
THESIS APPROVAL

The abstract and thesis of Davy Stevenson for the Master of Science in Computer

Science were presented February 15, 2008, and accepted by the thesis committee

and the department.

COMMITTEE APPROVALS:

Melanie Mitchell, Chair

Karen Karavanic

Martin Zwick

DEPARTMENT APPROVAL:

Wu-chi Feng, Chair
Department of Computer Science

ABSTRACT

An abstract of the thesis of Davy Stevenson for the Master of Science in Computer

Science presented February 15, 2008.

Title: Evolving Cellular Automata with Genetic Algorithms:

Analyzing Asynchronous Updates and Small World Topologies.

Langton states, “It has been frequently observed that the simultaneous execu-

tion of a single relatively simple rule at many local sites leads to the emergence of

interesting and complex global behavior” [17]. It is this complex global behavior

which is the main topic of interest for this thesis: can a network with only lo-

cal connections between nodes run simple computations on each node in order to

perform tasks that require global information processing?

Research studying the abilities and limitations of sensor networks has grown

considerably in the last decade and cellular automata provide a simple framework

with which to study these distributed systems. Cellular automata, especially when

1

extended to exhibit the small world property and update asynchronously, are an

idealized model for studying the computation capabilities of a distributed sensor

network.

The goal of this thesis is to investigate the effects of asynchronous updates and

small world topologies on the evolution of rules to perform the density classification

task. In analyzing the resultant rules, strategies including the previously known

default strategies, block expanding strategies, and embedded particle strategies, as

well as the newly discovered messaging strategies, were found. A theory behind

the dynamics of the messaging strategy has been proposed, which explains how

the rules take advantage of the small world links in order to more quickly disperse

information through the network.

2

EVOLVING CELLULAR AUTOMATA

WITH GENETIC ALGORITHMS:

ANALYZING ASYNCHRONOUS UPDATES

AND SMALL WORLD TOPOLOGIES

by

DAVY STEVENSON

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

COMPUTER SCIENCE

Portland State University
2008

Contents

List of Tables iii

List of Figures iv

Nomenclature vi

1 Introduction 1

2 Cellular Automata 4
2.1 Rules . 5
2.2 Asynchronous Cellular Automata 6
2.3 Connectivity . 7
2.4 Small World Property . 9

3 Computational Tasks 12
3.1 Density Classification . 12
3.2 Synchronization . 13

4 Sensor Networks 15

5 Genetic Algorithm 17
5.1 Fitness and Performance . 19

6 Results 21
6.1 Strategies . 21

6.1.1 Default Strategies . 23
6.1.2 Block Expanding Strategies 26
6.1.3 Embedded Particle Strategies 30
6.1.4 Messaging Strategies . 33
6.1.5 Unclassified Atypical Strategies 36

6.2 Performance Histograms . 38

i

6.2.1 Synchronous vs Asynchronous 43
6.3 Fitness vs Generation . 47
6.4 Analysis of the Messaging Strategies 54

7 Related Work 58

8 Future Work 60

9 Conclusions 62

References 67

ii

List of Tables

6.1 Table of parameter values used by the genetic algorithm. 22
6.2 Table of the number of rules exhibiting each strategy for each of the

four cases. 24
6.3 Table of maximum and mode rule performance for each case. 39
6.4 Table of average number of generations before reaching F100

149 > 0.8
and the corresponding standard deviation for each of the four cases. 51

iii

List of Figures

6.1 Default Strategy for a Local Synchronous CA 25
6.2 Default Strategy for a Local Synchronous CA 25
6.3 Block Expanding Strategy for a Local Synchronous CA 28
6.4 Block Expanding Strategy for a Local Asynchronous CA 28
6.5 Block Expanding Strategy for a Small World Asynchronous CA . . 29
6.6 Embedded Particle Strategies for Local Synchronous CAs 32
6.7 Embedded Particle Strategy for a Local Asynchronous CA 32
6.8 Messaging Strategy for a Small World Synchronous CA 34
6.9 Messaging Strategy for a Small World Asynchronous CA 34
6.10 Failed Instance of a Messaging Strategy for a Small World Asyn-

chronous CA . 35
6.11 Unclassified Atypical Strategy for a Small World Synchronous CA . 36
6.12 Two Unclassified Atypical Strategies for Small World Synchronous

CAs . 37
6.13 Unclassified Atypical Strategy for a Small World Asynchronous CA 37
6.14 Performance Histogram for the Local Synchronous Case 41
6.15 Performance Histogram for the Local Asynchronous Case 41
6.16 Performance Histogram for the Small World Synchronous Case . . . 42
6.17 Performance Histogram for the Small World Asynchronous Case . . 42
6.18 Histograms comparing performance of rules evolved for the Lo-

cal Synchronous case on both Local Synchronous and Local Asyn-
chronous CAs. 45

6.19 Histograms comparing performance of rules evolved for the Local
Asynchronous case on both Local Asynchronous and Local Syn-
chronous CAs. 46

6.20 Plot of Fitness (F100
149) vs Generation for eight runs of the genetic

algorithm for the Local Synchronous Case 49
6.21 Plot of Fitness (F100

149) vs Generation for eight runs of the genetic
algorithm for the Local Asynchronous Case 49

iv

6.22 Plot of Fitness (F100
149) vs Generation for eight runs of the genetic

algorithm for the Small World Synchronous Case 50
6.23 Plot of Fitness (F100

149) vs Generation for eight runs of the genetic
algorithm for the Small World Asynchronous Case 50

6.24 Plot of Fitness (F100
149) vs Generation averaged over all 300 runs of

the genetic algorithm for each case. 53
6.25 Block of black moving right in a locally connected neighborhood. . . 56
6.26 Block of black moving right in a neighborhood with a small world

link. The link points to a black cell, so the behavior is not changed. 57
6.27 Block of black moving right in a neighborhood with a small world

link. The link points to a white cell, so the movement of the black
block is halted. 57

v

Nomenclature

CA Cellular automaton

N Number of cells in a CA

k Number of possible states for each cell in a CA

r Radius of a CA

φ Update function of a CA, also called a rule

ηt
i Neighborhood of cell i at time t

s0 The initial configuration of a CA

st
i The state of cell i at time t

Tmax Time limit given to the CA in order to perform the given task

ρ0 The density of the initial configuration

ρc The critical value for the density classification task

C The clustering coefficient of a network

L The degree of separation of a network

p The probability that any link in a CA will be rewired to a random cell in
order to add the small world property

q The number of links rewired in a small world CA

E The number elite rules copied over to the next generation by the genetic
algorithm

G The number of times the genetic algorithm is run for each case

vi

I The number of initial configurations that the genetic algorithm tests each
rule against

R The number of rules in each generation of the genetic algorithm

g The number of generations in the genetic algorithm

m Number of locations within each child rule that are mutated

F I
N(φ) The fitness of rule φ on I random initial configurations of size N chosen

using a density-uniform distribution

PI
N(φ) The performance of rule φ on I random initial configurations of size N

chosen using an unbiased distribution

vii

1 Introduction

With the expansion of computing power and the continued miniaturization of com-

puting devices and sensors, technology is expanding to encompass network-centric

computing in addition to the traditional centralized-control architecture of main-

frames and personal computers. Examples of emerging network-centric devices

include sensors for controlling homes, sensor networks used for surveillance and

reconnaissance, communication networks and environmental sensor networks [4].

In many cases these networks continue to be controlled by a central unit, which

will become increasingly burdensome as network sizes increase [6].

“It has been frequently observed that the simultaneous execution of a single

relatively simple rule at many local sites leads to the emergence of interesting and

complex global behavior” [17]. It is this complex global behavior which is the main

topic of interest in this thesis: can a network running simple computations on each

node perform tasks that require sophisticated collective information processing?

It has been shown [5] that solutions with varying accuracies have been found for

1

certain cases of CAs, particularly locally connected, synchronous automata.

One problem facing network-based computing is the difficulty of performing

certain tasks that are trivial with a centralized control unit. Two tasks often

cited in the literature are the density classification task and the synchronization

task [5, 20, 22, 26], which are defined in Sections and . One example of research in

this area involves using a genetic algorithm to evolve cellular automata to perform

these tasks [5, 20, 22]. There are a few problems with applying this research to

real-world applications, however. The first is that many networks of individual

computing devices will not be synchronous in their updates — expanding the

cellular automata to encompass asynchronous updates is necessary to address this

problem.

One other issue is that the nearest-neighbor connectivity of traditional cellular

automata is very limiting as the average distance between any pair of cells is large.

Many organic networks with small average distances between nodes, such as brain

networks, social networks, or the Internet, exhibit what is known as the small

world property. Research has shown that networks with the small world property

are more successful at both the density classification task and the synchronization

task [26, 27].

This thesis extends previous research [5, 22, 20] on the evolution of cellular

automata rules to perform the density classification task. In particular, the cellular

2

automata will be extended to update in an asynchronous manner and exhibit the

small world property. A genetic algorithm will be run for each type of cellular

automaton in order to evolve rules to perform the density classification task. These

rules will then be evaluated for performance and the resulting rule strategies will

be analyzed. The goal of this thesis is to investigate the effects of asynchronous

updates and small world topologies on the evolution of rules to perform the density

classification task.

3

2 Cellular Automata

A cellular automaton (CA) is a computational device originally proposed by John

von Neumann [28]. It has been proven that some CAs are universal computers [31],

though crafting rules in order to run specific computations is a difficult task and

thus not often attempted. CAs have often been used as models in the areas of emer-

gent computation and artificial life since they share many of the same properties

as systems found in the natural world. Natural systems as diverse as brains, insect

colonies, biological populations and immune systems all contain a large number of

simple and homogenous components that interact without centralized control and

with only limited communication [5].

CAs consist of a collection of N cells, each of which is a finite state machine.

Cellular automata can be defined in any dimension, though the focus here will

remain on one-dimensional CAs. Each cell can be in any one of a finite number

of states, the set of which is denoted Σ. Let k = |Σ| indicate the number of

possible states for each cell. A cell is uniquely specified in space and time by

4

its site number i = 0, 1, . . . , N − 1 and its state at time t, which is indicated by

st
i, where st

i ∈ Σ. Each cell is connected to 2r other cells, where r stands for

radius, and in the standard locally connected case the neighbor cells consist of

the r closest cells on each side of a cell. Therefore cell i is connected to cells

i− r, . . . , i− 1, i+ 1, . . . , i+ r. The collection of the states of these 2r cells and the

center cell itself (st
i−r, . . . , s

t
i, . . . , s

t
i+r) comprises the neighborhood ηt

i of cell i at

time t. The configuration of the CA at timestep t is defined as the configurations

of all the cell states, st = st
0s

t
1 . . . s

t
N−1. The initial configuration of the CA is thus

s0. Each cell follows a rule φ that is used to update the cell to its new state given

the current state of the cell and its neighborhood, therefore st+1
i = φ(ηt

i).

2.1 Rules

A rule describes the update function of a cell given the state of itself and its

2r neighbors. Since a total of 2r + 1 cell values are evaluated (the cell and its

neighbors), there are a total of 22r+1 possible update values that must be described.

A rule is thus a binary string of length 22r+1 indicating a 0 or 1 for each possible

state, which are ordered lexicographically.

The binary string encoding of a rule can be thought of as the ‘chromosome’

of a CA. It is populations of such binary strings that are evolved by the genetic

algorithm. For even small values of r the search space of the rules is extremely

5

large, 2128 for r = 3 for example, which is too large for any form of exhaustive

search.

2.2 Asynchronous Cellular Automata

The standard CA updates in a synchronous manner — all the cells are updated

according to the rule φ at exactly the same time. This provides for simple com-

putation, but unfortunately the real world does not update in this way. Instead,

parallel and asynchronous updates are the norm. When extending a CA to a real

world application that is highly parallel and lacks global synchronization, as is

often the case in current hardware configurations, the synchronous update step

would add an additional burden. While it has been proved that asynchronous CAs

can be used to perfectly simulate synchronous updates [1], these CAs require sub-

stantially more cells (anywhere from O(N logN) to O(4N2) where N is the size of

the CA) and extra time to finish the computation, which could be burdensome or

infeasible. Instead, it would be ideal to find a CA rule that can perform collective

computation with asynchronous updates. Unfortunately, studies of asynchronous

CAs have typically been lacking for all but the most trivial issues [1].

The definition of an asynchronous update as is used in this research is as follows.

During each discrete time step, each cell will update itself by polling the values of

its neighbors and applying the update rule. However, the order in which the cells

6

are updated will be chosen at random. Each cell updates once in each timestep.

If a cell’s neighbor has already updated, the neighbor’s updated value will be used

when applying the rule, which is the biggest difference between synchronous and

asynchronous updates.

Due to the fact that a cell uses its neighbors’ current (and possibly updated)

values during each update step, information may be lost. For example, suppose

cells A and B are neighbors of each other. In timestep n, cell A updates, and then

cell B updates. In timestep n + 1, however, cell B updates before cell A. In this

situation cell A will never see the first updated value of cell B, and that information

is lost to cell A. Because of this information loss the overall performance of an

asynchronous CA might be lower than the performance of a synchronous CA for

some tasks. However, the difference in performance may be small enough that

the added benefit of asynchronous updates as described earlier provides an overall

gain.

2.3 Connectivity

The method used to connect the cells of a CA can have drastic results on the

CA’s performance on a given task. When taken out of the theoretical realm, the

connection method also obviously affects the structure of the network and the

physical layout. The most simple and common method of connectivity for a CA is

7

the locally connected method — in fact this method of connectivity is often part

of the definition of a CA. In this case a cell is connected to the physically closest

r other cells on each side. This causes the automaton to form a regular lattice

structure. While only one-dimensional CAs will be investigated in this thesis, this

connection method can also be extended to two-dimensional CAs where, in addition

to the cell itself, either the nearest four neighbors (north, south, east, west) are

connected, which is called the von Neumann neighborhood, or the nearest eight

neighbors (adding northeast, northwest, etc.) are connected, which is known as

the Moore neighborhood.

The clustering coefficient C of a network is defined as “the average fraction of

pairs of neighbors of a node which are also neighbors of each other” [24]. C = 1

in a fully connected network, and C = 0.6 for a locally connected network with

six neighbors, such as locally connected automata with r = 3. A random graph

has a very low clustering coefficient1, especially as the number of nodes grows.

Studies have shown that many real-world networks show a much greater clustering

coefficient than that of random networks [24]. It is important that a CA retain a

high clustering coefficient, because these clusters of cells allow for more advanced

computation to take place.

1For a random graph C = z/N where z is the number of neighbors and N is the number of
nodes in the network [24]

8

The degree of separation L of a network is the average distance between any

two nodes in the network. CAs that are locally connected exhibit long average

distances between two random cells, which makes the transfer of information across

the network slow. Very few network structures in the real world (social networks,

sensor networks, neuron connections in the brain, the Internet, etc) show this

highly localized connectivity. Instead, these networks allow for a much faster

transfer of information due to a network structure providing a smaller degree of

separation between nodes. This is embodied by the popular notion of ‘six degrees

of separation,’ which states that there exists a chain of around six acquaintances

between any two people in the world, even though the human population is larger

than six billion [24]. While the actual number six might be an exaggeration,

the underlying idea that a low degree of separation facilitates the movement of

information through a network remains valid.

2.4 Small World Property

A network exhibits what is known as the small world property if it has a high clus-

tering coefficient while also having a small degree of separation. These properties

are retained even as the network size grows very large. It has been shown that a

network exhibiting the small world property is much more successful at performing

the density classification task than locally connected networks [26, 27].

9

The standard nearest neighbor connectivity of a CA can very easily be modified

to generate a connection exhibiting the small world property. By taking each link

between two cells and replacing it with a link to a random cell with some small

probability p, the degree of separation is decreased dramatically. These shortcut

links allow information to move through the CA at a much faster rate. It has

been found that the degree of separation between nodes drops drastically after

even a small number of reconnections, while the clustering coefficient remains

almost constant even after many more reconnections are made. The degree of

separation drops by half when p = 0.001 and drops by 80% when p = 0.01, while

the clustering coefficient remains effectively equal to the clustering coefficient of a

locally connected network for both cases [29].

In order to apply the reconnections while keeping the number of neighbors con-

stant for each cell, some small adjustments must be made. If a link was simply

rewired to a random cell, then the random cell would contain one too many neigh-

bors, and another cell would contain one too few. Therefore the reconnections

must happen in pairs in order to keep the number of neighbors of each cell con-

stant. The following method is used in order to accomplish this task. Two links

are chosen at random. Then the links are crossed — if the two links connected

cells (a1, b1) and cells (a2, b2), then the new links connect (a1, b2) and (a2, b1).

One thing to worry about when randomly adjusting the links in a CA is the

10

accidental disconnection of the automaton into two or more sub-automata. This

could happen if the number of links adjusted is greater than the number of neigh-

bors a single cell has. This problem is thus avoided by keeping the number of

adjusted links below the number of neighbors. In order to guarantee that the CA

is never divided, a constant number of randomly chosen links q will be rewired

instead of using an actual random number generator to decide whether any one

link will be rewired. This is still equivalent to rewiring each link with probability

p = q/Nr, with N and r defined in Chapter .

11

3 Computational Tasks

When studying CAs two simple tasks are often used as a benchmark of success.

These tasks are easy to describe and understand, and are generally trivial for

systems with a centralized control unit. These tasks encompass the types of com-

putation that would be useful for CAs to be able to perform and yet are not at all

trivial for distributed networks.

3.1 Density Classification

Density classification is a task that is trivial in a system with a central control unit,

but is difficult to design a CA to perform due to the limitation of local computation.

In order to be able to correctly perform the density classification task with any

high degree of accuracy, some form of collective behavior and information transfer

must take place within the CA. The definition of the density classification task for

binary CAs is as follows: if ρ0 is the density1 of s0, the initial configuration, then

1The density of a binary configuration is the number of cells in state 1 divided by the total
number of cells. Thus a state of all 0s has a density of 0.0, and a state of all 1s has a density of
1.0. A configuration where exactly have of the cells are in state 1 and half are in state 0 has a

12

given ρc, the critical value, the CA must determine if ρ0 > ρc and if so all the cells

should transition to a fixed point of all 1s, otherwise the cells should transition to

a fixed point of all 0s. The CA is given a time limit of Tmax in order for the cells

to transition into the fixed point. Therefore this task measures the density of the

initial configurations. In this research Tmax = 2N and ρc = 0.5.

Due to the ambiguity of the desired result should there be an exact split, the

number of cells in the CA is usually chosen to be an odd number. The current best

rules for synchronous locally connected CAs have around an 85% accuracy rate.

It has been proven that no two-state rule exists that can perfectly perform the

density classification task [16], though solutions do exist for various subproblems;

if the use of two CA rules is allowed then a perfect solution can be found [10],

though critics of this method point out that the CA must be given the ability to

count in order to know when to switch between the two rules [5]. It is not known

what the maximum performance of a locally connected synchronous CA is on the

density classification task.

3.2 Synchronization

Research has also focused on the task of synchronizing a CA (also known as the

firefly task). The CA again starts in some initial configuration, and the goal

density of 0.5.

13

is to end up in a configuration alternating between the states of all 1s and all 0s.

Therefore, the state of the CA at time t should be all 1s, and the state at time t+1

should be all 0s. Accomplishing the synchronization task using a CA (particularly

an asynchronous CA) would provide a stepping stone towards synchronizing sensor

networks in a simple and reliable way. In this research the synchronization task

was not studied directly, but would provide an interesting extension of this area of

research.

14

4 Sensor Networks

Due to the fact that they exhibit parallel computing, CAs are becoming increas-

ingly relevant as technology expands to include distributed computing models. The

continued shrinking of computer components has brought the idea of a distributed

sensor network into the forefront of technology. As the hardware devices used to

form the nodes of a sensor network, which are called motes, become smaller and

cheaper, the deployment of large numbers of motes with the express purpose of

monitoring and perhaps affecting the surrounding environment will become more

commonplace. Useful tasks for such sensor networks include geographical mon-

itoring, environmental monitoring, military operations, helping the elderly, and

emergency response [14, 30]. Sensor networks are systems of motes providing feed-

back from and possibly affecting the surrounding environment. Sensor networks

may self-organize or co-ordinate autonomously. Due to the limitations of their

small hardware footprint, they often have power constraints along with limited

computing power and bandwith [30]. Research studying the abilities and limita-

15

tions of sensor networks has grown considerably in the last decade [14], though this

research has been dominated by sensor networks controlled by a central unit. As

sensor networks continue to grow, a central control unit will become a liability, as

the complexity of the network will continue to grow with the number of motes [14].

CAs provide a simple framework with which to work with these distributed

systems, freeing them from the requirements of a central control unit. The inherent

simplicity of CAs would allow for even smaller hardware components, increasing the

viability of a real-world application. CAs, especially when extended to exhibit the

small world property, are an excellent way to study the computation capabilities

of a distributed sensor network. Each cell of the CA does the computation of one

mote, and by finding successful rules to tasks such as density classification the

parallel aspect of the network can be taken advantage of and the central control

unit can be eliminated.

While most of the research on CAs has focused on synchronized updates, sensor

network implementations are rarely synchronized due to high power and computing

requirements [14]. Thus, to successfully apply the CA rules to a distributed sensor

network, studies on the capabilities of asynchronous CAs must be undertaken.

16

5 Genetic Algorithm

This research extends work by Mitchell et. al. [5, 22, 23] investigating the evolution

of rules by genetic algorithms to perform the density classification task. First a

repetition of Mitchell’s previous results [5] with synchronous locally connected

CAs was undertaken in order to validate the similarity of the approach. Then

asyncronous locally connected CAs were studied. Next, CAs that exhibit the small

world property were examined. Finally, CAs exhibiting both the asynchronous

update step and the small world property were analyzed.

In accordance with previous research, the one-dimensional CA will have N =

149, r = 3, k = 2. The size of the CA lattice was chosen to be odd in order

to avoid the issues surrounding an exact 50% density in the density classification

task. Initially the neighborhood of a cell will consist of the cell itself and the three

cells on each side of the cell. This will be termed the locally connected case. In the

small world case, q = 4 links will be reassigned to a random cell in order to add

the small world property to the CA. This corresponds to p = 0.009.

17

In order to simulate asynchronous communication, the cells will be updated in

a random order at each timestep and the current state of the CA will be used to

apply the update rule. This preserves the idea of a single update step, which allows

for easy visualization of the time series, while still simulating the features of asyn-

chronous communication. This update method will be used in the asynchronous

case. This is compared with the synchronous case.

A genetic algorithm was used to evolve the rules in order to perform the density

classification task. The genetic algorithm was run a total of G = 300 times for

each case. Each run of the genetic algorithm contains g = 100 generations. The

algorithm starts out with a population of R = 100 randomly generated rules.

During every generation each rule is evaluated on a population of I = 100 randomly

generated initial configurations. The rules and initial configurations are not chosen

using an unbiased distribution1, instead a density-uniform distribution is used2. It

has been shown that attempting to run the genetic algorithm with an unbiased

distribution of initial configurations provides for low genetic algorithm performance

as the densities of such a distribution are clustered around 0.5 — the hardest cases

for the CA rules to handle — and the evolution of the rules is slow [5]. Aiding

the evolution by giving the rules tasks with easy densities around 0 and 1 speeds

1In an unbiased distribution each cell is assigned a random value of 0 or 1
2In a density-uniform distribution, a random density from [0,1] will be chosen and the cells

will be assigned random values in order to meet this density.

18

things up and provides for a better pool of final rules. Similarly, an increase in

genetic algorithm performance is seen if the rules are likewise not clustered around

a density of 0.5 [5].

After running each rule on the initial configurations and recording the results

of the fitness function F100
149 — which in this case is the correct classification defined

in the density task (see Section) — the rules are ranked in order of fitness. The

fitness function used by the genetic algorithm is described in Section . After the

rules are sorted by fitness the E = 20 highest performing rules are identified. These

rules will be copied directly over into the next generation, which is a procedure

known as elitism. The remaining R − E = 80 positions will be filled with the

results of recombination between two randomly chosen parent rules from the elite

group. Furthermore, after recombination m = 2 randomly chosen locations within

each child rule will be mutated; if the location holds a 0 it will be switched to a 1

and vice versa.

5.1 Fitness and Performance

In order to calculate the ability of a particular rule to perform the density clas-

sification task it is necessary to have a concept of fitness and performance. The

fitness F I
N(φ) of a rule φ is calculated by selecting I random initial configurations

of size N using a density-uniform distribution and then running φ on each initial

19

configuration for Tmax timesteps. The fraction of the I initial configurations that

the rule φ classified correctly is then returned. An initial configuration is only

considered classified correctly if a fixed point of all 1s or all 0s is reached by time

Tmax and the answer is correct. No partial credit is given. A density-uniform dis-

tribution picks initial configurations with a uniform probability over ρ0 ∈ [0, 1]. It

has been shown [5] that choosing a distribution that selects initial configurations

from a variety of densities allows the genetic algorithm to perform much more

successfully. In this research the fitness function F100
149 is used.

In contrast, the performance PI
N(φ) of a rule φ is calculated by selecting I

random initial configurations of size N using an unbiased distribution and again

running φ on each initial configuration for Tmax timesteps and returning the frac-

tion classified correctly. This is a much harder task for the rules as the densities

of the initial configurations are all clustered around 0.5, which is the hardest case

for the rules to classify. Thus performance gives a more accurate representation of

a rule’s accuracy at performing the density classification task given initial config-

urations around ρ = 0.5, and is also a lower bound on the performance of the rule.

The performance function P104

149 is used in this research.

20

6 Results

Results were gathered through simulations run on four different cases: local syn-

chronous, local asynchronous, small world synchronous, and small world asyn-

chronous. Values used for the genetic algorithm can be found in Table 6.1.

6.1 Strategies

In studying the resultant rules evolved for each case, a few different strategies were

seen. The default, block expanding, and embedded particle strategies have been

documented by previous research [5, 20, 22] on the locally connected synchronous

case. The messaging and unclassified atypical strategies were discovered when the

connectivity of the CAs was extended to exhibit the small world property. The

following subsections discuss the various strategies and display typical space-time

diagrams for each. For each space-time diagram, the initial configuration is shown

at the top of the diagram and time progresses in the downward direction. In a

figure displaying two space time diagrams side-by-side, the diagram on the left

21

N Number of cells in the CA 149
Tmax Number of time steps the CA is allowed to run in order

to perform the given task
2N

k Number of possible states for each cell 2
r Radius of the neighborhood of a cell 3
ρc The critical density of the density classification task 0.5
G Number of times the genetic algorithm is run for each

case
300

g Number of generations in the genetic algorithm 100
R Number of rules evolved by the genetic algorithm 100
I Number of initial configurations each rule is performed

on in each generation
100

E Number of elite rules transferred to the next generation 20
m Number of rule locations that are mutated in each child

rule
2

q Number of links between cells that are randomly recon-
nected in order to provide the small world topology

4

p Percent chance that any particular link between two cells
will be reconnected in order to provide the small world
topology

0.009

F I
N Fitness of a rule when run on I random density uniform

initial configurations of size N
F100

149

PI
N Performance of a rule when run on I random unbiased

initial configurations of size N
P104

149

Table 6.1: Table of parameter values used by the genetic algorithm.

22

expresses the low density case, while the diagram on the right expresses the high

density case. The actual densities of the initial configurations can be found in each

figure caption.

Even though the rule has Tmax = 2N time steps in order to perform the density

classification task, only N time steps are shown in order to limit the space taken up

by graphs. The cases shown were picked in order to exhibit the desired behavior in

N time steps. In this work, the classification of the strategies was made by visual

inspection of the highest fitness rule from each run of the genetic algorithm, for

a total of 300 rules per case. Each rule was performed on six different randomly

generated initial configurations with specified densities ρ0 = 0.4, 0.45, 0.48, 0.52,

0.55 and 0.6, and the resultant space time diagrams were analyzed. This range of

densities was chosen to expose the full range behaviors for each type of strategy.

This method of strategy identification was used for all four cases. A breakdown

of how many of each type of strategy was found for each of the four cases can be

found in Table 6.2.

6.1.1 Default Strategies

Default strategies are the most simplistic rules that can be described as having a

strategy. These rules simply iterate to all 0s or all 1s no matter what initial con-

figuration is provided. These strategies therefore correctly classify approximately

23

Default Block Particle Messaging Atypical
Local Sync 57 238 5 – –
Local Sync Previous [5] 11 280 9 – –
Local Async 7 276 17 – –
Small World Sync 8 0 – 269 23
Small World Async 0 14 – 270 16

Table 6.2: Table of the number of rules exhibiting each strategy for each of the four
cases. The line labeled Local Sync Previous indicates previous results [5] for the
locally connected synchronous case. It can be seen that the number of rules seen in
this research align well with previous results for the locally connected synchronous
case.

50% of the initial configurations, either the ρ < 1/2 or ρ > 1/2 case, for a perfor-

mance P104

149 ≈ 0.5. Default strategies were found in all cases except the small world

asynchronous case. Space-time diagrams of default strategies all look remarkably

similar, so only an example from the locally connected synchronous case is shown,

and can be found in Figures 6.1 and 6.2.

24

tim
e

site
0 148

0

148

site
0 148

Figure 6.1: Default Strategy for a Local Synchronous CA with a ρ0 ≈ 0.46 (left)
and ρ0 ≈ 0.56 (right). Only the right is correctly classified. This rule has P104

149 =
0.4893.

tim
e

site
0 148

0

148

site
0 148

Figure 6.2: Default Strategy for a Local Synchronous CA with a ρ0 ≈ 0.46 (left)
and ρ0 ≈ 0.56 (right). Only the left is correctly classified. This rule has P104

149 =
0.447.

25

6.1.2 Block Expanding Strategies

Block expanding strategies attempt to improve upon the default strategy’s per-

formance by allowing the additional classification of extreme density cases in the

opposite domain. Therefore a typical 1s block expanding strategy might default to

all 0s except for cases with very high density, where it will iterate to all 1s. This is

accomplished by looking for blocks of 1s and expanding such blocks if found. A 0s

block expanding strategy does the opposite: it defaults to all 1s unless there is a

block of 0s. Various block expanding strategies will have different requirements for

how large a homogenous block must be before it becomes expanded. Some strate-

gies might require a block of only 5 cells while another might require a block of

8. Mitchell et al. [5] found that the average block size for these types of strategies

were typically near the neighborhood size of 2r + 1, which appears to match with

the block expanding strategies found in this research.

The rules that look for large blocks of adjacent homogenous cells are usually

able to detect very high or very low density initial configurations as the chances

of such blocks existing is correlated with ρ0. This leads to an increase in fitness

F100
149 and performance P104

149 as compared to the more simplistic default strategies.

The results from Mitchell et al.’s work show typical block expanding strategies as

having F100
149 ≈ 0.9 and P104

149 ≈ 0.6. It was also found that these types of strategies

26

do not generalize well to automata with larger N [5]. Figure 6.3 shows an example

of a block expanding strategy for the local synchronous case.

Analyzing the block expanding strategies found in the asynchronous cases, a

few differences from the synchronous strategies are found. In particular, due to

the asynchronous update a well defined expansion rate is lost. This causes the

expanding line to lose the straight edge found in the synchronous case and instead

display a wavering line. This, of course, adds uncertainty to the estimation of

density performed by the block expanding strategies. Thus asynchronous block

expanding strategies have a lower performance as compared to the synchronous

block expanding strategies, with an average P104

149 ≈ 0.57 as compared to the locally

connected synchronous case’s average of P104

149 ≈ 0.63. These values can be found

in Table 6.3. Figures 6.4 and 6.5 show what block expanding strategies look like

in both the asynchronous cases.

27

tim
e

site
0 148

0

148

site
0 148

Figure 6.3: Block Expanding Strategy for a Local Synchronous CA with a ρ0 ≈
0.42 (left) and ρ0 ≈ 0.56 (right). Both are correctly classified by a rule with
P104

149 = 0.6423.

tim
e

site
0 148

0

148

site
0 148

Figure 6.4: Block Expanding Strategy for a Local Asynchronous CA with ρ0 ≈ 0.44
(left) and ρ0 ≈ 0.61 (right). Both are correctly classified by a rule with P104

149 =
0.605.

28

tim
e

site
0 148

0

148

site
0 148

Figure 6.5: Block Expanding Strategy for a Small World Asynchronous CA with a
ρ0 ≈ 0.48 (left) and ρ0 ≈ 0.60 (right). Both are correctly classified by a rule with
P104

149 = 0.5662.

29

6.1.3 Embedded Particle Strategies

So far the strategies described have been rather simplistic and have not exhibited

the sort of coordinated behavior that is required for a higher level of performance

in the density task. The strategies have only relied on local information and

information transfer between different areas of the cellular automata has been

non-existent. The strategies have also been overly reliant on the particular size of

the CA and thus their performance doesn’t scale as the CA grows larger.

Previous research by Mitchell, et a. [5] found a class of strategies that manages

to coordinate and communicate across the cells in order to perform more complex

calculations about the density of the initial configuration. These strategies take

advantage of moving sections of boundaries between areas containing different

patterns. These moving boundaries act as particles of information passing through

the CA. When different boundaries collide, data transfer and calculation takes

place in order to compute the likely density of the initial configuration. A more

thorough explanation of the embedded particle strategies can be found in [5].

Embedded particle strategies were found in both the locally connected syn-

chronous case and the locally connected asynchronous case. While the embed-

ded particle strategies in the local asynchronous case continue to perform better

than the block expanding strategies they have a maximum performance of only

30

P104

149 = 0.67 as compared to the locally connected synchronous maximum per-

formance of P104

149 = 0.74. The asynchronous update adds an additional layer of

complexity to the information transfer required by the embedded particle strate-

gies — with the asynchronous updates, reliable transfer of data to the left and

right is reduced due to the possible information loss described in Section . Asyn-

chronous automata also lose the ability to make checkerboard patterns, which is

one of the main information transfer methods used by particle strategies, as is seen

in Figure 6.6. Not all fixed point patterns are lost, however, as the asynchronous

automata are still able to create patterns of vertical lines.

Figure 6.6 shows example space-time diagrams of embedded particle strategies

for the locally connected synchronous case, while Figure 6.7 shows space-time

diagrams for the locally connected asynchronous case.

31

tim
e

site
0 148

0

148

site
0 148

Figure 6.6: Embedded Particle Strategies for Local Synchronous CAs with a ρ0 ≈
0.46 (left) and ρ0 ≈ 0.51 (right). Both are correctly classified. These figures are
generated from two separate rules, the rule on the left has P104

149 = 0.702 and the
rule on the right has P104

149 = 0.7368.

tim
e

site
0 148

0

148

site
0 148

Figure 6.7: Embedded Particle Strategy for a Local Asynchronous CA with a
ρ0 ≈ 0.48 (left) and ρ0 ≈ 0.61 (right). Both are correctly classified by a rule with
P104

149 = 0.6727.

32

6.1.4 Messaging Strategies

Messaging strategies are a form of strategy evolved specifically for CAs exhibit-

ing the small world property. They exhibit diagonally moving bands of black and

white. As these bands interact with the cells containing the small world links,

these bands either remain as they were, expand or reduce in width, or even dis-

appear completely. Example space-time diagrams of messaging strategies for both

the small world synchronous and small world asynchronous cases are shown in

Figures 6.8–6.9. A theory explaining how the messaging strategies work can be

found in Section .

The failure cases for the messaging strategies include accidentally reducing the

wrong bands, or having so many bands of equal width that the reduction does not

happen quickly enough, such as shown in Figure 6.10.

33

tim
e

site
0 148

0

148

site
0 148

Figure 6.8: Messaging Strategy for a Small World Synchronous CA with a ρ0 ≈
0.46 (left) and ρ0 ≈ 0.58 (right). Both are correctly classified by a rule with
P104

149 = 0.7205.

tim
e

site
0 148

0

148

site
0 148

Figure 6.9: Messaging Strategy for a Small World Asynchronous CA with a ρ0 ≈
0.48 (left) and ρ0 ≈ 0.58 (right). Both are correctly classified by a rule with
P104

149 = 0.63.

34

tim
e

site
0 148

0

148

Figure 6.10: Failed Instance of a Messaging Strategy for a Small World Asyn-
chronous CA with a ρ0 ≈ 0.58. This rule has P104

149 = 0.6369.

35

6.1.5 Unclassified Atypical Strategies

Both the small world synchronous and small world asynchronous cases also evolved

strategies showing various interesting behavior. Due to time limitations and the

lack of a large sample size1 an in depth analysis of these strategies was not done.

Therefore these strategies were lumped together under the term unclassified atyp-

ical strategies. Further studies of these strategies might be a good extension of

this research. Space-time diagrams of a few of these strategies are shown in Fig-

ures 6.11–6.13.

tim
e

site
0 148

0

148

site
0 148

Figure 6.11: Unclassified Atypical Strategy for a Small World Synchronous CA
with a ρ0 ≈ 0.46 (left) and ρ0 ≈ 0.58 (right). Both are correctly classified by a
rule with P104

149 = 0.6933.

1In some cases only one or two rules were found that exhibited a certain new behavior type.

36

tim
e

site
0 148

0

148

tim
e

site
0 148

0

148

Figure 6.12: Two Unclassified Atypical Strategies for Small World Synchronous
CAs with a ρ0 ≈ 0.46 (left) and ρ0 ≈ 0.58 (right). Neither is correctly classified.
The rule on the left has P104

149 = 0.6866 and the rule on the right has P104

149 = 0.6741.

tim
e

site
0 148

0

148

Figure 6.13: Unclassified Atypical Strategy for a Small World Asynchronous CA
with a ρ0 ≈ 0.48. This figure is incorrectly classified and the rule has P104

149 = 0.5948.

37

6.2 Performance Histograms

In order to compare the results of the various experiments, a histogram of rule

performance P104

149 was made for each case. These can be seen in Figures 6.14–

6.17. The histogram population for each case consists of all 100 rules in the final

generation of each of the 300 runs of the genetic algorithm, for a total count of

30,000 rules per case.

The four histograms share a few commonalities. Each exhibits a small peak

at P104

149 ≈ 0, corresponding to whichever recombinations from the previous gen-

eration were failures. There are three other, more interesting, peaks in all of the

histograms. The smaller peaks at P104

149 ≈ 0.45 and P104

149 ≈ 0.5 correspond to de-

fault strategies or poor block expanding strategies or messaging strategies. The

large peak at P104

149 ≈ 0.6 corresponds to block expanding strategies or messaging

strategies, depending on the case. It is this largest peak that is of most interest.

In the following paragraphs the structure of the histograms for each case will be

briefly discussed.

In the locally connected synchronous histogram (Figure 6.14) there exists a

small number of rules with P104

149 > 0.7, which are the rules that contain embedded

particle strategies. The peak at P104

149 ≈ 0.6 corresponds to the large number of

block expanding strategies found in that case.

38

Maximum P104

149 P104

149 Mode
Local Sync 0.7368 0.63
Local Async 0.6727 0.57
Small World Sync 0.7205 0.64
Small World Async 0.6403 0.58

Table 6.3: Table of maximum and mode rule performance for each case. The
performance mode is the performance at which the histogram peaks in number of
counts near P104

149 ≈ 0.6 in each of the cases. This corresponds to the performance
at which the largest number of high performing strategies (block expanding +
particle strategies for the locally connected cases, and messaging strategies for the
small world cases) can be found.

The locally connected asynchronous histogram (Figure 6.15) exhibits an overall

shape and distribution of rules that is slightly different from the local, synchronous

histogram. The peak at P104

149 ≈ 0.6 (which again corresponds to the block expand-

ing strategies) is much larger while the two other peaks are much smaller. It can

also be seen that rules with P104

149 > 0.7 are non-existent. The small number of

rules with highest performance correspond to the embedded particle strategies.

The small world synchronous histogram (Figure 6.16) exhibits the shape most

unlike those of the other three histograms. The main peak at P104

149 ≈ 0.6 is shifted

closer to 0.65 and is much wider and encompasses a larger percentage of total rules.

The strategies encompassed by this peak are the messaging strategies. There are a

few messaging strategy rules with P104

149 > 0.7 but not nearly as many as compared

to the local synchronous case and the maximum performance is only P104

149 ≈ 0.72.

The small world asynchronous histogram (Figure 6.17) seems to share common-

39

alities with both the small world synchronous and locally connected asynchronous

histograms. Just like the locally connected asynchronous histogram, the peak at

P104

149 ≈ 0.6 is much larger and the other two peaks are much smaller. The peak at

P104

149 ≈ 0.6 is a wider peak, just like the small world synchronous histogram. Just

like the locally connected asynchronous histogram, the small world asynchronous

histogram exhibits no rules with P104

149 > 0.7. The main peak in this case consists

mostly of messaging strategies, with a few block expanding strategies with lower

performance.

In summary, the histograms provided insight into how the different cases stacked

up against each other. The degradation of the density classification performance

can be seen in both asynchronous cases by the fact that the peak at P104

149 ≈ 0.6 in

the histograms is shifted lower as compared to the same peak in the synchronous

histograms. The histograms of both small world cases show the increased ability

of the genetic algorithm to find high performance rules by the larger, broader peak

at P104

149 ≈ 0.6, as this indicates that more of the final rules were high performance

rules.

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

4000

performance

co
un

t

Locally Connected Synchronous

Figure 6.14: Performance Histogram for the Local Synchronous Case

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

4000

performance

co
un

t

Locally Connected Asynchronous

Figure 6.15: Performance Histogram for the Local Asynchronous Case

41

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

4000

performance

co
un

t

Small World Synchronous

Figure 6.16: Performance Histogram for the Small World Synchronous Case

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

4000

performance

co
un

t

Small World Asynchronous

Figure 6.17: Performance Histogram for the Small World Asynchronous Case

42

6.2.1 Synchronous vs Asynchronous

One important question is whether the rules evolved in the locally connected syn-

chronous case would also perform well in the locally connected asynchronous case.

Additionally, it was wondered if the rules from the asynchronous case were actually

substantially different than the rules evolved in the locally connected synchronous

case. Therefore, 300 rules — the top performing rule from each run of the genetic

algorithm in the locally connected synchronous case — also had their performance

P104

149 on locally connected asynchronous CAs tested. Similarly, 300 rules from the

locally connected asynchronous case had their performance P104

149 tested on locally

connected synchronous CAs. The performance results for these two groups of rules

on both synchronous and asynchronous CAs are shown in the form of histograms

in Figures 6.18 and 6.19.

It can be seen in Figure 6.18 that the locally connected synchronous rules

evolved in the locally connected synchronous case perform worse when run on

locally connected asynchronous CAs. The locally connected synchronous rules

have P104

149 ≈ 0.5 when run on locally connected asynchronous CAs. This is the

same level of fitness acquired by the default strategies. Therefore rules constructed

for the synchronous case do not work any better than chance in the asynchronous

case.

43

Next, we consider the locally connected asynchronous rules. It can be seen

from the histograms in Figure 6.19 that while the bulk of the rules had P104

149 > 0.6

when run on locally connected asynchronous CAs, the performance of those same

rules on locally connected synchronous CAs was much worse, with a small peak

at P104

149 ≈ 0.45 and a much larger peak at P104

149 = 0. This indicates that the

rules evolved in the locally connected asynchronous case are very dissimilar to

the rules evolved in the locally connected synchronous case and do not work at

all for locally connected synchronous CAs. In other words, the addition of the

asynchronous update requires rules tuned specifically to handle this type of update.

Synchronous and asynchronous rules are not interchangeable, and thus studies on

rules for synchronous CAs cannot be used to indicate anything about rules for

asynchronous CAs.

An in depth analysis of the asynchronous rules and investigation of the specific

methods used by the asynchronous block expanding and embedded particle strate-

gies in order to take advantage of the asynchronous update method is outside of

the scope of this thesis. The above results showing a substantial difference between

mechanics used by the rules in the synchronous and asynchronous cases indicates

that this would be an interesting area of study.

44

0 0.2 0.4 0.6 0.8 1
0

50

100

150

performance

co
un

t

Local Synchronous Rules
Run on a Local Synchronous CA

0 0.2 0.4 0.6 0.8 1
0

50

100

150

performance

co
un

t

Local Synchronous Rules
Run on a Local Asynchronous CA

Figure 6.18: Histograms comparing performance of rules evolved for the Local
Synchronous case on both Local Synchronous and Local Asynchronous CAs.

45

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

performance

co
un

t

Local Asynchronous Rules
Run on Local Asynchronous CA

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

performance

co
un

t

Local Asynchronous Rules
Run on Local Synchronous CA

Figure 6.19: Histograms comparing performance of rules evolved for the Local
Asynchronous case on both Local Asynchronous and Local Synchronous CAs.

46

6.3 Fitness vs Generation

Example plots of fitness (F100
149) vs generation for a typical run of the genetic al-

gorithm for the four different cases are shown in Figures 6.20–6.23. The plot of

fitness vs generation for a single run of the genetic algorithm plots the highest

fitness of any rule found in that generation against the generation number. Each

of the following plots shows an overlay of eight different fitness vs generation plots

for different runs of the genetic algorithm for a particular case. This is to more

accurately show what happens during an average run for that case. Recall that

the fitness calculation F100
149 uses a density-uniform distribution for selecting ini-

tial configurations, compared with the unbiased distribution used to calculate the

performance P104

149 . This explains why the plots of fitness vs generation show the

fitness F100
149 nearing 1.0 while the performance would be below P104

149 ≈ 0.75. For

more explanation see Section .

The plots for the locally connected synchronous case (Figure 6.20) match well

with previous results [5]. For most runs a high fitness rule is found within the first

20 generations, with the occasional run failing to find a high fitness rule at all.

The plot for the locally connected asynchronous case (Figure 6.21) shows that

the number of generations needed to develop the block expanding strategies is

on average increased as compared to the local synchronous case. This is another

47

indication that asynchronous updates provide an additional obstacle for performing

global tasks such as the density classification task.

The plot for the small world synchronous case (Figure 6.22) shows a much faster

increase in fitness both in numbers of generations until an increase in fitness is first

exhibited and in the speed at which fitness is increased as compared to the locally

connected synchronous case. The best rules found for the small world synchronous

case also exhibit a higher fitness than the locally connected cases. This is more

evidence that the small world property allows for faster communication within the

cellular automata, which increases its ability to perform the density classification

task.

Finally, the plot for the small world asynchronous case (Figure 6.23) indicates

that the presence of asynchronous updates again causes the genetic algorithm some

difficulty in finding high fitness rules. The plots also show some of the same fast

increases that were exhibited by the small world synchronous case.

48

0 20 40 60 80 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fitness vs Generation
for the Local Synchronous Case

generation

fit
ne

ss

Figure 6.20: Plot of Fitness (F100
149) vs Generation for eight runs of the genetic

algorithm for the Local Synchronous Case

0 20 40 60 80 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

generation

fit
ne

ss

Fitness vs Generation
for the Local Asynchronous Case

Figure 6.21: Plot of Fitness (F100
149) vs Generation for eight runs of the genetic

algorithm for the Local Asynchronous Case

49

0 20 40 60 80 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

generation

fit
ne

ss

Fitness vs Generation
for the Small World Synchronous Case

Figure 6.22: Plot of Fitness (F100
149) vs Generation for eight runs of the genetic

algorithm for the Small World Synchronous Case

0 20 40 60 80 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fitness vs Generation
for the Small World Asynchronous Case

generation

fit
ne

ss

Figure 6.23: Plot of Fitness (F100
149) vs Generation for eight runs of the genetic

algorithm for the Small World Asynchronous Case

50

Average # of Generations Standard Deviation
Local Synchronous 16.99 19.47
Local Asynchronous 30.65 21.60
Small World Synchronous 7.03 10.46
Small World Asynchronous 26.98 22.29

Table 6.4: Table of average number of generations before reaching F100
149 > 0.8 and

the corresponding standard deviation for each of the four cases.

The fitness vs generation statistics for all 300 runs of the genetic algorithm for

each of the four cases were analyzed in order to calculate the average generation and

standard deviation at which the genetic algorithm discovers a high fitness rule. For

these calculations, the generation at which the fitness reaches F100
149 = 0.8 was used

as a definition of the generation at which the genetic algorithm discovered a high

fitness strategy such as a block expanding strategy, embedded particle strategy or

messaging strategy. This calculation will provide more insight into how easy or

difficult it was for the genetic algorithm to locate the high fitness rules for each of

the four cases.

In comparing the results of Table 6.4, it can be seen that the addition of asyn-

chronous updates increases the average number of generations before the genetic

algorithm reaches F100
149 = 0.8. The average generation for the local asynchronous

case was almost double that of the local synchronous case, and the small world

asynchronous case was almost four times greater than the small world synchronous

case. This is further indication that the asynchronous update step hinders the abil-

51

ity of the CA to perform the density classification task. Comparing the average

number of generations for the small world synchronous case as compared to the

local synchronous case shows that the addition of the small world property to the

CA substantially increases the genetic algorithm’s ability to locate high fitness

rules, as the average number of generations is less than half that of the locally con-

nected case. This is more evidence showing that the addition of the small world

property increases the CAs ability to transfer information and thus perform the

density classification task.

Average fitness at each generation was calculated by taking all 300 fitness values

for a particular generation (one fitness value per run of the genetic algorithm) and

averaging them together. These average fitness values are then plotted against

generation for all four cases in Figure 6.24. In this plot both of the asynchronous

cases exhibit a much shallower slope, which is indicative of the higher standard

deviation in the number of generations taken by the genetic algorithm in order to

locate high fitness rules. Both synchronous cases exhibit an increase in fitness that

more closely matches the individual fitness vs generation plots shown in Section .

At first this might seem a little paradoxical, as the locally connected synchronous

case also shows a high standard deviation and thus a shallow slope such as seen for

the asynchronous cases would be expected. This is explained by the much higher

number of runs that fail to find a high fitness rule at all, which increases the

52

standard deviation of the locally connected synchronous case. The runs that do

find high fitness rules continue to do so within a tighter generation range, causing

the well-defined increase in the plot of average fitness.

The locally connected synchronous case shows the lowest maximum average

fitness of only F100
149 ≈ 0.85, while the three other cases have an maximum average

fitness of F100
149 ≈ 0.95. This is again explained by the fact that the locally connected

synchronous case has a much greater number of runs finding only default rules,

which brings down the maximum average fitness. Both the asynchronous cases

and the small world synchronous case have much lower numbers of default rules,

and thus a higher maximum average fitness.

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

generation

av
er

ag
e

fit
ne

ss

Average Fitness vs Generation

Local Synchronous
Local Asynchronous
Small World Synchronous
Small World Asynchronous

Figure 6.24: Plot of Fitness (F100
149) vs Generation averaged over all 300 runs of the

genetic algorithm for each case.

53

6.4 Analysis of the Messaging Strategies

The messaging strategies discovered in the analysis of the small world cases ex-

hibits interesting behavior allowing the transmission of information through the

CA by taking advantage of the small world links. This section provides a theory as

to how these strategies accomplish this information transfer. This analysis only de-

scribes some of the more obvious behavior as seen from the space-time diagrams of

rules exhibiting the messaging strategy. A more thorough analysis can and should

take place in order to more thoroughly understand how these rules work, which

would possibly help with the creation of other, higher performing rules. Space-time

diagrams of these strategies can be found in Subsection .

In order for a rule strategy to be able to take advantage of the small world links

between random cells, the strategy itself must not assume anything about where

these links are located. The only thing the strategy must rely on is the fact that

these links do in fact exist. In order for these links to be taken advantage of, the

CA must transmit the information on entire state of the initial configuration to

each of the links. This is accomplished by first creating a simplified version of the

initial configuration. A local section containing mostly 1s (black cells) becomes a

block of black. A section containing mostly 0s (white cells) becomes a block of

white. Next, this information must be transmitted to the link locations. This is

54

accomplished by simply moving the entire state to the right or left. In this way

bands of black and white cells sweep down the space-time diagram in a diagonal

manner.

When a band hits a link location, the cell containing the link is now connected

to two different bands. The cell can thus judge the relative frequency of black or

white bands, and adjust one of the bands accordingly. It can thus be seen that the

bands reduce in width or disappear altogether at particular locations — the link

locations. It is in this fashion that an initial collection of stripes is reduced to a

fixed point of 1s or 0s.

To more fully explain how this works, let us think about what must happen

at a band edge in order to keep a band moving to the right. Let’s imagine that a

black band is moving to the right. The leading edge of the band is about to enter

a cell. At this point, the cell itself and all neighbor cells to the right are white,

while all the neighbor cells to the left are black. In the locally connected case the

center cell wants to adjust itself to a black state, meaning that in the next time

step the black band will have moved one cell to the right. Such a configuration

is shown in Figure 6.25. Now let’s imagine what might happen in the case that

this cell is not locally connected, but contains a small world link to some other

area of the CA. Let’s imagine that this link is attached to one of the cells on the

left, replacing what would have been part of the black band. Now the center cell

55

has a single data point sample of the density of another section of the automata.

If this sample is black, then nothing has changed and the band moves as before,

as seen in Figure 6.26. If this sample is white, however, then the center cell has

the opportunity to cut off one cell of the black band — instead of switching to

black, it may remain white, as seen in Figure 6.27. This would reduce the width

of the black band by one cell. It is in this way that the cells containing small

world links can sample the density of a different area of the automata and apply

this knowledge to the density of its area of the automata. This is but a simple

example of the how such a strategy might work. There are undoubtedly other

aspects of messaging strategies that have not been discussed here and would be

open for further investigation.

Figure 6.25: Block of black moving right in a locally connected neighborhood.

56

Figure 6.26: Block of black moving right in a neighborhood with a small world
link. The link points to a black cell, so the behavior is not changed.

Figure 6.27: Block of black moving right in a neighborhood with a small world
link. The link points to a white cell, so the movement of the black block is halted.

57

7 Related Work

Genetic algorithms have been shown to successfully generate CA rules that perform

various computations such as the density classification task and the synchroniza-

tion task [22, 5]. A few related areas of study include coevolution [25, 15], genetic

programming [2], and extending the connectivity of the CA to exhibit the small

world property [26]. Coevolution was used to successfully increase the percentage of

runs that developed embedded particle strategies and discovered the most success-

ful rule for small (N ≈ 149) CAs. Andre, Bennett and Koza [2] have discovered a

very successful density classification rule using genetic programming as opposed to

a genetic algorithm. This rule shows improvement over rules discovered by genetic

algorithms and the most successful human-written rules. Extending the connectiv-

ity of a CA to exhibit the small world property has proven to increase the ability

of rules to perform well on the density classification task [2]. Random Boolean

networks have also been studied with the aim of solving global tasks [19, 18].

Biologically inspired models such as CAs have been successfully used to simu-

58

late sensor networks. Jones et al. [14] showed that a simple 2-D CA could be used

to determine the exact average value of a field of motes within a short number of

timesteps. Wokoma, Sacks and Marshall [30] have also expressed the capabilities

of CAs for simulating sensor networks.

Genetic algorithms and other biologically inspired techniques have also been

used to optimize the structure of a sensor network in order to minimize power

consumption while maximizing the detection accuracy of the network [3, 7, 13].

While this is not directly relevant to the research covered here, it shows how genetic

algorithms have been successfully applied to other problem areas in the sensor

network field and supports the importance and feasibility of sensor networks in

the future of computing.

The synchronization of asynchronous sensor networks has also been an area

of study, though the use of genetic algorithms in this area appears limited. Cur-

rent research has focused on techniques such as post-facto synchronization [8] and

other methods described in [9]. In a similar vein, studies have also proven that a

synchronous CA can be simulated with a sufficiently large asynchronous CA [1].

59

8 Future Work

There are a variety of extensions possible for this research. One is simply to repeat

the experiments given the synchronization task (Section) instead of the density

classification task.

Another area to study is a more thorough concentration on the small world

cellular automata, including more experiments investigating how different numbers

of reconnections affect the CA’s performance. The research in this thesis only

concentrated on a single reconnection value.

Another idea that is aimed towards increasing the ability of the genetic algo-

rithm to find embedded particle strategies or other strategies implementing high-

level communication is to slowly adjust the initial configurations chosen in each

generation. Currently the initial configurations are chosen from a density-uniform

distribution. This spreads the densities of the initial configurations from 0 to 1,

rather than concentrating on the most difficult 0.5 density case. However, when

comparing the performance of block expanding strategies to that of embedded

60

particle strategies on a population of such initial configurations, not much differ-

ence is found. Both types of strategies score around F100
149 = 0.9 on a collection of

density-uniform initial configurations. This makes it more difficult for the genetic

algorithm to distinguish which type of strategy is better at categorizing a collec-

tion of unbiased initial configurations, like those used to calculate the performance

PI
N of a rule. Therefore, it would be interesting to study a genetic algorithm that

slowly switches from using a density-uniform distribution of initial configurations

at the start to an unbiased distribution of initial configurations by the end. The

thought is that such a genetic algorithm would be able to find high-performance

rules with much higher probability. This is somewhat similar to a coevolution

approach.

Evaluation of the newly discovered messaging strategies can and should be fur-

ther studied. A more comprehensive analysis on the methods used within the mes-

saging strategies could be employed to create small world networks more carefully

fashioned in order to fully take advantage of this strategy. In addition, further

study of some of the other interesting unclassified strategies found in the small

world runs could be interesting.

61

9 Conclusions

This thesis explores the relationships between asynchronous and synchronous up-

dates as well as locally connected and small world networks on the ability of rules

to perform the density classification task for k = 2, r = 3 cellular automata. The

performance of locally connected synchronous cellular automata was compared to

previous research [5, 20, 22] in order to validate the testing procedure. Next, the

performance of locally connected asynchronous, small world synchronous and small

world asynchronous cellular automata were compared.

It was discovered that cellular automata exhibiting asynchronous updates con-

tinued to develop embedded particle strategies in the locally connected case and

messaging strategies in the small world case. The asynchronous updates did de-

grade cellular automaton performance on the density classification task. Showing

the evolution of strategies incorporating advanced information transfer is an im-

portant step towards applying the knowledge gained from these strategies to the

field of sensor networks. Requiring sensor networks to update synchronously will

62

most likely remain a burdensome requirement for the near future, thus methods

exhibiting asynchronous updates are desirable. It was also discovered that the rules

found in the synchronous case and rules found in the asynchronous case were not

interchangeable, which further promotes the importance of studying asynchronous

cellular automata.

In studying the addition of a small world network topology to the cellular

automata, an entirely new type of rule strategy, dubbed the messaging strategy,

was discovered. These strategies take advantage of the small world links within a

cellular automaton in order to transmit information through the automaton more

quickly. A theory on how the rules take advantage of the small world links was

proposed and analyzed. Evidence indicating the small world topology increased

a cellular automaton’s ability to transfer information was discovered. While the

type of small world topology studied in this thesis was constructed to be broad,

more research comparing the results of more specific types of small world topolo-

gies would be beneficial in discovering more about the performance bounds of the

messaging strategy.

It is hoped that our results will provide helpful in the areas of both cellular

automata and sensor networks. Comparisons between the performances of cellular

automata exhibiting both asynchronous updates and the small world property have

been discussed in the specific instance of performing the density classification task,

63

which provides an idea of the capabilities and limitations of such cellular automata.

64

References

[1] S. Adachi. Computation by asynchronously updating cellular automata. Jour-
nal of Statistical Physics, pages 261–289, 2004.

[2] D. Andre, F. Bennett, and J. Koza. Discovery by genetic programming of
a cellular automata rule that is better than any known rule for the majority
classification problem. Proceedings of the First Annual Conference on Genetic
Programming, pages 3–11, 1996.

[3] A. Buczak, Y. Jin, H. Darabi, and M. Jafari. Genetic algorithm based sensor
network optimization for target tracking. Intelligent Engineering Systems
through Artificial Neural Networks, 9:349–354, 1999.

[4] C. Chong and S. Kumar. Sensor networks: Evolution, opportunities, and
challenges. Proceedings of the IEEE, 91:1247–1256, 2003.

[5] J. Crutchfield, M. Mitchell, and R. Das. The evolutionary design of collective
computation in cellular automata. In J. P. Crutchfield and P. K. Schuster,
editors, Evolutionary Dynamics – Exploring the Interplay of Selection, Neu-
trality, Accident, and Function, pages 361–411. New York: Oxford University
Press, 2003.

[6] J. Dreicer, A. Jorgensen, and E. Dors. Distributed sensor network with col-
lective computation for situational awareness. AIP Conference Proceedings,
632:235–243, 2002.

[7] F. Dressler, B. Krüger, G. Fuchs, and R. German. Self-organization in
sensor networks using bio-inspired mechanisms. Proceedings of the 18th
ACM/GI/ITG International Conference on Architecture of Computing Systms
- System Aspects in Organic and Pervasive Computing (ARCS’05): Workshop
Self-Organization and Emergence, 2005.

[8] J. Elson and D. Estrin. Time synchronization for wireless sensor networks.
Proceedings of the 2001 International Parallel and Distributed Processing Sym-

65

posium (IPDPS), Workshop on Parallel and Distributed Computing Issues in
Wireless Networks and Mobile Computing, 2001.

[9] J. Elson and K. Römer. Wireless sensor networks: A new regime for time syn-
chronization. ACM SIGCOMM Computer Communication Review, 33:149–
154, 2003.

[10] H. Fuks. Solution of the density classification problem with two cellular au-
tomata rules. Physical Review E, 55:2081R–2084R, 1997.

[11] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker.
Complex behavior at scale: An experimental study of low-power wireless sen-
sor networks. Technical Report CSD-TR 02-0013, UCLA, 2002.

[12] Y. Ishida. The immune system as a self-identification process: a survey and
a proposal. International Workshop on Immunity-Based Systems, 1996.

[13] S. Jin, M. Zhou, and A. Wu. Sensor network optimization using a genetic
algorithm. Proceedings of the 7th World Multiconference on Systemics, Cy-
bernetics, and Informatics, 2003.

[14] K. H. Jones, K. N. Lodding, L. Wilson, and C. Xin. Biology inpired approach
for communal behavior in sensor networks. Proceedings of the 39th Hawaii
International Conference on System Science, 2006.

[15] H. Juillé and J. B. Pollack. Coevolutionary learning: a case study. In Proceed-
ings of the Fifteenth International Conference on Machine Learning, 1998.

[16] M. Land and R. K. Belew. No Perfect Two-State Cellular Automata for
Density Classification Exists. Physical Review Letters, 74:5148–5150, 1995.

[17] C. Langton. Artificial Life, Santa Fe Institute Studies in the Sciences of
Complexity Proceedings, volume VI. Redwood City, CA: Addison-Wesley,
1989.

[18] B. Mesot and C. Teuscher. Critical values in asynchronous random boolean
networks. 7th European Conference on Artificial Life, 2003.

[19] B. Mesot and C. Teuscher. Deducing local rules for solving global tasks with
random boolean networks. Physica D, pages 88–106, 2005.

66

[20] M. Mitchell. Coevolutionary learning with spatially distributed populations.
In G. Y. Yen and D. B. Fogel, editors, Computational Intelligence: Principles
and Practice. New York: IEEE Computational Intelligence Society, 2006.

[21] M. Mitchell. Complex systems: Network thinking. Artificial Intelligence,
pages 1194–1212, 2006.

[22] M. Mitchell, J. Crutchfield, and R. Das. Evolving cellular automata with
genetic algorithms: A review of recent work. Proceedings of the First Interna-
tional Conference on Evolutionary Computation and its Applications (EvCA
’96), 1996.

[23] M. Mitchell, J. Crutchfield, and R. Das. Evolving cellular automata to perform
computations. In T. Back, D. Fogel, and Z. Michalewicz, editors, Handbook
of Evolutionary Computation. Oxford: Oxford University Press, 1998.

[24] M. Newman. Models of the small world. J. Stat. Phys., 101:819–841, 2000.

[25] J. Paredis. Coevolving cellular automata: Be aware of the red queen! Pro-
ceedings of the 7th Int. Conference on Genetic Algorithms, 1997.

[26] C. Teuscher. On irregular interconnect fabrics for self-assembled nanoscale
electronics. 2nd IEEE Int. Workshop on Default and Fault Tolerant Nanoscale
Architecture, 2006.

[27] C. Teuscher. Small-world power-law interconnects for nanoscale computing
architectures. Proceedings of the 6th IEEE Conference on Nanotechnology,
IEEE Nano 2006, 2006.

[28] J. von Neumann. The Theory of Self-reproducing Automata. Univ. of Illinois
Press, Urbana, IL, 1966.

[29] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’ networks.
Nature, 393:440–442, June 1998.

[30] I. Wokoma, L. Sacks, and I. Marshall. Biologically inspired models for sensor
network design. Proceedings of the London Communications Symposium, 2002.

[31] S. Wolfram. A New Kind of Science. Wolfram Media, Inc., 2002.

67

