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ABSTRACT
We describe the implementation and performance of a genetic algorithm (GA) which generates image feature extraction
algorithms for remote sensing applications.  We describe our basis set of primitive image operators and present our
chromosomal representation of a complete algorithm.  Our initial application has been geospatial feature extraction using
publicly available multi-spectral aerial-photography data sets.  We present the preliminary results of our analysis of the
efficiency of the classic genetic operations of crossover and mutation for our application, and discuss our choice of
evolutionary control parameters. We exhibit some of our evolved algorithms, and discuss possible avenues for future
progress.
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1.  EVOLVING TOOLS FOR IMAGERY FEATURE EXTRACTION
Extraction of features of interest from large and possibly heterogeneous imagery data sets is a crucial task facing many
communities of end-users. From broad-area environmental monitoring, to space-based commercial prospecting, to modern
cartography, workers and researchers have access to highly capable collection platforms operating in a range of spectral
bands.  With new distribution technologies and data formats making dissemination of this data progressively cheaper and
easier, the bottle-neck to successful exploitation of this information rests more than ever on the availability of suitable
analysis tools.  Development of these tools is an expensive business, often requiring a significant investment of time by
highly skilled analysts.  National and commercial pressures have provided the necessary impetus for the development of
mature tools for traditional data formats (e.g., electro-optical imagery, panchromatic and/or visible/infrared) for specific tasks
of perceived importance, but novel situations can arise and existing tools may be proprietary or classified.  The generality of
analysis tools is itself an issue of importance.  Mature tools frequently exhibit strong specialization. Further, with the advent
of multi-spectral sensors platforms such as LANDSAT and SPOT, the analyst can now search for spectral, spatial, and
possibly hybrid spatio-spectral signatures, requiring development of whole new tool-kits.  Our own work in the field of
remote sensing has led us to seek an accelerated toolmaker.  Since creating and developing individual algorithms is so
important and yet so expensive, we have recently begun investigating an evolutionary approach to this problem.

Over the last two decades, ideas taken from the theory of evolution in natural systems have inspired the development of a
group of powerful yet extraordinarily flexible optimization methods known collectively as evolutionary computation (EC).
The modern synthesis derives from work performed in the 60s and 70s by researchers such as Holland1; Rechenberg2; and
Fogel et al.3. While the various schools founded by these pioneers have differences, their approaches share the common
themes of optimization performed by a competing population of individuals in which a process of selection and reproduction
with modification is occurring.

The beauty of EC is its flexibility: if we can derive a fitness measure for a problem, then the problem might be solved
using EC. Many different problems from different domains have been successfully tackled using EC, including: optimization
of dynamic routing in telecommunications networks4; designing finite-impulse-response digital filters5; designing protein
sequences with desired structures6; and many others.

A crucial issue when using EC is how to represent candidate solutions so that they can be manipulated by EC effectively.
We wish to evolve individuals that represent possible image processing algorithms, and so we will use a system based upon
genetic programming7. Genetic programming (GP) is essentially a framework for developing executable programs using EC
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methods. GP has been the subject of a huge amount of research this decade and has been applied to a wide range of
applications, from circuit design7, to share price prediction8. With particular relevance to this proposal, GP has also been
applied to image-processing problems, including: edge detection9; face recognition10; image segmentation11; image
compression12; and feature extraction in remote sensing images13. Daida's work13 is particularly relevant since it demonstrates
that GP can successfully evolve algorithms for real tasks in the remote-sensing domain.

We have called our software GENIE, which stands for Genetic Imagery Exploitation.  In the next section we give an
overview of our software architecture.  In the following section we provide some preliminary results obtained using our
prototype system.

2. DESIGN OVERVIEW
Our research follows the classic evolutionary paradigm. A population of candidate solutions is evaluated by measuring their
fitness with regards to a given environment.  Natural selection occurs, and the survivors are allowed to reproduce.  This
process continues until some predefined halting condition is satisfied.

Our particular task is to evolve image-processing tools (“candidate solutions”) for imagery feature extraction.  The
environment is a set of training data.  Selection proceeds using a fitness function, and reproduction is attended by crossover
and mutation, with elitism available as an option.  We now discuss each component in some detail.

2.1 Environment: Training Data
Consider a data cube of multi-spectral data.  In particular, we only consider spatially co-aligned data, so that each data plane
contains the same number of pixels, and spatial information is orthogonal to spectral information.  Data from different
sensors and/or sensor-platforms with different spatial/spectral resolutions can be combined in principle, but we assume that
the co-registration of data has already taken place and that all data planes have equal spatial resolution.

For our initial work, we have relied on two major sources of imagery: MODIS Airborne Simulator (MAS) data (obtained
from NASA14), and Digital Orthoquod Quaterquad (DOQ) data (obtained from the United States Geological Survey15).

The Moderate Resolution Imaging Spectroradiometer (MODIS) is an instrument designed for NASA's Earth Orbiting
System (EOS) and will be the key instrument aboard the Terra (EOS AM-1) satellite (planned launch date: mid 1999). The
MAS, carried by a high-altitude NASA ER-2 aircraft, simulates the full MODIS instrument, providing 50 narrow, contiguous
bands of visible to infrared with 50 meter ground resolution from 20 km altitude, a wide (37.25 km) field of view, and
produces 12-bit digitized data.

The DOQ data provides orthorectified aerial photography in squares of 3.75' longitude x 3.75' latitude.  Panchromatic,
color, and color-infrared (green/red/near infrared [0.5-0.9um]) data products are available, with approximately 1 meter
ground resolution from 20,000 feet.  We have used the color-infrared product, which comes in 3 band, 8-bit digitized format.

In seeking to evolve image-processing tools, the chief challenge faced by machine-learning approaches is the provision of
sufficient quantities of good quality training data.  That is, “ground truth” for some subset of the imagery (the training data)
must be specified, either by inspection of the raw data and hand mark-up by a human analyst, or by incorporating data after
actually surveying the terrain, or by application of a known algorithm. The latter case allows us to test our ability to recover
known algorithms, e.g., the normalized difference vegetation index (NDVI, see e.g. Schowengerdt16).  Specification of the
ground truth by hand can be laborious, pre-supposes that the feature of interest is known beforehand, and assumes that the
feature can be identified by inspection in at least one plane of the imagery data cube.

In either case, the training data cube is augmented by what we call a truth plane.  This can contain a binary mask labeling
each feature pixel with a 1 and each non-feature pixel with a 0.  Alternatively, the truth “plane” may itself be composed of
two or more planes to allow different weightings of pixels to guide the GA in finding the most important pixels.  The truth
values can be extended to byte or float type.  In this way, our system can evolve a feature finder that provides confidence
values as well as yes-no classification.

One general feature of GP is the ability of parse trees to grow in complexity via crossover.  Motivated by concerns over
computational resources, we decided to limit this growth of complexity by defining a fixed number of read/write memory
(“scratch”) planes.  Data planes, on the other hand, are read only, and the number of data planes in also fixed.  For our initial
work, we have decided to call the final value in scratch plane A the “answer”.   Evaluation of the fitness of a candidate tool
depends solely on the final result it has stored in the answer plane.  In general there are several scratch planes available to a
candidate tool, and it is interesting to ask what information we may find in those additional planes.  To take advantage of this



feature, we are currently investigating more complicated fitness evaluation schemes which would evaluate the final contents
of all the scratch planes.

With our scratch plane formulation, any GP parse tree can be broken into a set of single vertex/operation sub-trees
(somewhat reminiscent of Koza's automatically defined functions7). Results stored in a scratch plane may be reused
throughout the image-processing algorithm, so we are actually dealing with graphs rather than trees.  We feel that this
potential for reuse of intermediate results is an important capability, but also expect and find that this introduces
complications for crossover, discussed below.   For any GP tree there exists a minimum number of scratch planes that allows
representation of the tree in our scratch plane formulation.

2.2 Genes: Image Analysis Primitives
We have introduced a simple notation for encoding individual genes, e.g., [ADDP, ra, rb, wA, 1.0], which reads data planes a
and b, and writes the sum of these planes to scratch plane A.  The final number in the block is a parameter allowing weighted
sums of planes, i.e., a + p*b.  We refer to everything within the square brackets [] as the gene.

Conceptually, any system such as ours is exploring the algebra of image operators.  That is, how to form useful
combinations of image processing operators, and how to identify the generators of this algebra. If this is to be considered in
all its generality, then one is confronted by a large, unsolved problem of image analysis (for work in this direction, see, e.g.,
Ritter and Wilson17).  While we are interested in this theoretical problem, our initial approach has been to specify a set of
“useful” primitive operators and explore the space of algorithms that they generate.  We have chosen a set of logical,
threshholding, spatial, and spectral operators, outlined in Table 1. The user can specify which operators are available in any
given run.

Logic:   AND,
OR,
NOT,

Threshhold:  CLIP_HI,
CLIP_LO,
BOOL,
EXPAND
GT,
LT,

Spectral: ADDP,
ADDS,
SUBP,
SUBS,
MULTS,
DIVS,

         LINSCL,
LINCOMB,
BANDRATIO,
NDVI

Spatial: MEAN,
MEDIAN,
ERODE,
DILATE,
OPEN,
CLOSE,
OPEN_CLOSE,
CLOSE_OPEN

Table 1.  Primitive Image Operators for GENIE

Due to the nature of the image operator representation in the context of the chromosome, the set of morphological
operators able to be included in the “gene pool” is restricted to function-set processing morphological operators, i.e. gray-



scale morphological operators having a flat structuring element. Within this set of operators we further restrict the usable set
to those commonly used operators which can be constructed from the basic morphological operators of erosion and dilation.
These operators are sometimes referred to as primary, secondary and tertiary operators, due to their construction, with respect
to the basic or primary morphological operators. These morphological operators are, primary: erosion (ERODE) and dilation
(DILATE), secondary: closing (CLOSE; dilation followed by erosion) and opening (OPEN; erosion followed by dilation)
and tertiary: open-closing (OPEN_CLOSE; opening followed by closing) and close-opening (CLOSE_OPEN; closing
followed by opening). The sizes and shapes of the structuring elements used by these operators, again, due to the particular
genetic representation, is also restricted to a pre-defined set of primitive shapes, which includes, square, circle, diamond,
horizontal cross and diagonal cross. The choice of shape for the structuring element is defined by one of the parameters of the
operators genetic representation. Likewise for the size of the structuring element.

Other local neighborhood/windowing operators such as mean, median, etc. have their kernel/window size and shape
incorporated into their genetic representation in a similar manner.  Our spectral operators have been chosen to permit
weighted sums, differences and ratios of data and/or scratch planes, and various rescalings of single data or scratch planes.
Operators such as ADDP and SUBP add and subtract (respectively) pairs of data and/or scratch planes, while operators such
as DIVS, MULTS, and ADDS apply scalar factors. LINCOMB calculates linear combinations of planes. NDVI is essentially
a ratio of a difference over a sum of planes (i.e., (a-b)/(a+b) ), which gains physical significance when the planes are chosen
from certain spectral regions (red and near infrared).

Finally, we have introduced threshholding and logical operations to allow the system to match Boolean ground truth.  At
the moment there is no requirement that the system apply operators in any predefined order.  We have decided to take
advantage of this, by defining all our operators to work with float, byte or Boolean data.  For example, the AND operator
essentially carries out a pixel by pixel product of images, which reduces to the standard Boolean AND when both inputs are
Boolean, and can give be given a probabilistic interpretation when one or both of the inputs is of type float or byte.

The complexity of our “primitive” operators is, at this stage, mostly a matter of taste.   For example, operators such as
BOOL, which turns a gray-scale image into a binary image using an evolvable threshhold, is quite simple to implement and
quick to execute.  A morphological operator such as OPEN, on the other hand, requires specification of a structuring element
(which can evolve), and is in fact the composition of the ERODE and DILATE operators in our basis set.  Yet we know from
experience that OPEN is a frequently used morphological operator, and so we have made it available from the outset. A
function such as NDVI may also be composed out of other genes in our basis set, but we include it to allow exploration of
our system’s ability to identify the correct inputs for this important remote-sensing algorithm.

In all of this, our desire is to give the GA a head-start by providing a rich set of building blocks, without wanting to
include operators much larger and/or slower than the rest of the primitive operators.  Given this arbitrariness, we have made a
point of ensuring that additional operators can be added quickly and easily to the current set of basis operators.  Indeed, one
of our aims is to evolve useful combinations of genes that can be promoted to new, indivisible building blocks.

2.3 Chromosomes: Representation of Candidate Solutions
Chromosomes are text strings of genes, e.g.,
[ADDP rb rd wA 1.0][LT rA wC 0.23][NOP][MAX rA rb wA]

Chromosome length (measured in genes) is set at the start of a run, and is currently fixed for the duration of the run.  We
have included a null operator ([NOP]) to allow an effective length of less than the maximum length.

We have implemented several checks to reduce unnecessary computations.  In any given chromosome a number of genes
will not contribute to the final answer. For example, they may write to a scratch plane other than A, that is never
subsequently used.  Or they may write to a scratch plane that is overwritten before the stored result is used.  These “junk”
genes can be effectively stripped out of the full chromosome immediately before evaluation on the training data, by a process
of checking the dependency of the answer plane on the genes.  To do this, we have implemented a scheme for calculating the
GP parse tree that determines the answer in scratch plane A.  Genes not contributing to this tree are not evaluated.  Their
contents are preserved for future evolution.

More subtle redundancies are not stripped out, so for example we do not detect an operator followed by its inverse.  With
the checks we have introduced, after including the extra time required to strip the junk genes, we have seen reductions in time
of execution of complete runs, approaching factors of 10 to 30.

Regarding programming language, we have implemented our genotype-level code in object-oriented Perl.  This provides
a convenient environment for the string manipulations required by the genetic operations of mutation and crossover, and
simple access to the underlying operating system (Linux on high-end workstations).  Evaluation of the chromosomes is the



computationally expensive part of each evolutionary cycle.  For that task, we have chosen a commercial product, RSI's IDL
language and image processing environment (see http://www.rsinc.com/idl). IDL offers a rapid prototyping capability, and
together with RSI's ENVI package for IDL, provides support for the various remote-sensing data formats we have been using.
IDL also provides a rich environment for visualizing the results of our evolution. This is not used during the evolution of
algorithms, but is useful for interacting with the evolved algorithms and their components.

Within IDL, individual genes correspond to single primitive image operators, which are coded as IDL batch executables.
An advantage of IDL is that implementation of most of our primitive operators require only a few lines of code, simplifying
debugging. For example, the previously displayed chromosome is written to an IDL batch file containing the lines,

ga_addp, data_b, data_d, scratch_A, 1.0

ga_lt, scratch_A, scratch_C, 0.23 ; junk, can be ignored

; no operation

ga_max, scratch_A, data_b, scratch_A

In these lines of code, the ga_xxx nomenclature is designed to match the gene labeled XXX.  The “;” indicates a comment
in the IDL programming language.

With our checking procedures, only the first and fourth lines would be passed to the IDL session for evaluation on the
training data.  In our current implementation, this IDL session is opened at the beginning of the run, and communicates with
the Perl code via a two-way unix pipe.  This is a low-bandwidth connection; only the IDL session needs to access the training
data (several hundred Megabytes in current trials), which requires a high-bandwidth connection.

2.4 Population
A population is a set of chromosomes.  The number of chromosomes in the population can be specified, but is fixed
throughout the run.  For our initial tests, we have chosen to use populations of a 50 to a few hundred, and have done some
runs with much smaller and much larger population sizes for comparison.  For system development purposes, we have
generally settled on population of the order of 200 candidate tools.

We keep track of individual chromosomes’ scores to avoid re-evaluation on the training data.  We also accumulate a
“zoo” of all previously evaluated effective chromosomes (i.e. stripped of junk) and their scores, to avoid evaluating genes
where reproduction has not changed the effective algorithm.  Our experience has been that this check (comparing with the
zoo) does significantly speed up the execution of a run by an additional factor of 2 to 5, depending on the specified maximum
chromosome length and choice of available basis operators.

2.5 Selection: Choices for Crossover and Mutation
Fitness evaluation uses a fitness function based on a scaled (Manhattan metric) distance between answer plane and ground
truth.  We give candidate tools credit for finding the anti-feature.  That is, if a tool finds everything but the feature of interest
then the tool receives a high fitness (achieved by taking the absolute value of the distance).   The fitness is scaled so that an
exact match to the ground truth receives a score of 100%, while a totally random algorithm will receive a zero score.  An
algorithm that produces a constant value output will also get a score of zero.

Selection for reproduction has been implemented through simple rank selection with replacement.  We intend to
investigate tournament selection schemes at a latter date.

With so many genes and such different gene types (spectral, spatial, logical), we have introduced a means of handling
specification of the results of a mutation event during reproduction.  Essentially, we make use of the object-oriented
philosophy to specify a mutation mechanism for each gene, explaining how it mutates. So, for example, a gene that adds two
planes and writes to a single scratch plane can mutate by changing one or more of the input and output planes (without
changing the number of inputs and outputs), or change the weighting parameter in the sum.  Alternatively, it can mutate into
an entirely new gene, which is then given randomly generated input/outputs and parameters (type and range are specified for
each gene).  A more complex operator, such as a convolution operator, would mutate with respect to both size and shape of
the convolution kernel.

The mutation rate is currently fixed throughout a run, and is generally given a probability of 0.5 (probability that a single
gene within the chromosome will mutate in some way; only one gene per chromosome can mutate, though other schemes



have also been implemented and are currently under investigation). Crossover has been implemented as single point
crossover at a randomly generated site (with probability 0.9). This means that, in general, crossover will greatly disrupt the
algorithm.   We recognize that our mutation and crossover probabilities are high relative to some binary string GA research18

An alternative approach would be to impose a great deal of structure on the chromosome, actually specifying a tree
structure and demanding the crossover conserve this global structure (ie, the predefined global topology).  Preliminary work
in this direction is underway within our group, and is reported elsewhere (see Porter, McCabe and Bergmann19).

We have also added “elitism” as an option.  A selectable number of highly fit members of the current population may be
passed unaltered to the next generation.  There is no limit to how many generations a chromosome can live.  Elitism is
usually restricted to 5 or 10% of the current population.  In our trials, addition of elitism has been seen to help convergence
by the population on a good solution.

3. PRELIMINARY RESULTS
For our initial attempt to evolve an image-processing algorithm, we turned to the important and well-studied problem of
finding open water (rivers and lakes) amidst vegetation.  Figure 1 shows a near infrared channel from our MODIS airborne
simulator data set (the location is an estuary leading to the Gulf of Mexico).  Clearly, on inspection, the main body of water
stands out to a human observer looking at this single band.  Complication arises when we try to delineate the boundary of the
water, and when we try to distinguish between open bodies of water, wet fields, and clouds. Also presented is the result of a
human designed algorithm (Szymanski and Alferink20), that combines comparisons of spectral channels, and simple measures
of texture (standard deviations in pixel neighborhoods).

Using the output of this algorithm for our ground truth, we have completed runs of GENIE with varying population size,
different basis operators, varying mutation and crossover rate, and amount of training data.  GENIE successfully evolved
simple algorithms that match the ground truth at the >98% level (Fig. 2).  In each case, our system had discovered a
threshhold on one of the spectral channels that segmented the image in a way that closely matched the human designed
algorithm.  We evolved first with only spectral, and then with both spectral and spatial operators.  Because of the nature of
this particular test case, spectral operators alone were able to achieve high-fitness solutions.  We also evolved spatial/spectral
solution that achieved similar scores on our training and test data.  We are now in the process of expanding our investigation
to see how these algorithms fare with a wider range of data sets, and will investigate the suitability of these evolved
algorithms as starting points for future runs.

As for comparison of mutation and crossover, we have consistently found that, even with our simple form of crossover
and reasonably short chromosome lengths (8 to 20 genes per chromosome), crossover and mutation together consistently beat
mutation alone, with respect to time to reach a high-fitness solution.  We only claim this as a preliminary result, and are
currently undertaking the large number of runs required for definite conclusions.  We are also investigating evolution of
algorithms for the DOQ data set and for other features in both data sets.

4. CONCLUSION
We have implemented a genetic programming scheme for evolving image-processing algorithms.  We have initial results for
some simple feature extraction tasks, and are now investigating our genetic algorithm parameter space.  By imposing checks
and removing junk genes, we have reduced our runtimes by a factor of order 100.  Our preliminary findings are that an EC
approach to accelerated image analysis tool making is possible, and that this may be a successful approach to rapidly
developing algorithms for novel features and/or for novel data sets.
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Figure 1. Water Mask.  The left figure is a single plane from our multi-spectral MAS data set.  The figure on the right shows
the output of a human designed water-finding algorithm (Szymanski and Alferink20)

Figure 2.  Evolved solution.  GENIE evolved this solution using a population of 200 individuals over 30 generations.  The
evolved algorithm is exhibited on the left.  The answer is highly redundant, and essentially consists of a threshhold on one

channel (done on line 3, the Less-Than threshholding operator).  This is a limitation of the chosen test case.

GENIE
fitness 98.6%

[MIN  rd rd wC]
[MIN  rc rd wA]
[LT  rC wC 0.31]
[LT  rd wA 0.2]
[BOOL  rA wA 0.2]
[MIN  rC rd wA]
[MAX  rA rd wA]
[BOOL  rA wA 0.2]
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