) (3.1)

Although
∏

o∈O P (o|γo) cannot be directly modeled, we can take advantage of the

fact that each o ∈ O is a combination of an object class c and a set of attributes

o = (c, A), so P (o|γo) can be decomposed. It can be split into the object class prob-

ability P (c|γo) and the attribute probabilities
∏

a∈A P (a|γo). These probabilities are

the unary functions in the factor graph, and are extracted from the object and at-

tribute R-CNN scores, respectively. The class scores for each R-CNN are scaled with

a Platt model [17] to create probability estimates. Similarly, the GMM outputs are

scaled with a Platt model so that the probabilities generated by the various relation-

ship models can be more fairly compared during inference.

The binary function that models spatial relationships between bounding boxes is

discussed in the GMM section 3.3. For this function, the bounding box pair γo, γo′

is converted to a feature vector for scoring by the GMM. As discussed in the GMM

section, if there is a model for the specific object-relationship-object (o, r, o′) tuple

e.g. man wearing glasses, the object-explicit GMM will be used. In the case where

there is no object-explicit model available, the object-agnostic model P (γo, γo′|r) is

used.

With this formulation for the probability of the object-to-box mapping conditioned

on the scene graph and bounding boxes, IRSG seeks to maximize the expression

in Equation 3.1 through Maximum a Posteriori (MAP) inference on the factor graph

generated from the query. With the aim of maximizing γ, the objective of the learning
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process becomes:

γ∗ = arg max
γ

P (c|γo)
∏
a∈A

P (a|γo)
∏

(o,r,o′)∈E

P (γo, γo′ |o, r, o′) (3.2)

This final expression is modeled with the factor graph, using the object and attribute

scores from the R-CNNs for the unary factors, and the Gaussian mixture model

scores for the binary factors. Inference on the factor graph provides the set of bound-

ing boxes which maximize the product of the unary and binary potentials.

3.6 qualitative observations

This section is intended to show how IRSG scores objects in an image and how those

scores shift during inference to “lock on” to the appropriate image objects given the

semantic details in the scene graph query. The following images test the query man

wearing red shirt. The original image and the scene graph query are shown in

Figure 12.
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(a) scene
graph query

(b) query result

Figure 12: A small query and an image from the test set. This query performs
particularly well on this image, as seen in the bounding boxes being fairly well-

localized on the expected objects.

First, we look at how the man object is scored by the object R-CNN. Figure 13 shows

a heat map of the scores for each of the 315 bounding boxes generated in this images

by the geodesic object proposals. For each pixel of the heat map, the man class score

for any of the 315 bounding boxes that cover that pixel is summed up. After generat-

ing the pixel values, a slight Gaussian blur (σ = 7) has been added to improve visual

quality of the heat map. The heat map data is rendered slightly transparent and

overlaid on the original image for a visual reference. Figure 14 shows object R-CNN

scores for the shirt object class.
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Figure 13: A heat map of the object R-CNN values for the scene graph object
man. The scores are somewhat diffuse about the man and woman, as the R-CNN
does not excel at distinguishing whether the figure is a man or woman from just

the image data.

Figure 14: A heatmap of the object R-CNN values for the scene graph object
shirt. The high scoring areas are centered on the shirts of the man and the woman,
because the scores are focused solely on shirt-ness and do not take the wearer of

the shirt into account.
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After performing inference on the factor graph, the marginal probability values for

the man object node and shirt object node can be displayed in a similar fashion as

the R-CNN scores for these objects. The following images demonstrate visually how

IRSG uses semantic information to narrow the field of candidate bounding boxes by

leveraging the attribute and relationship scores and the scene graph structure.

Figure 15 shows the post-inference scores for the shirt object. The methodology

for generation of these heat maps is identical to that used for the R-CNN scores, al-

though the data source is the object node marginal probability values from the factor

graph, rather than the R-CNN class scores. The factor graph is able to use the red

attribute scores to reduce score values over the woman’s blue shirt and increase scores

over the man’s red shirt. This leads to an increase in the score values for bounding

boxes that lie on the man’s red shirt. Figure 16 shows the post-inference scores for the

man object. Note how the scores are more tightly focused on the man in the image,

whereas the initial scores were more diffuse about the man and woman. IRSG has

used the semantic information about the man object wearing the red shirt to improve

the scoring of bounding boxes that lie over the man in the image, while reducing the

scores for bounding boxes that lie over the woman in the blue shirt.
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Figure 15: A heatmap of the factor graph object node scores for the scene graph
object shirt. As compared to the R-CNN scores for the shirt, they are more
focused on the man’s shirt, since it is red. The attribute scores help draw scores

higher for the man’s red shirt and away from the woman’s blue shirt.

Figure 16: A heatmap of the factor graph object node scores for the scene graph
object man. The scores are more localized over the figure of the man in the im-
age as compared to the R-CNN scores. IRSG has successfully used the semantic

information about the shirt to better localize the man in the image.
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These images provide a nice visual representation of how the IRSG model can leverage

learned relationship and attribute scoring to infer semantic information that can assist

in the context of an image retrieval task. The initial scores for the man object were

fairly diffuse about the two human figures; after inference, the object nodes were able

to infer that the figure on the right was more likely to be the man because the figure

on the right is wearing the red shirt while the figure on the left is wearing a blue shirt.

Similarly, inference allows the IRSG model to identify the red shirt as the one on the

right side of the two shirts in the image.
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Chapter 4

my experiments and results

In IRSG as described in [7], the scene graphs are created using an open vocabulary.

There are 6,745 object classes, 3,743 attribute classes, and 1,310 relationship classes

in the full dataset. The IRSG model was trained using a subset of these classes:

266 object classes, 145 attribute classes, and 68 relationship classes. These classes

are selected from the most frequently occurring classes. This results in situations

where IRSG is presented with a scene graph that contains classes that it has not been

trained to recognize; these classes are unrecognized by the scoring models.

As an example, Figure 17 shows a scene graph containing black toque on man.

IRSG has not been trained to recognize the object class toque, so it is unrecognized.

In [7], unrecognized scene graph objects are not entered into the factor graph, so

any recognized attributes (black) and relationships (...on man) that are associated

with the unrecognized object are also not taken into account during the factor graph

similarity calculation. If the intent of the model is to retrieve images by leveraging

learned semantic content, it would be advantageous to use unrecognized class scores

and relationship scores in the calculation of similarity values. In this chapter I de-

scribe the experiments I carried out to address this issue. In particular, I extended

the methodology of [7] to provide scores for unrecognized objects so that they can be
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Figure 17: A scene graph with an unrecognized object, toque, in the red bounding
box. For the original method, the attribute black and relationship on will not be
added to the factor graph when determining similarity of this image to the scene
graph. This results in a factor graph that employs only the object scores for the
object class man, and does not take the black object on the man object into account

when calculating the similarity value. Best viewed in color.

added to the factor graph. With the unrecognized object added to the factor graph,

the associated attribute function nodes and relationship function nodes can be added

as well. I extended the model only for unrecognized objects; any unrecognized at-

tributes or relationships will be ignored and not added to the factor graph.

Uniform Scoring Model. The first method I propose for scoring unrecognized

objects is to use a uniform distribution of scores. This method assumes that the

probability of the unrecognized object being in a bounding box is the same across all

of the image’s bounding boxes. Given an image with the set of bounding boxes B

and a scene graph with an unrecognized object class c̃, the uniform scoring model is

defined as P (c̃|γo) = 1
|B| . The uniform scoring model is used in the place of P (c|γo)

in Equation 3.2. Although the uniform scoring model is uninformative with respect

to the object in question, I anticipate retrieval performance to improve. The origi-

nal IRSG model discards the associated attribute scores and relationship scores that

depend on the unrecognized object, whereas now the factor graph can apply these

associated scores to the inference solution.
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Empirical Scoring Model. The second method I propose for scoring unrecognized

objects operates under the assumption that the system is more likely to find objects in

regions with relatively more objects than it would in areas that are relatively devoid

of objects. When used to score a bounding box for the presence of an unrecognized

scene graph object, the empirical scoring model averages the scores for all recognized

scene graph objects in the image with respect to the bounding box in question. To

elaborate, when a bounding box is presented to the object R-CNN, it returns a vector

of 266 scores, one for each object class. The empirical scoring model will take the

average of the scores for the recognized scene graph objects and use that value as the

score for the unrecognized object. So, when man and shirt are recognized objects in

the query graph, the model returns the average score for those classes for any unde-

tected object in the scene graph.

As in the uniform model, the empirical scoring model generates scores for unrec-

ognized scene graph objects P (c̃|γo). Rather than assuming equal scores for all boxes

it calculates, for each box, the average score for of all recognized object classes Cr in

the scene graph:

P (c̃|γo) =

∑
c∈Cr

P (c|γo)

|Cr|

Unlike the uniform scoring model, this model assumes a nonuniform distribution of

scores among the bounding boxes. This should result in a distribution of scores more

tightly clustered in regions of greater recognized object density. As in the uniform

model, associated attributes and relationship scores can now be added to the factor

graph, so I expect an increase in retrieval performance.

Python IRSG Implementation. It is important to cover some details in regard
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to the model implementation. I reached out to the primary author for any existing

code and data, and they assisted in providing source code and data files. The existing

source code was in MATLAB, and in an effort to learn in detail how the model works

and to make the model more accessible, I converted the MATLAB version to Python1.

The data files included with the MATLAB code did not contain R-CNN weights for

the object and attribute scoring models; rather, one of the data files contained all

266 object class scores for each of the 5,000 image’s various bounding boxes. The file

also contained a similar structure with the attribute scores for each image’s bounding

boxes.

My initial experiments were to ensure that the Python version performed identically to

the original MATLAB version. After the Python version was functional, I compared

the γ mappings generated by the two versions to ensure that they were identical. This

was a straightforward process of initially verifying that the energy values were equal

for arbitrarily chosen image/scene graph pairs. This process involved verification that

the bounding boxes assigned to the factor graph variables were identical between the

two versions. Once manual verification of arbitrarily selected pairs were matching,

I performed more thorough verification of all images against a single query. Energy

values agreed nearly identically (±1× 10−5) between the two versions and bounding

box selection was identical for all images given the verified queries. This validated

that my Python version was performing identically to the MATLAB version. After

ensuring that the Python version was performing as expected, I implemented my

proposed scoring models for unrecognized objects, using the Python code base and

adding a configuration variable to allow easy selection of whether to run the image

retrieval by the original method, with the uniform detector, or with the empirical

1https://github.com/econser/py_irsg

31

https://github.com/econser/py_irsg


method.

Figure 18 demonstrates the difference in the factor graphs arising from a scene graph

with undetected objects. The factor graph on the left side is from the original IRSG,

with 12 object nodes and 40 function nodes. The right side shows a factor graph

generated from the same query, but using the unrecognized scoring model to allow

the associated attributes and relationship functions to be added to the graph. This

factor graph contains 17 object nodes and 58 function nodes, demonstrating that the

unrecognized scoring models are correctly adding the score nodes that the original

method was discarding.

(a) original method
(b) unrecognized object scoring

method

Figure 18: Graphical models built from the same graph but with different meth-
ods

Qualitative Observations. With the Python version working properly, I tested

the Unrecognized Object Scoring models to validate that they were functioning as

expected. Referring back to the qualitative observations in Section 3.6, I ran a sim-

ilar scene graph query with the same image (Figure 12b) to observe the behavior of

the revised model. Because both objects in the query (man and shirt) are recognized,

the scene graph query had to be modified to ensure that one of the objects was un-

recognized. I chose to change the recognized object class shirt to the unrecognized
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object class polo, as in a polo shirt. Changing the shirt object allows the attribute

R-CNN scores to play into the factor graph inference, hopefully demonstrating that

these scoring models provide a way for the IRSG model to operate on unrecognized

query objects.

First, the performance of the Uniform Scoring Model is presented.

(a) scene
graph query

(b) query result

Figure 19: A small query that has been modified to trigger the use of an un-
recognized scoring model. In this case, the uniform scoring model is used. This
query performs well on the image, as seen in the bounding boxes being fairly well-
localized on the expected objects. It is difficult to see the slight difference in the
shirt bounding box as compared to the original method, and the man bounding

box is identical to the original.

The R-CNN scores for the recognized object man are identical to what was presented

in Section 3.6, so only the scores for the unrecognized object will be presented in this

section. I anticipate the unrecognized object polo to be identified by the modified

IRSG model, as the red attribute scores and the wearing relationship scores will

factor into the process of inference. This is indeed the case for the Uniform Scoring
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Model. It allows the IRSG model to process a query containing unrecognized objects,

and properly locate the intended object. This modification allows IRSG to infer the

presence of unrecognized objects in the context of an image retrieval task. Figure 20

shows how the uniform scoring model does not localize to the man’s shirt, but after

inference, the scores in Figure 21 show strong improvement in finding the red polo

worn by the man.

Figure 20: A heatmap of the Uniform Scoring Model for the unrecognized polo

object class. Although the scores are spread across the image, it is not completely
uniform because bounding box overlap occurs more frequently in certain areas of
the image and every box has the same score value. The man’s shirt, where we

would want high score boxes, is not particularly high scoring at this point.
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Figure 21: A heatmap of the factor graph object node scores for the object polo.
Here, the high scoring area of the image is nicely centered on the man’s shirt, as
anticipated. The factor graph is able to overcome the uninformative scoring of the
Uniform Scoring Model by using semantic content in the image: the red object is
the polo, and the man is wearing it. Note that this is a particularly well-suited

image for this query, as there is only one large red object.

I now turn to the Empirical Scoring Model to determine if it is functioning appro-

priately. Using the same query and image, I observe similar results to the uniform

method, with this Empirical Scoring Model producing a diffuse high scoring region

as compared to the Uniform method, but more spread out than the original method.

The energy and bounding box selection is remarkably similar to the original method.

This indicates that the empirical method is operating as expected and is able to pro-

vide a means for the IRSG model to generate good results even when unrecognized

objects are in the provided query.
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(a) scene
graph query

(b) query result

Figure 22: A small query that has been modified to trigger the use of an unrecog-
nized scoring model. In this case, the empirical scoring model is used. The query
performs well on this image, with the bounding boxes identical to those generated

by the original method.
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Figure 23: A heatmap of the Empirical Scoring Model for the unrecognized polo

object class. The scores are not as widely spread across the image as seen in the
Uniform method, but still exhibit a more widely spread high score area as compared

to the original in Figure 14.

Figure 24: A heatmap of the factor graph object node scores for the object polo.
Here, the high scoring area of the image is nicely centered on the man’s shirt, as

anticipated.
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4.1 full scene graph retrieval

In the qualitative observation sections above, I considered the performance of IRSG

on a small scene graphs with two objects, one attribute, and one relationship. I now

compare the performance of the empirical and uniform scoring models on the same

Full Scene Graph retrieval task described in Section 6.1 of [7]. This retrieval task uses

the full human-generated scenes, where the average scene graph contains 13.8 objects,

18.9 attributes, and 21.9 relationships. In this version of retrieval there can be un-

recognized objects, as the model is trained on only the most common objects, and

there is an open vocabulary. Because of this, I expect that results when using unrec-

ognized scoring models will differ from the original method. In the Full Scene Graph

task, unrecognized objects are not expected to be a common occurrence, because the

authors train the original IRSG pipeline on the most frequent object, attribute, and

relationship classes.

I executed the first 500 full scene graphs against all 1000 images in the test set.

Only 500 were used due to the time required to run a full scene graph against the

1000 test set images, each batch of 1000 images requiring approximately 1 hour to ex-

ecute. The experiments in this and the following sections were executed on Portland

State University Linux lab machines: 8 core, 3.50GHz Intel Xeon CPU E3-1241 v3,

16 GB RAM. Each full scene graph query generates an energy value for each image

in the test set, and the images are sorted in ascending energy level to determine the

best-to-worst matching order.

Following [6] and [7], Recall at k (R@k) and Median Rank are the measures of

performance I used for this and the following quantitative sections. Recall at k is

calculated by determining the recall (R = TP
TP+FN

) over a progressively increasing
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number of ranked images, k. In the context of full scene image retrieval, TP (true

positive count) is 1 when the one (and only one) correct image has been retrieved in

the top k results, and 0 otherwise; FN (false negative count) is 1 when the image has

not yet been retrieved in the top k results, and is 0 otherwise. The R@k value is the

fraction of times that the correct image appears in the top k results for all n queries.

Median rank is the median value of the retrieval rank for the n queries.

An R@k plot for the full scene graph queries up to k = 100 is shown in Figure 25. Re-

call values for k > 100 steadily increase to R=1.0, but offer little useful information. I

choose to focus on recall performance for the top 10% of returned results, as a user of

an image retrieval system is unlikely to scan much further than 100 results in an effort

to retrieve a good result. Selected R@k result values are given in Table 2. The R@k

Original Empirical Uniform

Median r 14 15 17

Average r 49.440 48.704 54.122

Std Dev r 95.299 90.089 100.214

R@1 0.124 0.118 0.124

R@5 0.316 0.306 0.296

R@10 0.450 0.434 0.426

R@55 0.754 0.760 0.740

R@60 0.776 0.788 0.754

R@65 0.790 0.796 0.774

Table 2: Median rank and R@k values for the full scene graph retrieval task. The
three methods are very similar, with the original method slightly better in the low

k range, and the empirical method slightly better in the mid-k range.

results show no significant difference in the recall performance of the three methods.

The original method performs best at low values of k by approximately 1%, where

performance matters most. The empirical method does show some improvement in

the 50 ≤ k ≤ 70 regime by the same 1% margin. The uniform method underper-

forms across all k values but k = 1. Median rank values are similar for the original
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Figure 25: Recall at k for the full scene graph retrieval task. The three methods
perform very similarly for this task, most likely because unrecognized objects are
an uncommon occurrence in the full scene domain. As k increases, the recall value
is the percentage of the 500 queries that have succeed in ranking the one correct

image at or under the kth rank.

and emprical methods, with the uniform method underperforming the other meth-

ods. It is interesting that R@k performance for the unrecognized scoring methods

can negatively impact performance. These models only activate when unrecognized

classes appear in the scene graph, so the only way that these models could reduce

performance is when there is a scene graph or image configuration with unrecognized

object classes that distracts the inference process from the expected object rather

than focuses probability on it. Identifying these poor-performing configurations will

provide a means of improving these scoring models.
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4.2 partial scene graph retrieval

The Partial Scene Graphs consist of 150 scene graphs generated by the authors of [7]

from the training data. These small queries consist of two objects with one or zero

attributes and one relationship, e.g. sitting man on bench, clear glasses on

woman, etc. The authors of [7] selected these objects and attributes from the most

frequently occurring objects and attributes in the training set. For any given partial

query, there is generally more than one matching image, rather than the single defini-

tive match that exists in the full scene graph task. Because of this, the R@k and

median rank calculations must be adjusted to account for multiple images. For R@k,

I use the modified methodology from [7]. For a given k, R = 1 when any image from

the positive set is retrieved, and 0 otherwise. As before, recall results for each query

are the fraction of correct image retrievals over the top k results for the n queries.

The three methods produce identical results for the partial scene graph queries, which

is to be expected, because all partial scene graph queries are constructed from the

most frequently occurring objects. The unrecognized scoring models are only used

when there are objects that are not detected by the R-CNN, thus they should func-

tion identically. The performance on partial scene graphs does reinforce that the

unrecognized scoring models are only used when encountering unrecognized objects,

and also sets a baseline performance for the next section where R@k performance of

partial scene graphs with unrecognized objects is investigated. The results in Fig-

ure 26 and Table 3 are very similar to the values reported in [7]. The differences are

likely related to the fact that I did not have access to the exact same query set as

used in [7], which describes a data set of 598 partial scene graphs, with 119 randomly

selected for testing. The set of graphs from the supplemental website contains 150

partial scene graphs. Additionally, my set of positive images may not be exactly the
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Figure 26: Recall at k for Partial scene graphs. The values are identical for all
three methods, because the partial scene graph dataset is built from recognized
objects. If only recognized objects are in the scene graph query, the unrecognized
scoring methods will not be used, so the results should be identical for all three

methods.

same, I followed the methodology described in [7] for determining the positive set of

images, but cannot be completely certain that the sets are identical.

Although these results are not identical to those reported in [7], they are very similar

to the plotted R@k data and the median rank value is identical.
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Original Empirical Uniform

Median r 11 11 11

Average r 29.413 29.413 29.413

Std Dev r 55.032 55.032 55.032

R@1 0.073 0.073 0.073

R@5 0.240 0.240 0.240

R@10 0.453 0.453 0.453

R@55 0.860 0.860 0.860

R@60 0.867 0.867 0.867

R@65 0.893 0.893 0.893

Table 3: Median rank and R@k values for partial scene graph retrieval. The
partial scene graph data is constructed from recognized objects, attribute, and

relationships, so performance of the three methods is identical

4.3 obscured scene graph retrieval

In order to investigate the performance of the unrecognized scoring models in a par-

tial scene graph retrieval task, I modified the partial scene graph dataset described in

Section 4.2 to ensure that an unrecognized object is present in the scene graphs; see

Figure 27 for an example. I refer to this modified scene graph as an obscured scene

Figure 27: Obscuring a partial scene graph. The recognized object shirt is
altered to an unrecognized class shirt . The partial scene graph dataset is con-
structed of only recognized object classes, so this obscured set allows testing R@k

for the unrecognized scoring models on partial scene graphs.

graph. I alter the partial scene graph dataset by selecting one of the two objects in
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each of the 150 scene graphs, and add an underscore character to the front and end

of the class name e.g. glasses is changed to glasses , car is changed to car .

Each query in the partial scene graph dataset is composed of two objects, one object

always has an attribute (red shirt, white keyboard, etc.) and the other object

will not. Given the choice of obscuring the object with no attribute or the object

with an attribute, I obscure the class name of the object with an attribute, as shown

in Figure 27. The object with an attribute is selected because this will produce the

most difference in performance between the original method and the unrecognized

object scoring methods. The original method discards the unrecognized object, and

as such, it does not model the attribute or the relationship in the partial scene graph.

The unrecognized object scoring methods will provide scores for the unrecognized

object so that the factor graph can use the attribute and relationship scores when

determining similarity.

The R@k plot and table results from running the obscured scene graphs are shown

in Figure 28 and Table 4. For the obscured scene graph image retrieval task, per-

formance of the three methods shows more variation than was seen in the full scene

graph task. Each of the three methods has the best performance in some segment of

the low k region: the empirical method is best at k = 1, the uniform method is best

at k = 5, and the original method is best at k = 10. As in the full scene graph task,

the empirical method shows the best recall in the 50 ≤ k ≤ 70 regime. This is an

interesting similarity, and would be particularly noteworthy if further research could

identify what causes this improved performance and whether it can be extended to

improve performance over the lower k ranks.
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Figure 28: Recall at k for the obscured scene graphs. Best performance is mixed
at the low k values, and the empirical scoring model is best in the mid-range k

values, as seen for the full scene graph task.

Original Empirical Uniform

Median r 18 22 25

Average r 50.940 45.560 72.060

Std Dev r 83.089 71.318 109.412

R@1 0.013 0.027 0.020

R@5 0.153 0.147 0.187

R@10 0.333 0.293 0.293

R@55 0.753 0.793 0.647

R@60 0.760 0.807 0.680

R@65 0.780 0.833 0.707

Table 4: Median rank and R@k values for the obscured scene graph image retrieval
task. The best performing method varies in the low k values, and the empirical

method shows best performance in the 50 ≤ k ≤ 70 range.
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Chapter 5

conclusions

The IRSG method for image retrieval generates solid results: a median rank of 22 or

less for all methods, indicating that the correct images are likely to be found within

the 30 images that one would see on the first page of a set of image search results.

The authors of [7] envisioned the IRSG as a framework for image retrieval, with

a pipeline composed of object identification leading to object/attribute scoring and

then to spatial relationship scoring. The image scoring functions are used to quantify

a similarity measure with the scene graph query through inference on a graphical

model. This similarity measure serves as a ranking for image retrieval.

In this thesis, I attempt to improve retrieval performance through a scoring model

that can provide scores for unrecognized objects in a scene graph query. I tested the

new scoring models in the IRSG framework to determine if they improve recall perfor-

mance. The new models did not help to improve performance in the most important

area of performance: the first 30 images. Despite not improving performance for low

k values, the empirical scoring model does show promise in the 50 ≤ k ≤ 70 ranks,

which is an interesting avenue for further research. The uniform method performed

most poorly overall, likely because the object scoring values were so spread out across

the candidate image bounding boxes that inference was not able to compensate for
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the uninformative distribution by the extra information gained in the attribute and

relationship factors. The empirical scoring model shows better performance than the

uniform scoring model, likely because the empirical scoring method’s averaging of

recognized objects is marginally more informative than the scores generated by the

uniform scoring model. It may yet prove useful to investigate other methods of ac-

counting for attributes and relationships in the framework that allow the model to

use the attribute and relationship information without reducing the overall predictive

power of the original method.
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Chapter 6

future work

This image retrieval framework presents an interesting technique for combining a

set of models to retrieve images by attempting to leverage the semantic content of

the images. The image’s semantic information is determined by modeling not just

the objects but the attributes and relationships within the image. There is ample

opportunity for further study of this method to improve retrieval performance and

generalize the existing configuration.

Of primary interest is to investigate what factors contribute to the framework gen-

erating good results: low energy for well-matching images, high energy for poorly-

matching images. Naturally, this line of investigation should include an examination

of the factors that contribute to bad results: high energy for well-matching images

and low energy for poorly-matching images.

The method is very reliant on good quality bounding boxes. It would be of interest

to investigate more recent techniques in image segmentation such as Fully Convolu-

tional Networks for Semantic Segmentation by Long et al. [14]. Improved object boxes

could potentially provide a better starting point for the factor graph when running

inference to generate energy values. It is even possible that the object proposal and
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classification components can be combined into one model using recent techniques [?

], and it would be interesting to see how performance is affected using these combined

segmentation and classification models.

Currently, IRSG weights the unary and binary components equally, but a learned or

configured weighting parameter could be added to the model to control the factors’

contribution to the overall value such as λ in the equation below:

P (γ |G,B) = λ
∏
o∈O

P (o | γo) (1− λ)
∏

(o,r,o′)∈E

P (γo, γo′ | o, r, o′)

Would allowing the unary factors to have more influence over the result provide im-

proved performance? What if the binary factors have more weight? Would any

performance increase be consistent across the full range of k or would it be localized?

There are many questions raised by this alteration, and it would be a very interesting

avenue for further research.

Another question is whether the semantics learned by the framework from the MS

COCO & YFCC100m are transferable to other image sets. It is presumed that the

method is learning generalized features of attribute, object, and relationship detec-

tion, and that it will transfer to other data. It would be useful to ensure that the

method can perform reasonably on datasets outside of the 5,000 semantic configu-

rations that it had been trained upon. The image retrieval framework presents an

interesting technique for deriving semantic meaning from images, and then using that

learned semantic understanding to infer how well a scene graph query matches an im-

age or set of images. This framework provides a general pipeline that provides several

opportunities for further improvement and enhancement.
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