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Project Description:  

AI Models of Conceptual Abstraction and Analogy-Making  

Last updated May 12, 2023  

Conceptual abstraction and analogy-making are key abilities underlying humans’ capacity to learn, 
reason, and robustly adapt their knowledge to new domains. Despite of a long history of research 
on constructing AI systems with these abilities, no current AI system is anywhere close to a 
capability of forming humanlike abstractions or analogies.  

In this project we will further develop the active symbol architecture proposed by Hofstadter et al. 
[12], especially building on the Copycat [13] and Metacat [16] architectures for analogy and 
metacognition, as well as the Situate visual “situation-understanding” architecture, which aims to 
combine an active symbol architecture with deep learning (a preliminary version is described in 
[20]). We will apply ideas from these architectures to idealized domains, including letter-string 
analogies [11], Bongard problems [2, 7], and the Abstraction and Reasoning Corpus [4], as well 
as to domains inspired by real-world tasks. We will also compare the performance of the novel 
architecture to other methods for abstraction and analogy, including deep learning and program 
synthesis approaches [5, 9, 15].  

This project, being carried out at the Santa Fe Institute, is part of a larger multi-institution effort 
entitled “Building Diverse Intelligences through Compositionality and Mechanism Design”. The 
larger effort is focused on how intelligent behavior emerges from complex systems—in particular, 
the mechanisms by which semi-independent, adaptive processes are composed to function as an 
intelligent, higher-level whole. We will compare several model systems in which such processes 
occur in order to develop broad insights about intelligent systems.  

Below is an excerpt from [18] with a brief description of the Active-Symbol / Copycat 
architecture.  

Active Symbol Architecture  

In the 1980s, Hofstadter designed a general architecture for abstract perception and analogy-
making called the “active symbol architecture,” based in part on Hofstadter’s notion of active 
symbols in the brain: “active elements [groups of neurons] which can store information and 
transmit it and receive it from other active elements” [10]—and in part on inspiration from 
information processing in other complex systems such as ant colonies and cellular metabolism.  

The active symbol architecture was the basis for several AI programs exploring abstract perception 
and analogy-making, many of which were described in Ref. 12. The best-known example is 
Hofstadter and Mitchell’s Copycat program [13, 17]. The name “Copycat” is a humorous reference 
to the idea that the act of making an analogy is akin to being a “copycat”—that is, understanding 
one situation and “doing the same thing” in a different situation. A key idea of the Copycat pro 
gram is that analogy-making should be modeled as a process of abstract perception. Like sensory 
perception, analogy-making is a process in which one’s prior concepts are activated by a situation, 
either perceived via the senses or in the mind’s eye; those activated concepts adapt to the situation 
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at hand and feed back to affect how that situation is perceived.  

 
Hofstadter and Mitchell developed and tested Copycat using the domain of letter-string analogy 
problems, created by Hofstadter [11]. The following are some examples from this domain:  

If the string abc changes to the string abd, what does the string pqrs change to?  

If the string abc changes to the string abd, what does the string ppqqrrss change to?  

If the string abc changes to the string abd, what does the string srqp change to?  

If the string abc changes to the string abd, what does the string xyz change to?  

If the string axbxcx changes to the string abc, what does the string pzqzrzsz change to?  

While these analogy problems are idealized “toy” problems, they are, similar to Ravens’ matrices, 
designed to capture something of the essence of real-world abstraction and analogy-making. Each 
string is an idealized “situation” containing objects (e.g., letters or groupings of letters), relations 
among objects, events (a change from the first to second string), and a requirement for abstraction 
via what Hofstadter termed conceptual slippages [11] (e.g., the role of “letter” in one situation is 
played by “group” in another situation, or the role of “successsor” in one situation is played by 
“predecessor” in another situation).  

In the Copycat system, the process of analogical mapping between two situations (here, letter 
strings) is interleaved with the process of building representations of those situations, with 
continual feedback between these processes. This is achieved via four interacting components: a 
concept network, which contains the system’s prior knowledge in symbolic form; a workspace, 
which serves as a working memory in which representation of and mappings between the input 
situations takes place; a set of perceptual agents, which—competitively and cooperatively—
attempt to adapt the system’s prior knowledge to the input situations over a series of time steps; 
and a temperature variable, which measures the quality and coherence of the system’s 
representations and mappings at a given time, and which feeds back to control the degree of 
randomness of the perceptual agents. When the system is far from a solution, the temperature is 
high, and the perceptual agents’ actions are more random; as the system zeroes in on a coherent 
solution, the temperature falls, and the perceptual agents are more deterministic.  

Figure 1 illustrates the architecture of the Copycat program. Figure 1(a) illustrates part of the 
program’s concept network, which contains the program’s prior (symbolic) knowledge about the 
letter-string domain, corresponding to long-term memory. The concept network models a symbolic 
“semantic space,” in which concepts are nodes (ellipses) and links (lines) between between 
concepts represent semantic distance, which can change with context during a run of the program. 
A concept (e.g., letter-group) is activated when instances of that concept are discovered in the 
workspace, and in turn, activated concepts (the program’s “active symbols”) trigger perceptual  
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Figure 1: (a) Illustration of part of Copycat’s concept network. (b) Illustration of Copycat’s 
workspace, during a run of the program.  

 

agents that attempt to discover additional instances. Activation can also spread between conceptual 
neighbors. Activation decays over time if not reinforced.  

Figure 1(b) illustrates the program’s workspace, a short-term memory, inspired by blackboard 
systems, [6] in which perceptual agents construct (and sometimes destroy) structures (relations, 
groupings, correspondences, and rules) that form the program’s current representation of the input 
situations and the analogy between them, at any given time during a run. Dashed lines or arcs 
represent structures with low confidence; solid lines or arcs represent structures with high confi 
dence; the confidence of a structure can change during the run and structures can be destroyed 
depending on their confidence. A temperature variable (represented by the thermometer in the 
bottom right of the workspace) measures the quality of the current structures and feeds back to 
affect the randomness of the perceptual agents.  

Figure 2 gives the state of the workspace at selected timesteps during a run of the program, 
illustrating how the program constructs representations of, and analogies between, its input 
situations. The workspace serves as a global blackboard on which agents explore, build, and 
destroy possible structures. The actions of agents are probabilistic, and depend on the current state 
of the workspace, concept network, and temperature. Perceived correspondences between objects 
in different situations (here letters and letter-groups) lead to conceptual slippages (e.g., letter slips 
to letter-group) that give rise to a coherent analogy. Details of Copycat’s operations are described 
in Ref. 17.  

In summary, the Copycat program is an example of Hofstadter’s active symbol architecture, in 
which symbolic concepts become activated via bottom-up perceptions, spread activation to 
semantically related neighbors, and influence perception in a top-down manner by triggering 
probabilistic perceptual agents to find instances of the associated concepts in a blackboard-like 
workspace. In this way, processing in the system consists of a continual interplay between bottom-
up and top down processes. A temperature variable controls the degree of randomness in the  
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Figure 2: State of the workspace at six different timesteps during a run of Copycat (adapted from 
Ref. 17).  
 

system and in turn is dynamically determined by the quality of perceptual structures constructed 
by the system. Coherent representations of input situations, and analogies between them, result 
from the perceptual structures constructed by these probabilistic agents. A central idea underlying 
the active symbol architecture is that, in analogy-making, the mapping process cannot be separated 
from the representation-building process—these must be interleaved. This is a central point of 
disagreement with the structure-mapping engine approach described in the previous section (see 
also Ref. 3).  

As described in Ref 13, Copycat’s emergent dynamics show a gradual transition from a largely 
bottom-up (perception-driven), random, and parallel mode of processing—in which many possible 
representations of the input are explored—-to one that is largely top-down (concept-driven), 
deterministic, and serial. Copycat does not fit neatly into the traditional AI dichotomy between 
symbolic and neural systems; rather it incorporates symbolic, subsymbolic, and probabilistic 
elements. The architecture resonates with several ideas in psychology, psychophysics, and 
neuroscience, such as the Global Workspace hypothesis of Baars et al., [1, 22] in which multiple, 
parallel, specialist processes compete and cooperate for access to a global workspace, and the 
proposal that visual cortex areas V1 and V2 work as “‘active blackboards’ that integrate and 
sustain the result of computations performed in higher areas” [8, 21]. Copycat also resonates with 
the idea of neural “object files” [14]—temporary and modifiable perceptual structures, created on 
the fly in working memory, which interact with a permanent network of concepts. The system’s 
dynamics are also in accord with Treisman’s [23] notion of perception as a shift from parallel, 
random, “pre-attentive” bottom-up processing and more deterministic, focused, serial, “attentive” 
top-down processing.  
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Mitchell and Hofstadter showed how Copycat was able to solve a wide selection of letter-string 
problems; they also described the program’s limitations [13, 17]. The Copycat program inspired 
numerous other active-symbol-architecture approaches to analogy-making, some of which are de 
scribed in Ref. 12, as well as approaches to music cognition, [19] image recognition, [20] and 
more general cognitive architectures [1].  

It bears repeating that Copycat was not meant to model analogy-making on letter strings per se. 
Rather, the program was meant to illustrate—using the letter-string analogy domain—a domain 
independent model of high-level perception and analogy. However, the program has several 
limitations that need to be overcome to make it a more general model of analogy-making. For 
example, Copycat’s concept network was manually constructed, not learned; the program 
illustrated how to adapt pre-existing concepts flexibly to new situations, rather than how to learn 
new concepts. Moreover, the program was given a “source” and “target” situation to compare 
rather than having to retrieve a relevant situation from memory. Finally, the program’s architecture 
and parameter tuning were complicated and somewhat ad hoc. Additional research on all of these 
issues is needed to make active symbol architectures more generally applicable.  
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