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Chapter 1

Introduction

This thesis describes the design, implementation, and use of a spiking neu-

ral network model of visual cortex. Several aspects are studied, concerning

biologically-inspired image processing, neural data representation, and par-

allelization of the network simulation architecture.

The study of networks of spiking neurons is a vibrant research area in

computational neuroscience, as these models of neural activity provide a

more realistic description of biological data than some of the abstractions

that have previously been employed. It has been shown experimentally and

theoretically that these networks can exhibit a great richness of functional

behavior.

Spiking neural networks are also interesting from the standpoint of theo-

retical computer science, since they present a computational paradigm that

leverages massive parallelism of simple computational nodes with a unique

binary communication channel. Using a network of these nodes with a statis-

tical interpretation scheme balances high resolution computation with grace-
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ful degradation in the face of uncertain input data and communication noise.

There are several barriers, however, to the use of spiking neuron models

in real-world applications. First and foremost is the lack of general principles

for problem-solving. Spiking neural networks do not yet have an equivalent

to the “backpropagation of error” method that has made artificial neural

networks practical. Additionally, the noise inherent in spiking networks can

present difficulties when using traditional information processing techniques.

Therefore, my primary goal in this work was to identify reliable computa-

tional methods using a spiking neural network.

This is the genesis of the software architecture, so engineering, rather

than new science, is at the forefront. To this end, I reproduced a family

of existing models from the literature in computational neuroscience. The

main motivation for this initial approach was to ensure the correctness of each

component of the simulation. This step was critical since biologically-inspired

models have many parameters, and it is often unclear which characteristics

are functionally significant.

Image processing is an ideal application for alternative computational

techniques due to the input data ambiguity, implicit parallelism, and the

need for more effective algorithms. Neuroscience offers a “working model”

in the form of the visual cortex of the brain, which has exquisite visual

processing capability. Great strides in computer vision have been due to

inspiration from neuroscience, and the present model makes use of many of

these notions from biologically-inspired image processing.
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Since very little is certain about the specifics of processing in the visual

cortex, my ambitions in image processing are modest in this work. As in the

model I reproduced, the benchmark task consists of the determination of the

orientation of a single rotated line placed in the center of a small grayscale

image. The network response is analyzed to quantify the resolution of the

code signaling the result of the computation.

The final aspect of the thesis, high-performance computation, was moti-

vated by the need for processing power to handle many trials and large scale

models. Neural systems are inherently massively parallel, so they lend them-

selves to techniques from concurrent programming. The repetitive, “embar-

rassingly parallel” operations involved in simulating networks of neurons map

well to SIMD (single instruction, multiple data) architectures. I leveraged

this parallelism using the OpenMP and CUDA architectures.

OpenMP and CUDA are methods to parallelize small kernels of highly

parallel code. OpenMP is a popular C-based software abstraction for use on

shared-memory CPUs. CUDA is a new architecture for parallel program-

ming created by NVIDIA for use on their graphics processing cards (GPUs).

There is growing interest in the use of GPUs for general-purpose computation

(known as GPGPU), motived by the availability and low cost of many-core

graphics hardware. I implemented components of the spiking simulator in

CUDA and OpenMP and profiled the performance on a variety of architec-

tures.

Chapter 2 reviews background material, primarily from neuroscience, that
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motivates the model I reproduced. Chapter 3 is an in-depth description of

the mechanics of the simulation platform. Chapter 4 presents the results

of my experiments with the model, while Chapter 5 offers an analysis of

the results and general discussion about the research outcomes and possible

future work.
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Chapter 2

Background and Related Work

My primary ambition in pursuing this research was to better understand pos-

sible computational principles in the brain. Therefore I strove to remain as

true to accepted neuroscience as possible. Rather than building “biologically-

inspired” algorithms, I endeavored to only utilize principles with a solid basis

in experimentation.

Spiking models form the centerpiece of this thesis, and their biological ba-

sis is discussed in Section 2.1. While the simulation of spiking behavior facil-

itates sophisticated temporal codes, for this work I instead opted to examine

statistically based approaches to neural coding, which involve computation

using the aggregate activity of neuronal populations. This approach is radi-

cally different from other strategies. Most computational methods, including

artificial neural networks and even many spiking models, have a “digital”

flavor that is at odds with biological systems. Often too much emphasis is

placed on the response of individual neurons. John Von Neumann wrote in

1958:
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It should also be noted that the message-system used in the ner-

vous system, is of an essentially statistical character. In other

words, what matters are not the precise positions of definite mark-

ers, digits, but the statistical characteristics of their occurrence.[1]

Whether this feature of neural representation is crucial for understanding

biological intelligence remains to be seen, but it is possible that the analysis of

such codes could provide insight into aspects of cognition such as adaptation,

learning, and generalization that still lack convincing artificial realizations.

At minimum, statistical codes, introduced in Section 2.3, have a robustness

that cannot be matched by comparatively brittle digital representations.

Besides spiking neuron models and statistical codes, the other aspect

of neuroscience I draw from is the architecture of the mammalian visual

cortex, described in Section 2.2. This incredibly effective system is one of

the most heavily studied structures in the brain, and is the inspiration for

many models in biologically-inspired computer vision[2][3]. The moderately

detailed implementation I reproduced parallels low-level visual processing of

simple image features, such as the detection of edges, which occurs in the

primary visual cortex.

2.1 Computational Modeling of Neurons

In neuroscience modeling, the smallest computational nodes typically rep-

resent single neurons. Some researchers divide this abstraction even further
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into cellular components, but that level of detail is not relevant to the present

work. At minimum, neurons have a cell body where computation is per-

formed, and connections by “wires” (called axons and dendrites) to many

other neurons. As noted by John Von Neumann, neurons, like digital gates,

have a single output on one axon. The inputs, however, typically number in

the thousands, unlike typical logical circuits[1].

It is almost universally agreed that electro-chemical spikes, or action po-

tentials, are the means by which neurons communicate. The overwhelm-

ing belief is that information is transferred between neurons solely by these

pulses, which can be interpreted as binary streams. The full interpretation

of spike trains is much more complicated and controversial, however, and is

covered further in Section 2.3.

The connections between the cell body and its axons and dendrites are

known as synapses. Through chemical mechanisms, synapses can depress or

facilitate spike transmission. Theoretically, this characteristic is modeled by

weighting the different inputs. This feature is of prime importance in pattern

processing using artificial neural networks, and can be interpreted as a dot

product operation between a set of inputs and an input mask.

Neural activity is directional, and spikes affect downstream neurons in

either a positive or negative fashion. Excitatory neurons send spikes that

have an additive effect on the neurons which they are connected to, while

inhibitory neurons have a subtractive or possibly divisive[4] effect.
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2.1.1 Artificial Neural Networks

The first important distinction to make is between spiking neurons and the

“analog” units employed by artificial neural networks, first proposed by Mc-

Culloch and Pitts[5]. Although inspired by the brain, this neural model

transmits continuous numerical values over its axons, rather than binary

pulses. This abstraction is justified by the argument that these numbers

correspond to an average firing rate.

The McCulloch and Pitts model also supports transmission of either neg-

ative or positive values by each node, in contrast to spiking models, in which

each unit can be strictly excitatory or inhibitory. The benefit of the Mc-

Culloch and Pitts model is that since messages between nodes can be any

continuous value, neurons can be interpreted as performing vector operations,

and the analytical derivation enables computation such as logistic regression.

2.1.2 Biophysical Models

One of the earliest, and still the most detailed, mathematical descriptions

of neural activity is the Hodgkin-Huxley model of a squid neuron, first pre-

sented by AL Hodgkin and AF Huxley in 1952[6]. In this model, the neuron

is decomposed like an electrical circuit, and a system of fourth-order dif-

ferential equations tracks the dynamical relationships between the various

chemical channels in the neuron. One satisfying result is that the complete

activity of a single neuron can be modeled very accurately without any ad-

ditional contrivances besides the equations, in contrast to the more abstract
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alternatives discussed below.

2.1.3 Integrate-and-Fire Models

A simpler mathematical model, first proposed in 1907 by Lapicque[7], at-

tempts to capture the functional behavior of spiking neurons. Specifically,

a neuron can be viewed as an integrator of input spikes, with output spikes

occurring when a certain threshold is reached. Lapicque’s model, often called

the leaky integrate and fire (LIF) model, is now the preferred abstraction for

large networks of neurons, primarily for its computational tractability.

There are several variants of the model. The simplest version requires only

a single variable to store the electrical membrane potential of each neuron.

To more closely match neuroscience, the range of this variable is usually

constrained to lie between around -75.0 and -35.0, which represents millivolts.

As inputs arrive, this variable changes according to an update rule. A logical

check occurs at each timestep to see if a fixed voltage threshold has been

exceeded. If so, a spike is noted in a binary output stream and the membrane

potential is reset to a minimal reset value. Then a short refractory period

occurs whereby the neuron is unable to fire for a small time.

The name “leaky” comes from the fact that, in the absence of input

activity, the membrane potential naturally decays to the resting value under

the influence of a static time constant. Mathematically, this conductance-

based integrate-and-fire model can be described by Equation (2.1), from [8].

The constant C is derived in terms of a time constant τ and the leakage
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conductance gleak to determine how quickly the neuron returns to the resting

potential Vrest. The I term represents synaptic input activity, which will be

discussed later in a more detailed model. Vth represents the spike threshold,

while Vreset represents the value to which the neuron is reset after a spike,

often the same as Vrest.

C
∂V

∂t
= gleak(Vrest − V ) + I if(V > Vth)V = Vreset (2.1)

All of the models discussed so far are known as “single compartment,”

since the only active component is the cell body, or soma. The other parts

of the model (specifically axons and dendrites) are viewed as passive, a com-

mon simplification. To simulate richer dynamical behavior, higher order

terms can be added. One possibility is to separately capture inhibitory and

excitatory input conductances, as done in [9]. The additional input variables

are themselves governed by differential equations which make input spikes

into smooth alpha functions separately for each input synapse. These vari-

ables are then used in conjunction with a membrane update equation, (2.2),

a more detailed version of (2.1). Slightly different notation, to match the use

of the time variable t, follows [9]. The two summation terms represent the

combination of all of the input synapses, effectively replacing I in (2.1). The

super-threshold spiking behavior is the same as in (2.1).
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C
dV (t)

dt
=

∑
gex(V (t)− Vexc)+ (2.2)∑
ginh(V (t)− Vinh)+

gleak(V (t)− Vleak)

Again, C and gleak are numerical constants including the leakage time

constant, and the Vexc, Vinh, and Vleak constants represent the reversal po-

tentials of each type of input and the leakage term. The dynamic variables

gexc and ginh follow the spike input, convolved with an alpha function, and

including the synaptic weights. The constant values that I used, from [10],

are given in the Methods chapter in Table 3.2.

2.1.4 Poisson Point Process

Finally, there is a simple but heavily used method for generation of neural

spike output based solely on a desired average rate. The Poisson process,

which describes the probability of occurrence of random independent events,

has been employed successfully to model neural spike trains. A Poisson

process has a single free parameter λ that describes the expected number of

events in a given unit of time. In neuroscience, this constant corresponds to

the average number of spikes in a fixed time interval, and can be calculated

from the expected spike rate and the sampling interval.
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2.2 Modeling the Early Visual Pathway

The early visual system, spanning from the retina to the primary visual

cortex, has been the focus of intense scrutiny since the 1950s. Many mysteries

remain (see especially [11] for an essay on what we still don’t know about

the visual system), but an increasing amount of detail continues to be added

to models of this system.

Most of the research follows a stereotypical architecture that was char-

acterized fairly well by Hubel and Weisel in the 1960s[12]. Many computa-

tional models utilize some aspects of this architecture, including [9, 13, 3]. I

reproduced the results of [10], which is a direct descendant of the detailed

simulation given in [13].

2.2.1 Retina

The retina is the first stage of processing in the eye. Some researchers model

the actual processing circuitry in the retina, but for the present work compu-

tational abstractions are used. The “difference of Gaussians” mathematical

model was first proposed in 1966 by Enroth-Cugell and Robson[14], and was

popularized by Marr[2].

In this model, two classes of retinal output cells are identified: ON-center

cells that respond to bright dots on a black background, and OFF-center

cells that respond to dark dots on a bright background. Each of these classes

has two characteristic input regions: a center and a surround. The output
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Figure 2.1: Cross-section of circular difference of Gaussians response of reti-
nal ON cell. The ON cell response is modeled by the subtraction of a wide
surround Gaussian from a narrow central Gaussian. OFF cells have the in-
verse response to the ON cell.

behavior of each cell can be described by the difference of two Gaussian filters

corresponding to these two regions, as shown in Figure 2.1. An ON cell results

from the subtraction of the surround response from the center response, while

an OFF cell results from the subtraction of the center response from the

center response.

The result of application of these filters is to whiten the image. Specifi-

13



Figure 2.2: Result of filtering image with difference of Gaussian filters. (a)
is the original image, (b) is the center response, (c) is the surround response,
and (d) is the center response minus the surround response, mimicking the
ON cell response.
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cally, adjacent pixels are decorrelated, resulting in the accentuation of image

discontinuities, which highlights edges and diminishes the response of regions

with constant intensity. An example of the result of this filtering on a real

image is given in Figure 2.2.

Processing inside the retina has an analog-like flavor, meaning that con-

nected neurons communicate with continuous electrical values rather than

the action potentials seen elsewhere in the brain. As such, retinal filtering

is often simulated as in traditional image processing, with image intensities

being the operant numerical values. The final outputs of the retina are its

ON/OFF cells, which fire spikes that travel over the 1.5 million fibers in the

optic nerve.

2.2.2 LGN

The retinal volley arrives in the lateral geniculate nucleus of the thalamus,

known as the LGN. The cells in the thalamus are often called relay cells,

since they seem to act functionally as a “buffer” to the input before it is sent

to the primary visual cortex. However, there is processing in the LGN it-

self, and it accepts input not only from the retina, but also receives a massive

backward projection from visual cortex, which is not well understood. Quan-

titatively, there are more neurons in the LGN than there are retinal fibers,

and many computational models either duplicate retinal input at multiple

LGN cells[9], or assume a one-to-one correspondence between retinal cells and

LGN cells[13]. The present model uses the latter straightforward realization,
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without any feedback loops.

2.2.3 Visual Cortex

Processing in the primary visual cortex, called V1, is the primary focus of this

work. There are similar cortices for each sensory modality, and many think

that understanding cortical processing could be crucial in grasping higher

cognitive functions. The current model includes a small subset of V1.

The most widely studied group of cells in V1 constitute the first stage

in all visual processing including color, shape, and motion discrimination.

These neurons, named “simple-cells” by Hubel and Weisel[12], act like edge-

detectors, exhibiting an increase in their firing rate when an edge of the

appropriate orientation appears in the small visual region that they are re-

sponsive to. There are both excitatory and inhibitory simple cells, with

interconnections between the two populations.

The response of simple cells

It was shown in [15] that the response of simple cells can be well described by

a Gabor function like that plotted in Figure 2.3. This construction includes a

central facilitory ridge surrounded by inhibitory flanks, much like the center-

surround cells of the retina but with an angular component. An angled line

located exactly on top of the center region provides the maximal response,

while a line oriented orthogonal to the central region yields a small response.

In general, response is a graded function of the input orientation, with the

16



Figure 2.3: Example Gabor function with an orientation φ of 45 degrees.
Edge detection properties result from the positive region in the center and
negative flanking regions.

17



maximal spike response at the neuron’s preferred angle. Some believe that

the connectivity between neurons in LGN and V1 is governed by Gabor-like

rules[16], and many models, including the one I reproduced, implement this

behavior.

Contrast invariance: the iceberg effect

One additional important characteristic of cortical response is the observed

phenomena known as the “iceberg effect” of contrast invariance[17], illus-

trated in Figure 2.4. Due to this property, the output of V1 neurons is

relatively insensitive to the intensity of the input, unlike retinal and LGN

cells. As shown in Figure 2.4, without this characteristic, the response tun-

ing width is highly dependent on the amplitude of the input, widening and

narrowing due to the intensity of the input stimulus. The contrast invariant

curves, however, have response tuning widths less sensitive to the input con-

trast. An intuitive demonstration of this quality is the ability of our visual

perception to operate well even in low light situations.

2.3 Neural Coding

This section, which concludes the neuroscience background, describes some of

the various coding methods that have been considered in neural computation

and specifically visual processing, including notions from signal detection

theory and information theory. Several simplifications are used to limit the

scope of this review. First, the interest here is in coding single values, and

18



Figure 2.4: Illustration of iceberg effect of contrast invariance. The height of
each curve represents the normalized response magnitude of the V1 popula-
tion. (a) and (c) denote relative population response curves to a variety of
input intensities. (b) and (d) show super-threshold response of (a) and (c),
respectively. (a) and (b) are not contrast invariant. The thresholded response
shown in (b) demonstrates that (a) is highly dependent on input intensity,
with zero response at lowest intensity. Conversely, (c) and (d) exhibit con-
trast invariance, with a nonzero thresholded response at all contrasts.
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I invoke the prevalent assumption of independence between neurons. I also

eschew sophisticated coding schemes. The technique I focus on uses linear

combinations of spike counts, rather than the more sophisticated notions of

temporal codes[18] or nonlinear methods[19].

2.3.1 Population Codes

Figure 2.5 illustrates three strategies for encoding a value using multiple

units. Population codes offer a compromise between the extremes of intensity

coding (also called rate coding) and interval coding (also known as labeled-

line coding [20]). The former method uses a single sensor to encode multiple

values, and requires individual nodes with few errors and high resolution.

Interval coding, on the other hand, uses binary nodes, but needs a large

number of reliable units to represent a wide range of values.

The population-based representation, also known as coarse-coding [20][21],

was first proposed to model the activity of motor neurons in monkeys[22],

and has been observed in many neural systems, including sensors in the

cricket[23], bat echolocation neurons, and multiple other modalities[20]. In

population coding, the combined behavior of an array of graded nodes is

used to represent a value, as shown in panel (c) of Figure 2.5. There are

advantages of such a scheme, including its resolution and robustness to noise.

Since exploration of population coding is a focal point of the thesis, empirical

demonstrations of the population coding scheme are given in the following

chapters.
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Figure 2.5: Three different encoding strategies. An array of nodes, enumer-
ated in the legends, encodes the value 4. Each node’s response curve is shown,
with node activity indicated by a filled circle. (a) intensity coding : multiple
values are encoded by the response of single node. (b) interval coding : value
is indicated by response of one of many nodes, in “one up” fashion. (c) pop-
ulation coding : value is coded by aggregate activity of overlapping responses
in several nodes.
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An additional step in population decoding is the determination of the

coded value given the population response. There are several proposals,

ranging from the original notion of vector coding or center of gravity [24],

which uses a linear weighted sum of the sensor outputs, to arbitrary weight

vectors learned using perceptrons[25] or maximum likelihood (ML) estima-

tion using kernel fitting[26][27], all of which are explored in the following

chapters.
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Chapter 3

Methods

In this chapter I describe the mechanics of the spiking neuron simulation. A

detailed description of the software is provided, documenting its development,

verification, and optimization. Confirmation of the various components was

guided by scientific results, which are summarized. Before the detailed ma-

terial, I first present some general themes of the development approach.

3.1 General Software Topics

3.1.1 Development Cycle

Most theoretical neuroscientists employ the MATLAB environment to write

simulations. For applications consisting of operations on vectors and matri-

ces of numbers, its ease-of-use is unparalleled, facilitated by a mature GUI,

visualizations tools, and extensive libraries. High performance is not its

strong suit, although acceleration is possible through the use of C extensions

and some new concurrency facilities. Constructs from traditional computer

science are lacking, and some find its licensing model problematic.
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To balance my concerns, I used a hybrid development approach. First, I

prototyped the system exclusively in Python, using the pylab environment.

This suite combines several Python numerical packages and an advanced in-

terpreter to achieve MATLAB-like functionality and plotting, albeit without

a friendly GUI. When the slow runtime performance of Python became pro-

hibitive, I began to port components to C, and eventually to OpenMP and

CUDA. Since I had already constructed the visualization tools in Python

(described below), I was able to verify each component of the system indi-

vidually.

3.1.2 Time-based vs. Event-driven Simulation

When building spiking neuron simulators, there are two main paradigms:

time-based, or event-driven[28]. With the time-based approach, there is a

fixed timestep increment; at each iteration processing occurs. Conversely, an

event-based model uses dynamic queues to schedule processing on demand.

There are several reasons to favor the event-driven approach: the sparsity of

spiking may translate to gains in computational efficiency, and greater tem-

poral accuracy is possible, since increasing timing resolution does not impact

runtime as in the time-based approach. However, population coding does not

rely on fine temporal detail, and the complicated logic to handle event-based

simulation is difficult to develop and debug. Furthermore, the processing

stream in event-based programming is not as homogeneous as in the case of

time-based techniques, minimizing the benefit of SIMD (single instruction
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multiple data) parallel architectures. Hence I strictly used the simplistic

time-based approach, performing computations at each time iteration.

3.2 Legacy Model Implementation

As stated previously, I reproduced an established model of V1 that owes much

to experimental and theoretical neuroscience. A schematic of the network is

given in Figure 3.1. The scientific motivation for each component was given

in Chapter 2. This section offers a detailed description of the implementation.

3.2.1 Retina

As in biology, the retina is the input entry-point for the model. In the

published work I emulated, a 21-by-21 input grid is used. The input takes

the form of a standard 256-level grayscale bitmap image file containing a

rotated line. To generate the requisite small number of input patterns, I used

the GIMP image manipulation tool[29], which provides the means to draw

lines and rotate arbitrary angles. See Figure 3.2 for an example stimulus.

The GIMP’s anti-aliasing filter was crucial to provide the grayscale gradient

visible on the edges of the rotated line. With only a binary rendering, it

would be impossible to discriminate nearby angles, since their aliased pixels

are equivalent.

The first network stage involves applying the difference of Gaussian fil-

ters that simulate retinal processing. This was done completely in Python

using scipy’s built-in two-dimensional convolution operations. For exam-
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Figure 3.1: Schematic of the network model. Each layer represents a homo-
geneous population of neurons. Solid lines denote continuous value channels,
dotted lines represent spike channels. The circular-headed connection is a
lateral inhibitory connection. The input image appears at the retina, and
the network response propagates top to bottom, with the final output char-
acterized by spikes from the excitatory neurons at the lower left.
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Figure 3.2: Example input stimulus, a 21x21 grayscale image of a vertical
bar angled slightly (1 degree clockwise). Normalized pixel intensities, with
key shown at right, are used to calculate response of ON and OFF cells,
emulating the grid of photon receptors in the retina.
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ple, scipy.signal.convolve2d(image, center filter) performs the en-

tire necessary operation for the center spatial filter. Importantly, each filter

also has a distinct temporal response, with separate time constants: τcenter

is 10 (ms), while τsurround is 20 (ms). The spatial filters are multiplied by

the decaying temporal response at each timestep before the two dimensional

convolution, resulting in a dynamic overall temporal profile for each ON and

OFF cell. To verify this step, I compared the spike rate of the maximally

active neurons against the ideal range from the scientific literature. As illus-

trated in Figure 3.3, the fit is excellent.

The retinal processing was kept in Python throughout development, with

the time-dependent rate information written to an intermediate file for use

by later stages. This was deemed reasonable since it contains a relatively

small number of values (2*1000*441), representing the ON and OFF values

at each timestep for all of the 441 (21*21) pixels.

3.2.2 LGN

There is a one-to-one correspondence between neurons in the retina and

neurons in the LGN, with the LGN also consisting of both ON and OFF

cells. While the retinal layer uses continuous values for each pixel, neurons

in the LGN layer generate spikes based on the corresponding retinal value.

In model I implemented[10][13], each synapse from LGN to V1 is modeled as

an independent Poisson process based on this value. Algorithm 1 describes

a Poisson generation algorithm due to Knuth[30]. Per standard practice, I
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Figure 3.3: Temporal profile of simulated spike rates of a retinal neuron, in
response to a range of input image contrasts. Each curve is the response
to a different contrast. This cell is spatially located in the center of the
oriented line, and has the greatest spike response. Height determines the
spike rate, which changes over time due to the temporal activity of the center
and surround filter responses. The “x” markers depict the average rate of
experimentally observed data for the same contrasts[13], showing good fit to
the simulated behavior.
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simplified the algorithm to generate a binary event indicator at each timestep.

This simplifies the algorithm considerably. Instead of a iterating over possible

event counts k in each timestep, all that is required is a single random number

and a check against the parameter e−λ, yielding a true (spike) or false (no

spike) result. This does introduce a small deviation from a pure Poisson

distribution, which can be mitigated by using a smaller time interval. As

an optimization, I pre-computed the exponential e−λ for each input rate. λ

is given numerically by neuron firing rate(in Hz)/ 1000.0 * timestep

increment (in ms).

Interspike intervals (ISIs) are often used to quantify neural spiking. I

used this statistic to ensure that the Poisson spike generation mechanism

was functioning correctly. The time between successive spikes is measured,

and given enough intervals binned in a histogram, a distribution approach-

ing an exponential appears, as shown in Figure 3.4. For validation purposes,

the analytically equivalent exponential distribution with mean 1/λ is also

plotted. In more detailed spiking simulations smaller interval sizes are sup-

pressed by the refractory effect, giving the exponential a gentle rise for small

values[31].

3.2.3 V1

To emulate the V1 edge detection behavior using the available components

of the simulation, the published models select a particular subset of available

LGN input neurons for each V1 detector. Each excitatory V1 neuron receives
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Figure 3.4: Example interspike intervals from Poisson spike generator. A
single neuron with a 100 Hz spike rate is simulated for 200,000 half millisec-
ond timesteps. In this time, 9734 spikes are emitted. Interspike intervals
(ISIs) measure the time between successive spikes, and are plotted as a his-
togram. Mathematically, the distribution of times approaches an exponential
distribution defined by e−

1
λ , as shown.
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Algorithm 1 Poisson generation algorithm, from Knuth[30]

L← e−λ for the desired rate λ.
k ← 0
p← 1
repeat
k ← k + 1
Generate a uniform random number u in [0,1].
p← p ∗ u

until p ≤ L
return k − 1

24 ON and 24 OFF input from LGN, while each inhibitory V1 neuron receives

16 ON and 16 OFF inputs from LGN. The probability of selection, as well

as the relative weight of each chosen connection, is dictated by the Gabor

function introduced earlier.

The Gabor function that I used, from [10], is described mathematically

in Equation (3.1). The values for x and y iterate a grid centered at (0,0),

and φ is the angle of orientation, which varies between 0 and π over the

population of V1 neurons. Equation (3.1) defines a sinusoid, the cos() term,

windowed by a two-dimensional Gaussian, the exp() term. Each constant,

and its intuitive meaning, is given in Table 3.1.

G(x, y, φ) = e
−( x

2

2σ2
x

+ y2

2σ2
y

)
cos[2πf(xcosφ− ysinφ)] (3.1)

An example of the outcome of the selection and weighting process is

shown in Figure 3.5. These plots show an example connectivity pattern

32



Table 3.1: Gabor constants
Constant Value Meaning
σx 1.4 Horizontal extent of exponential window
σy 1.4 Vertical extent of exponential window
f 0.5 Spatial frequency: determines number and size of subregions.

between LGN ON and OFF cells and a V1 excitatory neuron preferring 45

degrees. Light pixels denote the location and strength of the connections

from the LGN neurons. Dark pixels show the values of the underlying Gabor

function distribution used in the probabilistic connection choice. Gray pixels

indicate neurons with very low likelihood of connection.

Due to the Gabor connectivity, the spike input to each V1 neuron is

implicitly sensitive to the orientation of the image stimulus. This is the

essence of the feedforward model of orientation tuning. To confirm the proper

behavior, I examined the distribution of the spikes from LGN to V1, which

has been documented in prior work. Specifically, in [32], the authors plot

the total number of LGN spikes influencing each V1 cell in their simulation.

The plot shown in Figure 3.6 qualitatively matches these published results.

Each excitatory neuron also has connections for lateral inhibition. There

are connections to each V1 excitatory neuron from 30 randomly chosen V1

inhibitory neurons. It is important that the 30 inhibitory neurons are equally

distributed throughout the population, rather than having any orientation

bias. This mechanism imbues the model with contrast invariance. Greater

input intensity causes increased firing in the inhibitory neurons, which then

inhibit the excitatory neurons, causing the desired normalization of the ex-
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Figure 3.5: Example LGN→V1 connectivity. These figures show LGN neu-
rons randomly chosen to project to a V1 neuron preferring 45 degrees. Each
pixel represents an LGN neuron. Light-colored pixels indicate the 24 LGN
neurons chosen to project to the V1 neuron, with brighter pixels denoting
stronger connection strength. The dark background illustrates the underly-
ing Gabor distribution. Darker pixels denote higher probability of selection,
and gray pixels have very low probability of selection. (a) Connections from
ON LGN neurons. (b) Connections from OFF LGN neurons.
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Figure 3.6: Sum of LGN ON and OFF inputs to array of V1 neurons in
response to 90◦ input stimulus. The height of each dot represents the total
input spikes to a V1 neuron with angular preference indicated by horizontal
position. The 10 trial mean response and standard deviation of each V1
neuron is overlaid on the scatter plot. This figure demonstrates that for the
given input stimulus, V1 neurons tuned near 90◦ receive more LGN input
spikes than neurons tuned orthogonally, with a Gaussian-like distribution
centered at the orientation of the input stimulus.
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citatory response.

As described previously, every synapse has an internal state variable in

order to implement an alpha function for smoothly decaying value changes.

Figure 3.7 shows the conductance changes of a synapse with particularly

active inputs. Ideal alpha functions with a smooth rise and fall require either

additional state variables or a memory store of spiking input. Instead, I

simplified the realization to have an abrupt rise and natural decay using

Equation (3.2). The arrival of input spikes causes an immediate jump in

value equal to the weight of the LGN input multiplied by the conductance

constant ḡ for that synapse. The time constant τ is 1 ms for excitatory

synapses and 2 ms for inhibitory synapses. It represents synaptic input,

taking a value of zero or one at each timestep t.

∂g

∂t
= −exp(−τ) + ḡ

It
τ

(3.2)

All of the synapses for a given V1 neuron are summed as specified by the

membrane voltage update equation (2.2). This equation is directly solved

using an Euler first-order approximation. The C floating-point expressions

in (3.3) show the solution for an excitatory neuron. The constants V EXC,

V INH, and V LEAK are the voltage reversal potentials, TAU is the global

timestep interval, G LEAK EXC is a leakage constant, and C EXC is a scal-

ing term. gsumE and gsumI variables accumulate all of the synaptic inputs
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Figure 3.7: Conductance value of a single V1 input synapse over the full
simulation lifetime. Each LGN input spike causes an abrupt rise in the
unitless conductance value. The value naturally decays to zero by its time
constant rate τ , as defined by (3.2).
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Table 3.2: Constant parameters in the model
Constant Value Meaning
TAU 0.5 ms Simulation timestep interval
V EXC 0 mV Excitatory input reversal potential
V INH -70 mV Inhibitory input reversal potential
V LEAK -65 mV Leakage reversal potential
C EXC 0.5 nF Conductance constant (excitatory neurons)
C INH 0.2 nF Conductance constant (for inhibitory neurons)
G LEAK EXC 25 nS Leakage constant (excitatory neurons)
G LEAK INH 20 nS Leakage constant (inhibitory neurons)
G LGN EXC 4.6 nS Constant for LGN inputs to excitatory V1 neurons
G LGN INH 3.5 nS Constant for LGN inputs to inhibitory V1 neurons
G INH EXC 4.5 nS Constant for lateral inhibitory inputs to excitatory

governed by (3.2), while V is the actual dynamic membrane variable. See

Table 3.2 for the exact constants I used, which are from [10], and are meant

to have physiological relevance.

dV=gsumI*(V-V INH)+gsumE*(V-V EXC)+G LEAK EXC*(V-V LEAK) (3.3)

V-=TAU*dV/C

After the summation of all inputs to a given neuron, the spike condition

is tested. This simply involves a comparison of the membrane voltage to

a threshold constant. If the threshold is exceeded, the voltage is manually

reset to its inhibitory potential, and a binary “1” is noted in the spike output

array.

Two example membrane voltages can be seen in Figure 3.8. One V1
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Figure 3.8: Membrane voltage of two V1 neurons, one with orientation pref-
erence aligned to the vertical input edge (labeled 90◦), and the other one or-
thogonal to it (labeled 0◦). Stimulus input is oriented at 90◦. The voltage of
each neuron changes over time in response to LGN inputs, lateral inhibitory
inputs, and the leakage effect. The vertically-projecting spikes from the 90◦

neuron are artificially overlaid on the membrane plot as a post-processing
step. The 0◦ neuron does not fire.
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neuron, aligned with the vertical bar, is very active, while the other, at

the orthogonal horizontal orientation of zero degrees, is less active due to its

decreased LGN input. Note that the spikes projecting upward from the trace

of the active neuron are simulated, rather than being an emergent property of

the differential equations[33]. The apparent voltage jump has been artificially

added to the visualization.

3.3 Output Classification

The final step of the model is the extraction of a functional result from the

spike train output. Since inhibitory neurons in the brain project locally

rather than between disparate regions[34], only the spikes from the excita-

tory neurons are used in output classification. In the model I implemented,

the spikes for each V1 excitatory neuron are counted over a simulation run,

and the integer vector of neuron spike counts is used as the final response of

the network. Following existing work, I examined several methods of inter-

preting this noisy response. In this section I describe general techniques for

classification and estimation based on an arbitrary vector of values.

Perceptron classifiers are one method for discriminating between two

classes of input data vectors. The perceptron method dates to early work in

neural networks, but here is used simply to provide a simple binary classifier.

With a linearly separable problem, it can provide a weight vector for class

discrimination. Specifically, a vector is created with dimensionality of the

input plus one for an additional bias term. This weight vector is optimized
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using labeled input patterns with Equation (3.4), the perceptron update rule.

W is the weight vector and lr is a learning rate. The classification is repre-

sented as either -1 or +1, based on the sign of the dot product of W and X.

In Equation (3.4), O and T are the predicted and actual classes, respectively,

and X are the input patterns with a constant bias term.

W = W + lr ∗ (T−O) ∗X (3.4)

To further explore orientation estimation from the single-trial spike rate

vectors, I implemented two further methods, center of gravity estimation

[22][20][24][35] and maximum likelihood (ML) estimation, which for this

problem reduces to template matching/curve fitting[35]. Center of gravity is

simply a weighted sum of the inputs, as:

θ̂ =

N∑
i=1

θi(ri − γ)

N∑
i=1

(ri − γ)

(3.5)

The observations ri, are normalized by a constant value γ to prevent

bias. Each θi takes a value between 0 and π, corresponding to the preferred

orientation of the respective V1 neuron.

For ML estimation, I used curve fitting based on the least squares method
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of optimization. I used the built-in scipy.optimize.leastsq routine pro-

vided by the Python scientific library, which implements Levenberg-Marquardt

optimization. The optimization kernel was a Gaussian with an arbitrary off-

set, given in (3.6).

α ∗ e−
(x−θ)2

(2.0∗σ)2 + γ (3.6)

By definition, θ, the mean of the Gaussian and the orientation to be

estimated, is the center of the kernel, and σ is the usual standard deviation.

Two additional parameters are needed to fit the response curve: α defines a

magnitude which scales the Gaussian, while γ defines an offset added to each

data point, corresponding to spontaneous network activity. I used hard-

coded values for σ, α, and γ, while θ was determined using the center of

gravity method for the data described earlier.

3.4 Parallel Realization

As I began to scale up the model to thousands of V1 cells, with trials also

numbering in the thousands, it became necessary to run on faster hardware.

Table 3.3 presents a breakdown of the algorithm, quantifying the loop counts

for a problem size of 1024 excitatory and 1024 inhibitory neurons. Step 1

is dictated by the total number of LGN→V1 synapses. Step 2 requires the

same number of iterations at Step 1, with the addition of the V1→V1 lateral
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Table 3.3: Loop counts with 1024+1024 V1 neurons
Step Description Number of elements
1 Poisson spikes (24+24)*1024+(16+16)*1024
2 Synaptic activity (3.2) 〈Step 1 count〉+30*1024
3 Neuron synapse summation 1024+1024
4 Neuron update 1024+1024
5 Lateral propagation 30*1024

inhibitory synapses. The two neuron update steps, Step 3 and Step 4, iterate

over each neuron. The last step copies inhibitory spikes back into the input

stream in preparation for Step 2.

The software was written with clear separation of data between each

of these steps. Specifically, the output of Step 1 is a binary array that is

consumed by Step 2 to update the dynamic synapse state variables, each of

which is independent. Then, the synapses for each neuron are summed. To

more easily mitigate shared data contention, the neuron updates, including

the summation, are parallelized by V1 neuron instead of by synapse. Finally,

spikes emitted from the inhibitory population are fed back into the spike

input array needed by Step 2.

With the code structured in this way, parallelization on a shared memory

CPU platform is clear-cut, especially with the help of the high-level abstrac-

tions provided by OpenMP. For example, the following code snippet, from

the neuron update in Step 5, utilizes multiple cores on architectures which

support OpenMP, including the recent version of Ubuntu Linux I used.

...
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#pragma omp parallel default(shared)

#pragma omp for schedule(static)

for(neuron=0; neuron<NUM_NEURONS; neuron++) {

dV[neuron] = G_LEAK_EXC*(V[neuron] - V_LEAK)

V[neuron] -= TAU*dV[neuron]/C_EXC;

if (V[neuron] > threshold)

...

Parallelization of the for loop over neurons is automatic, and an im-

plicit join operation ensures synchronization after loop completion, which

is critical for the given implementation. The number of threads to use for

processing is specified on the command-line using the environment variable

OMP NUM THREADS. The ease of this parallelization method is aided by

the independence of each loop iteration/neuron.

The transition from an algorithm in this form to a version for the CUDA

architecture is straightforward. Since CUDA has been designed for oper-

ations on vectors of data, modifying the code above requires expressing it

as a CUDA “kernel” with the appropriate parameters. The following code

snippet demonstrates what such a kernel looks like:

__global__ void neuron_kernelU(

float *device_dV, float *device_V,

...)

{
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const int tid = blockDim.x * blockIdx.x + threadIdx.x;

const int THREAD_N = blockDim.x * gridDim.x;

for(int iLine = tid; iLine < THREAD_COUNT; iLine += THREAD_N){

for(int iRow = 0; iRow < PER_THREAD; iRow++){

int neuron=iRng + iOut * THREAD_COUNT;

device_dV[neuron] = G_LEAK_EXC *(device_V[neuron]-V_LEAK);

device_V[neuron] -= TAU*cuda_neuron_dV[neuron]/C_EXC;

if (device_V[neuron] > threshold) {

....

With CUDA, this kernel is executed simultaneously on multiple threads

distributed throughout the many cores of the GPU. CUDA has a very elab-

orate multi-tiered architecture for problem decomposition[36] that will not

be discussed in this thesis. Instead, this exposition will focus strictly on how

the neuronal network algorithm was mapped to the CUDA platform using

the given code fragment as an example.

The first line of the function converts CUDA internal instance variables,

blockIdx and threadIdx, into a single value suitable for use as a unique

identifier. The second line determines the number of neurons each thread

will process, which is on the order of 1-10 for the scales I looked at. The

outer loop permits iteration over a two-dimensional index, and is not relevant

for the neuron loop, since for the problem sizes examined, it is sufficient to
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simply have a large set of threads (512), each processing several neurons

using the inner loop. Larger sizes require decomposing the data into finer

pieces.

Kernels are downloaded and executed by a function call in the C code run-

ning on the host. Generally execution is asynchronous to allow overlapping

computation between the CPU and the GPU, but for my implementation,

which ran almost entirely on the GPU, there was no performance advantage

to utilizing asynchronous operation. The breakdown of the algorithm into

the structure of Table 3.3 was crucial, since CUDA does not yet provide

finely grained synchronization constructs. Instead, the separate kernels of

each function as implicit join points.

Moving data onto and off of the card is a time-consuming operation.

Therefore, my realization depended on the data remaining resident on the

GPU throughout the simulation. The only data on the CPU are the LGN

spike rates. At each timestep, this small amount of data (2*441) is transmit-

ted to the GPU. This explains why the variables in the code snippet above

have the prefix device : in my implementation this prefix indicates that

they reference memory on the GPU itself. As usual when programming in

C, memory management is a manual operation.

I architected the system to facilitate execution with either CUDA or

OpenMP based on compiler directives. I did this both to allow the incre-

mental debugging of components, and to support comparative performance

profiling. Cross-platform profiling used the standard Linux gettimeofday()
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routine from sys/time.h, which, on the systems I tested, gave a resolution

of microseconds. CUDA also provides a hardware timer, which I used as

a validation of gettimeofday() and to provide additional profiling of the

CUDA-only portions.
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Chapter 4

Results

In this chapter I present the results of my experiments with the simulation.

First, I summarize the functional behavior of the model, including reproduc-

tion of recent neuroscience research. Then I discuss the runtime performance

of my implementation.

4.1 Reproduction of V1 Model

First, to ensure the accuracy of the simulation, I chose to precisely duplicate

the results of existing work. I began with the model of [10], which itself

owes much to previous work, summarized in Chapter 2. Note that my goals

are somewhat different than in traditional neuroscience research. Often, the

objective is to include copious biological detail and ensure that behavior fits

experimental results. I duplicated these models just to prove the functional

operation, and although striving to not violate scientific findings, I was less

concerned with many of the biological parameters.
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4.2 Output of V1 Excitatory Neuron Population

The fundamental output component of the model is given by the spike counts

of the array of excitatory V1 neurons. The total number of spikes emitted

by each V1 excitatory neuron over the timesteps of one trial are summed,

yielding a vector of integral spike counts. A representative single-trial sam-

ple, with 1024 V1 neurons and 1000 half millisecond timesteps, is shown in

Figure 4.1. This is the “population response” of the V1 neurons when pre-

sented with a 90 degree bar. Each point along the horizontal axis represents

a single neuron, with its spike count given by the height of the sample. To

more clearly see the shape of the distribution, more samples are needed. Fig-

ure 4.2 shows ten trials plotted together, overlaid with the average value and

standard deviation at each detector. The mean of the whole population is

shown by the horizontal line. The results shown are a good fit to the plots

shown in Figure 1B of [10] and Figure 1B of [32].

Since contrast invariance is typically a crucial component of these mod-

els, I confirmed that my simulation had this desired quality by running trials

with identical stimuli at a range of contrasts, with the results shown in the

left panel of Figure 4.3. The contrast invariance is due to the lateral con-

nections from the inhibitory neurons. Repeating the trials, but with the

lateral connections disabled, yields the more linear, and thus contrast de-

pendent, shape of the right panel of Figure 4.3. The plots were generated

with the same method as the previous plots, by averaging ten trials at each
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Figure 4.1: Output of population of V1 excitatory neurons in response to a
vertical bar. Spike count is totaled over duration of run, 1000 half millisecond
timesteps. Each dot represents the total number of spikes emitted by one of
the 1024 neurons over the timesteps of a single trial, with preferred orienta-
tion indicated by location on horizontal axis and output spike count given by
vertical height. The neurons are spaced approximately 0.176 degrees apart.
Neurons with orientations near the stimulus orientation are the most highly
active, on average.
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Figure 4.2: Output of the 1024 V1 excitatory neurons over ten trials. Scat-
terplot of points indicates individual samples, as in Figure 4.1. The 10 trial
average response of each V1 neuron is overlaid. Dashed lines indicate stan-
dard deviation over the 10 trials.
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orientation, with additional smoothing by low-pass filtering.

4.3 Tuning Curves

The tuning curves of four V1 neurons are shown in Figure 4.4. These plots

are in in essence the dual of the population response. Whereas population

curves show the response of all elements of the population to a a single

stimuli, tuning curves show the response of a single (or small number) of V1

neurons to a range of stimuli.

To create these plots I generated stimuli at eighteen orientations. These

were the same bar image rotated at orientations between 0 and 180 degrees,

spaced ten degrees apart. I presented each image to the network for 100

trials, and calculated the average spike output response of each detector. As

expected, the empirical tuning curves do not have exactly the regular Gaus-

sian shape of the theoretical models. It is important to remember that these

tuning curves are an emergent property of the underlying Gabor connectivity,

and are subject to pixel aliasing and noise due to the Poisson input.

4.4 Orientation Discrimination

In order to interpret the behavior of the spiking network, the spike count

output must be post-processed. Several proposed methods were described

in Section 2.3 and Section 3.3. I studied the empirical performance of three

methods: a perceptron for binary discrimination of two nearby orientations,
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Figure 4.3: Network response to a range of stimuli with differing pixel inten-
sities, demonstrating contrast invariance. Left panel shows contrast invari-
ant network response. Right panel show network response with inhibitory
connections disabled, with contrast sensitive response. Note especially the
marked difference between the tails of the curves between the left and right
plot. Compare to Figure 2.4
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Figure 4.4: Tuning curves: Each curve plots the average response (over 100
trials) of four V1 neurons to 18 different input patterns. The input stimuli
are edges oriented between 0 and 180 degrees, equally spaced 10 degrees
apart.
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and both the center of gravity and maximum likelihood approaches to esti-

mation of arbitrary orientations. Previous work has suggested how the latter

two techniques could be implemented with neural circuitry[37], but to limit

the scope of my thesis I use straightforward analytical methods.

4.4.1 Perceptron Binary Classifier

Much of the literature concerning these models studies discrimination be-

tween two nearby orientations using the output of the V1 neuron array.

Specifically, in the early model of [38], psychophysics results [39] are refer-

enced that found that humans can reliably discriminate an orientation angle

of around 0.4 degrees. Here “reliably” is defined to mean 75% percent of the

time. Much of the work since then [10][32] has continued to use this task,

although with differing quantitative results.

I trained a single-layer perceptron binary classifier based on the spike

count output. My first attempt, following [10], used the vector of 1024 spike

counts to discriminate between two degrees in orientation, using an edge

oriented at 89 degrees and one at 91 degrees. I generated 1024 trials at both

orientations, then divided each set of trials into two subsets of 768 trials and

256 trials, for training sets and test sets, respectively.

The results are given in Figure 4.5, which shows the increase in testing

accuracy with increasing number of training exemplars. The maximum accu-

racy achieved is shown by the pair of numbers above the highest point. For

this set of runs, with this particular learning sequence, the network achieved
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Figure 4.5: Performance of the perceptron classifier on the test set, measured
by total percent correct with increasing number of iterations. A low-pass
filtered realization is overlaid on the raw samples. The pair of numbers
shows the percentage correct in the two orientations at the best iteration.

72.3% accuracy for one angle and 73.0% accuracy for the other, correspond-

ing to 72.65% total accuracy.

The resultant learned weights corresponding to each V1 excitatory neu-

ron, shown in Figure 4.6, have a characteristic pattern. The shape, most

evident in the low-pass filtered signal, shows a similarity to Figure 3 of [25]

and Figure 6 of [35]. The low weights near 90 degrees are due to the high
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Figure 4.6: Weights of perceptron for discrimination between two nearby
orientations. Values correspond to weighting of the spike count for each
V1 neuron. The characteristic shape is due to the changing variance of the
underlying population response, which is maximal near the peak of the Gaus-
sian population curve. Smoothing was accomplished by low-pass filtering the
data.
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variance of both detectors at the peak of their Gaussian preference curve,

which diminishes the information available from those detectors near the

peak. The sinusoidal shape of the weight vector has extrema where there

is maximal information about the input stimulus, at either side of the un-

derlying Gaussian population response curve, diminishing to zero as the bell

curve of the population response falls off.

4.4.2 Arbitrary Orientation Estimation

Next, I explored the ability to estimate an arbitrary orientation using the

spike counts from a single trial. First, I applied the center of gravity tech-

nique as specified in Equation (3.5), comparing several network sizes. Fig-

ure 4.7 and Figure 4.8 depict the results of performing the center of gravity

estimate over multiple trials for networks of size 512, 1024, and 2048 exci-

tatory neurons, at a range of possible orientations. For all three networks,

equal sized populations of excitatory and inhibitory neurons were used. Ori-

entations from 0 to 170 degrees, equally spaced at 10 degrees, are presented

to each of the networks for 100 separate trials. The mean is estimated using

center of gravity weighting of the spike counts. The plots show the deviation

of the estimate from the actual value, in degrees, along with the standard

deviation of the estimator for each angle.

This estimator performs well only near the center of the orientation range,

since boundary effects dominate at the upper and lower parts of the orienta-

tion range. The mathematical construction is unable to handle the circular
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nature of the angular preference, leading to overestimation of the orientation

when the actual angle is less than 90 degrees and underestimation when the

actual angle is greater than 90 degrees. The two larger networks provide

fairly good estimates (within 1 degree, having 2 degrees standard deviation)

near 90 degrees. The 512 neuron network has large variance, although it

does provide a good estimate at 90 degrees. In general, variance is inversely

proportional to network size.

Next, using the same spike count data, I fit a Gaussian kernel using the

scipy library’s least-squares fit routine, which, in this context, is a form of

maximum likelihood (ML) estimation. An example is shown in Figure 4.9.

Note that the Gaussian curve is an estimated fit from a single sample, rather

than a multiple trial average. Since starting parameters are required for the

Levenberg-Marquardt iterative method, I hardcoded reasonable values for

the height, width, and offset of the Gaussian of Equation (3.6), and used the

center of gravity estimate to “guess” the initial parameters.

Figure 4.10 shows the results of this estimation process for the input

stimuli, network sizes, and trials described previously. Due to the dependence

on the center of gravity estimation, boundary effects are evident for this

estimator as well, but not as egregious as the raw center of gravity estimator

itself. Particularly with a greater number of neurons, the range of reasonable

estimates is much greater, since the curve fitting algorithm is able to recover

from the poor initial estimate. For input stimuli between 50 and 140 degrees,

all network sizes yielded good performance, well within half a degree of the
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Figure 4.7: Results of the center of gravity estimates for three excitatory
V1 neuron population sizes at a variety of input stimulus orientations. 100
trials at each of 18 orientations (shown on the horizontal axis) are presented
to the network, and the resultant spike counts are used for single trial cen-
ter of gravity estimation. The average error in orientation estimation over
the 100 trials is plotted on the vertical axis. Error bars represent standard
deviation from the mean at each input stimulus. Figure 4.8 shows greater
magnification.
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Figure 4.8: Detail from Figure 4.7. See Figure 4.7 caption and text for
details.
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Figure 4.9: Results of performing least-squares optimization of a Gaussian
kernel with the spike counts of 2048 excitatory neurons responding to pre-
sentation of a vertical bar. Estimated orientation, as indicated by dashed
line, is 90.65 degrees.

true estimate, with variance inversely proportional to the number of neurons.

Note the much smaller scale of Figure 4.10 compared to Figure 4.8. The

variance of the ML estimator was about half that of the center of gravity

estimator.
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Figure 4.10: Results of the maximum likelihood (ML) estimation, using least-
squares optimization of Gaussian kernel. 100 trials at each of 18 orientations
stimulus orientations are executed for three different V1 population sizes: 512
excitatory neurons, 1024 excitatory neurons, and 2048 excitatory neurons.
The trials are averaged, and the mean and standard deviation are plotted for
each network size at each orientation.
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4.5 Parallelization Results

To facilitate extensive experimentation, a significant effort was spent paral-

lelizing the code. With large V1 populations and multiple trial runs, this

effort became indispensable. Once the results were consistent across archi-

tectures, I performed cross platform profiling, summarized in Figure 4.11.

The CPU measurements were performed on an Ubuntu Linux workstation

containing two Intel Core i7 920 CPUs, providing a total of eight cores. The

8GB of memory was sufficient to contain the data structures used by the code

for all network sizes I tested. Both CPU versions are identically compiled

with gcc-4.3 using default optimization options and OpenMP capability en-

abled. For profiling, concurrency is constrained using the OMP NUM THREADS

environment variable.

I tested the CUDA version on two NVIDIA PCI cards, an NVIDIA

GeForce 8600 GTS, and an NVIDIA Tesla 1060C. The GeForce card is a

mid-range consumer graphics card with 256M of memory and 32 processing

cores. The Tesla card is a high-end card designed for parallel computation

with 4GB of memory and 240 processing cores. Each core on the Tesla runs

at 1.3 Ghz, while each core on the GeForce runs at 1.46 Ghz. Both GPU

cards were housed in desktops running Ubuntu Linux.

The total runtimes in Figure 4.12 are divided into algorithm components,

which map directly to those in Table 3.3. The portion labeled “Poisson

Spike Generation” corresponds to Step 1 of Table 3.3, while the “Synaptic
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Conductances” segment corresponds to Step 2. “Neuron Update” consists

of the remaining steps, Steps 3, 4, and 5. The results are discussed further

in the next chapter, but there are a few general observations to be made.

First, the runtime of the Poisson generation code on the CPU increased as

more threads were added, and in general this portion of the code did not

scale as well as the other components, particularly the synaptic conductance

updates. The neuron loop did scale, but not as well as the synapse portion.

I ran additional experiments on the Tesla to further quantify the scaling

performance of the CUDA version of the algorithm, summarized in Fiqure 4.12.

In this plot the five steps from Table 3.3 are profiled separately. I averaged

multiple trials for four problem sizes: 512 excitatory neurons, 1024 excita-

tory neurons, excitatory neurons, and 4096 excitatory neurons. Generally,

the performance scaled linearly with the network size. For the Poisson por-

tion of the code, however, performance was flat until 4096 neurons.
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Figure 4.11: Average single-trial runtimes (in seconds), for population size
of 1024 V1 excitatory neurons for a variety of architectures, broken down
by algorithm component. CPU runtimes are from OpenMP version on
8-core desktop, with OMP NUM THREADS=1 and OMP NUM THREADS=8, respec-
tively. GPU denotes an NVIDIA GeForce 8600 GTS, and Tesla indicated
a NVIDIA Tesla 1060C. Error bars denote a standard deviation in runtime,
which was negligible for all architectures, with only small variability on the
single CPU.
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Figure 4.12: Average single-trial runtime of a single iteration of the CUDA
version, running on the Tesla, for 4 different problem sizes: 512+512 V1
neurons, 1024+1024 V1 neurons, 2048+2048 V1 neurons, and 4096+4096
V1 neurons. Each algorithm component is shown as a separate line. Dashed
line indicates linear slope.
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Chapter 5

Discussion, Conclusions, and Future Work

In this chapter, I discuss the results of the experiments and present plans

for extension of this thesis. First, I give an itemized summary of the orig-

inal work. Then, in the remaining sections, I consider functional aspects

individually, including possible future research.

5.1 Summary of Original Contributions

• I reimplemented an established theoretical model of visual cortex, in

Python and C.

• I built extensive post-processing and analysis tools in Python, for var-

ious types of publishable figures.

• I quantified the performance of several statistical classifiers based on the

output spike counts, combining several proposals from the neuroscience

literature.
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• I ported the simulation to OpenMP and CUDA concurrent architec-

tures. Without detailed optimization, this yielded modest speedup on

multiple cores, and a 20x speedup on a top of the line GPU.

5.2 Reproduction of the V1 Model

My implementation of the published V1 model faithfully reproduces many

important characteristics of neural behavior in the visual cortex. This is

confirmed by the good match of the results to comparison with multiple ref-

erence points from existing literature. The desired behavior was achieved

even without implementing all of the details of the published model, includ-

ing, but not limited to: the spike refractory period, alpha functions with

smooth rise and decay, arbitrary spike delays, and more sophisticated nu-

merical analysis techniques for the differential equations.

There are many promising future directions with the model itself, some of

which are already being explored by various researchers. Random perturba-

tion of the various activity constants is one avenue that has been pursued in

[10]. This paper showed that modulation of certain parameters, which man-

ifests in tuning curves variability, may actually lead to improved detection

performance in the exact task I looked at. Reproducing such a result with

my simulation will be straightforward. Prior work has explored the theoreti-

cal consequence of tuning curve widths [32][40], but it will be enlightening to

empirically study the result of LGN to V1 connectivity statistics, particularly

with an emphasis on overcoming pixel aliasing.
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Finally, this model is a very simplistic realization of V1. In real V1 there

are many more lateral and recurrent loops, as well as additional neuron

types and top-down influence from higher cognitive processing[34]. These

components are not yet well understood, and computational investigations

with different connectivity patterns will continue to contribute to theories

about possible guiding principles of cortical architecture. The incorporation

of more sophisticated interconnections could also inform our understanding

of how “context” is utilized by neuronal networks, particularly when the task

includes real two-dimensional images with a richer set of features.

5.3 Practical Image Processing

The benchmark image processing task I chose, identification of a single line

orientation, was deliberately unambitious, since building up the simulation

and analysis platform consumed the bulk of my efforts. Extending this model

to operate on real two-dimensional images is a primary future goal, which

leverages an additional notion from the architecture of the visual cortex. In

the implemented model, each V1 neuron prefers a line of a certain orientation,

with all neurons centered on the same spatial point in the retinal input

space. In the brain, each V1 neuron is sensitive to a different region of the

retinal input, in a characteristic two-dimensional pattern known as a pinwheel

pattern[41]. Understanding how the array of V1 neurons is able to code both

orientation and spatial position with a single population is an important

research question that also touches upon theoretical coding theory concerning
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the simultaneous transmission of multiple data dimensions. Extension of my

simulation to study this phenomena could occur completely in the Python

code by merely changing the connectivity pattern between LGN and V1.

5.4 Orientation Discrimination and Spike Coding

I demonstrated that the network output, determined by the spike counts of

the V1 excitatory neurons, provided adequate information to discriminate

the orientation of the input stimuli. There was a slight disparity between the

perceptron performance versus the results from the literature. This could be

due to several factors, including ambiguity in published classification meth-

ods, and/or biological details I omitted in my implementation. Since the

binary classification of two angles has limited practical utility and question-

able neural implementation, I focused more on the identification of arbitrary

orientations using the two estimation methods. It is not surprising that

additional units provide more accurate estimates. This has been studied

theoretically by the references cited in Section 2.3.

There are several additional questions to pursue related to estimation

from spike counts. From an engineering perspective it is crucial to quantify

the relative precision these techniques achieve. This analysis would undoubt-

edly include the total number of spikes necessary for accurate transmission.

The relation of required spikes to information capacity would yield great in-

sight into principles of efficient coding with arbitrary noisy binary channels.

The analysis of the noise tolerance is another worthwhile research question.

71



That question can be studied by analysis of the performance of the estima-

tors in conjunction with random perturbation of the spiking communication

channels.

5.5 Parallelism Effort

The parallelism effort was both fruitful and enlightening. Without parallel

acceleration of the code, it would have been much harder to perform the

variety of experiments I tried.

Several observations related to Figure 4.11 deserve discussion. The fact

that the runtime increased with the multicore version of the Poisson spike

generator indicated that my usage of the standard C library random() func-

tion was not optimal for a concurrent architecture. Similarly, the additional

cores of the Tesla versus the GeForce GPU did not translate to greater perfor-

mance on this portion of the algorithm. I believe this was due to nonoptimal

scaling in the problem decomposition. Figure 4.12 shows flat performance

for the Poisson portion until 8192 total V1 neurons are included. This could

be addresses in future work.

The benefit of parallelizing the synaptic conductance calculations was

obvious. This part of the algorithm includes several multiplies and adds for

each synapse, as quantified in Table 3.3. The neuron update part of the code

did not benefit as greatly from concurrency, most likely because I iterated

over each neuron in parallel, for ease of handling shared variable contention

issues. There are certainly other ways to structure the algorithm which could
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present greater speedups. I believe my version struck a good balance of high

performance with few data flow assumptions. The latter characteristic is

important for future experimentation with arbitrary network structures.
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T. Natschläger, D. Pecevski, B. Ermentrout, M. Djurfeldt, A. Lansner,
O. Rochel, Thierry Vieville, E. Muller, A. Davison, S. El Boustani, and
A. Destexhe. Simulation of networks of spiking neurons: A review of
tools and strategies. Journal of Computational Neuroscience, 23(3):349–
398, December 2007.

[29] http://www.gimp.org/.

76



[30] D. E. Knuth. Art of Computer Programming, Volume 2: Seminumerical
Algorithms (3rd Edition) (Art of Computer Programming Volume 2).
Addison-Wesley Professional, 3 edition, November 1997.

[31] P. Dayan and L. F. Abbott. Theoretical Neuroscience: Computational
and Mathematical Modeling of Neural Systems. The MIT Press, 1st
edition, December 2001.

[32] P. Seriès, P. E. Latham, and A. Pouget. Tuning curve sharpening for
orientation selectivity: coding efficiency and the impact of correlations.
Nature Neurosci, 7(10):1129–1135, October 2004.

[33] E. M. Izhikevich. Dynamical Systems in Neuroscience: The Geometry
of Excitability and Bursting (Computational Neuroscience). The MIT
Press, 1 edition, November 2006.

[34] G. M. Shepherd, editor. The Synaptic Organization of the Brain. Oxford
University Press, USA, 5 edition, November 2003.

[35] A. Pouget, S. Deneve, J. C. Ducom, and P. E. Latham. Narrow ver-
sus wide tuning curves: What’s best for a population code? Neural
Computation, 11(1):85–90, 1999.

[36] NVIDIA Corporation. NVIDIA CUDA Compute Unified Device Archi-
tecture Programming Guide, Version 1.1, 2007.

[37] S. Deneve, P. E. Latham, and A. Pouget. Reading population codes: a
neural implementation of ideal observers. Nature neuroscience, 2(8):740–
745, August 1999.

[38] M. A. Paradiso. A theory for the use of visual orientation information
which exploits the columnar structure of striate cortex. Biol. Cybern.,
58(1):35–49, January 1988.

[39] G. Westheimer. Diffraction theory and visual hyperacuity. American
journal of optometry and physiological optics, 53(7):362–364, July 1976.

[40] H. P. Snippe. Parameter extraction from population codes: a critical
assessment. Neural Comput, 8(3):511–529, April 1996.

77



[41] T. Bonhoeffer and A. Grinvald. Iso-orientation domains in cat visual
cortex are arranged in pinwheel-like patterns. Nature, 353(6343):429–
431, October 1991.

78


