
Resource Sharing and Coevolution

in Evolving Cellular Automata

Justin Werfel∗ Melanie Mitchell† James P. Crutchfield‡

Abstract

Coevolution between a population of candidate solutions and a population of test
cases has received increasing attention as a promising biologically inspired method
for improving the performance of evolutionary computation techniques. However, the
results of studies of coevolution have been mixed. One of the seemingly more impressive
results to date was the improvement via coevolution demonstrated by Juillé and Pollack
on evolving cellular automata to perform a classification task. Their study, however,
like most other studies on coevolution, did not investigate the mechanisms giving rise
to the observed improvements. In this paper we probe more deeply into the reasons for
these observed improvements and present empirical evidence that, in contrast to what
was claimed by Juillé and Pollack, much of the improvement seen was due to their
“resource sharing” technique rather than to coevolution. We also present empirical
evidence that resource sharing works, at least in part, by preserving diversity in the
population.

1 Introduction

Using evolutionary algorithms to design problem-solving strategies often involves the
use of test cases to estimate fitness, since the space of possible problems is typically
too large to evaluate a given strategy’s performance exhaustively. An important issue
for improving statistical estimates of fitness in such situations is determining how to
sample test cases and how to weight their contribution to fitness estimates. This
is particularly significant if one wishes to avoid premature convergence, in which a

∗Department of Electrical Engineering and Computer Science, E25-210, Massachusetts Institute of Tech-
nology, Cambridge, MA 02139 (email: jkwerfel@mit.edu)

†Biophysics, P-21, MS D454, Los Alamos National Laboratory, Los Alamos, NM 87545
(email: mm@biophysics.lanl.gov)

‡Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501 (email: chaos@santafe.edu)

1



mediocre solution strategy with no nearby fitter variants takes over the population
and prevents the emergence of better solutions.

Techniques that have been proposed to ameliorate this difficulty include shared
sampling, in which test cases are chosen so as to be unsolvable by as many of the
strategies in the population as possible [16, 17]; competitive fitness functions, in which
a tournament-style selection scheme determines that one strategy is fitter than another
if the number of test cases solved by the first, but not by the second, is greater than
the number solved by the second, but not by the first [8]; and resource-sharing fitness
functions, in which strategies receive a higher fitness if they are able to solve test
cases that are unsolvable by a large fraction of other strategies. Resource sharing has
produced promising results on a number of tasks [7, 8, 16, 17].

The motivation behind resource sharing is to promote diversity by rewarding strate-
gies that can solve test cases that few other strategies are also able to solve. In this
way strategies receive less payoff for pursuing approaches that put them into “niches”
already heavily occupied. Instead, they are encouraged to explore new approaches,
particularly those which allow solving test cases that the rest of the population finds
difficult. Presumably, the population ends up more spread out over the space of pos-
sible strategies. In other words, resource sharing is intended to preserve diversity, to
prevent mediocre solutions from taking over the population, and to make more likely
the emergence of exceptional new strategies through recombinations of dissimilar, pre-
viously discovered strategies.

Another technique that has been proposed to improve the strategies discovered by
evolutionary search methods is that of coevolution, as introduced by Hillis [5]. Any
particular static method for generating test cases can strongly bias the evolutionary
course of strategies and produce over-fitting to the class of test cases that are generated.
Moreover, there appears to be no single best static method. If the test cases are too
easy, there is no strong pressure for high-performance strategies to emerge; if the test
cases are too hard, then all low-performance strategies appear equally poor, reducing
fitness variance, and evolution cannot proceed.

In a coevolutionary scheme, a population of test cases is maintained and evolves
along with the evolving population of strategies. The fitness of a strategy is then some
function of the number of test cases it is able to solve and the fitness of a test case
is some inverse function of the number of strategies that are able to solve it, often
with some penalty for being too difficult a test. The desired effect is that the test-case
population will evolve so as to present an incrementally increasing but appropriate level
of difficulty for the evolving population that forces strategies to become successively
more capable of solving hard problems.

Past work by Paredis [15], in accord with our own earlier investigations, showed that
a straightforward version of coevolution, on its own, fails to produce high-performing
strategies for a cellular-automaton task investigated earlier by Packard [14] and Crutch-
field et al. [1, 4, 11]. These researchers used genetic algorithms (GAs) to evolve one-
dimensional, two-state cellular automata (CAs) to perform a classification task. This
type of CA consists of a one-dimensional lattice of cells, each of which can be in state 0
or 1 at a given time step. The lattice starts out with an initial configuration of states,
and at each time step each cell updates its state depending on its current state and

2



the states of its neighboring cells. In Packard’s and Crutchfield et al.’s studies, the
“neighboring cells” of a cell were defined to be the three cells on either side of the
cell. Thus each neighborhood contained seven cells. The update rules can be given
as a look-up table (“rule table”) containing all possible configurations of seven cells
and the associated update state for the center cell in each configuration. Any given
rule table can be specified uniquely by ordering the entries in lexicographic order of
neighborhood configuration (0000000 to 1111111) and then listing the 27 = 128 update
states in this order. This produces a bit string of length 128. These bit strings were
the individuals in the GA’s population.

Following [14] and [1, 4, 11], Paredis evolved cellular automata to perform a density
classification task, in which an initial configuration of the CA lattice consisting of 1s
and 0s was to be classified as “high-density” or “low-density” depending on whether or
not it contained a majority of 1s. (The density of an initial configuration is defined as
the fraction of 1s in that configuration.) A “high-density” classification was represented
by the CA reaching a fixed point of all 1s, a “low-density” classification by a fixed point
of all 0s. In this task, the “strategies” are CA rule tables and the “test cases” are initial
configurations of a CA lattice.

In [15], a population PCA of cellular automaton rule tables, encoded as bit strings,
coevolved with a population Ptest of initial-configuration test cases, also encoded as bit
strings. The fitness of a CA rule table was calculated by running the corresponding
cellular automaton (with a lattice of 149 cells) on each initial configuration in Ptest,
and determining the number of these initial configurations that it classified correctly.
The fitness of each test case was the number of CA rule tables in PCA that classified
it incorrectly. Paredis found that the two populations entered temporal oscillations in
which each in turn performed well against the other population. The individuals in
both populations, however, performed poorly against opponents chosen from outside
the populations.

Combinations of different approaches for improving performance often work better
than each approach alone [17]. In particular, Juillé and Pollack [9, 10] investigated
a combination of coevolution and resource sharing in the evolving cellular automata
framework described above, and found that the use of both techniques together led to
the production of significantly better CA strategies than did the use of a standard GA.
They attributed this success to the effectiveness of coevolution.

Since the version of coevolution studied by Paredis [15] has been shown not to
produce effective strategies for this problem when used alone, it seems natural to ask
whether the success in [9, 10] is due more to coevolution or to resource sharing, or to
the particular combination of the two.

It should be noted that the results of both Paredis [15] and Juillé and Pollack [9, 10],
as well as the new results we present below, were obtained in the context of the evolving
cellular automaton framework and have not yet been generalized to other problems.
This framework, however, was designed to be general in that it captures the important
features of evolving systems in which global coordination emerges when only local
interactions are possible. In addition, this framework has been found to have a number
of features common to a wide class of evolutionary systems, including moderate-to-
high degrees of epistatic interactions among loci, identifiable “building blocks” that

3



contribute to high-fitness solutions, a demonstratable advantage for crossover versus
mutation alone, and metastable periods of fitness stasis punctuated by rapid periods
of innovation [2, 12, 19]. Moreover, these features have been shown to generalize to
other cellular-automaton tasks beyond one-dimensional density classification [3, 13].
The generality of these features will, we believe, allow the results of research in this
framework to inform work on a wider class of evolving systems. Thus we believe the
results in [9, 10, 15], as well as our results described below on coevolution and resource
sharing, will have implications beyond the evolving cellular automaton framework.

2 Methods

In [1, 4, 11], a genetic algorithm (GA) was used to evolve cellular automaton rule
tables (strategies) to perform the density classification task described above. The
fitness of each strategy was a function of its classification performance on a random
sample of test cases: initial configurations (ICs) of the CA lattice. The classification
performance was defined as the fraction of ICs in a training sample or test sample
that were correctly classified. The ultimate success of the GA was measured in two
ways: (1) The performances PN of the best evolved strategies—the fraction of correct
classifications on N randomly generated test cases. For the results reported here, we
used P104 . (2) The GA’s search efficiency Es—the percentage of runs on which at least
one instance of a given type of strategy s was evolved.

In [1, 4, 11] we identified three classes of CA computational strategy s evolved by
the GA:

• Default: The CA always iterates to all 1s or all 0s.

• Block-expanding: The CA always iterates to all 0s (1s) unless there is a sufficiently
large block of 1s (0s) in the IC, in which case that block grows until it fills the
lattice.

• Particle: The CA uses localized moving signals—“particles”—and their collisions
to transfer and combine information from different parts of the IC.

These classes were identified on the basis of both PN and by extensive analysis of
space-time patterns produced by the CAs of each type. Only the particle strategies
resulted in high performance and generalized well to large lattice sizes; only the par-
ticle strategies are examples of what we would want to call sophisticated collective
computation emerging from local rules.

The three different strategies were easily distinguished by the performance P they
generated: on 149-cell lattices (the size used in the experiments reported here) the
default strategies had P = 0.5, the block-expanding strategies had ≈ 0.6 < P < 0.68,
and the particle strategies had P ≥ 0.7. A small number of high-performance particle
strategies evolved with P ≥ 0.8. As the lattice size was increased, the performance
of block-expanding strategies quickly went down to approximately 0.5, whereas the
performance of particle strategies declined much more slowly. The space-time behavior
of the high-performance particle strategies was qualitatively similar to that of the

4



lower-performance particle strategies; why the former’s performance was higher is still
an open question.

In [4], Eparticle was approximately 3%. For reference, we note that to date the best
known CAs for density classification, evolved or designed by hand, have performances
approximately 0.8 ≤ P104 ≤ 0.86 on 149-cell lattices.

Juillé and Pollack [9, 10] showed that a particular combined form of resource sharing
and coevolution resulted in higher performances (up to P ≈ 0.86) and high-performance
search efficiencies (Eparticle > 30%) [6] than were found in earlier evolving cellular au-
tomata experiments.

For comparison, Paredis’s version of coevolution [15] alone produced only low-
performance CAs that did no better than default strategies and had search efficiencies
Eparticle = 0%—substantially worse than that of a GA without coevolution. To inves-
tigate what aspects of Juillé and Pollack’s method were responsible for the improved
performance and search efficiency, we performed a series of experiments to replicate
their results and analyze them more deeply than was reported in [9] and [10].

The experiments described here used GA and CA parameters, resource sharing fit-
ness functions, and a coevolution scheme similar to those of [9, 10], and identical to
those of a follow-up study by Juillé [6]. The populations of CAs and ICs each had 200
members. The CAs were tested on 149-cell lattices. We performed four experiments,
each consisting of 50 GA runs initiated with independent random number seeds, where
each run consisted of 1000 generations. The experiments evaluated four search tech-
niques: (1) GA: the GA alone, with neither resource sharing nor coevolution, with
ICs drawn at each generation from a density-uniform distribution (i.e., a probability
distribution which is uniform with respect to IC density1)2; (2) GA+C: the GA with
coevolution only, with ICs initially drawn at each generation from a density-uniform
distribution and allowed to evolve thereafter; (3) GA+RS: the GA with resource shar-
ing only, with ICs drawn at each generation from a density-uniform distribution; and
(4) GA+RS+C: the GA with resource sharing and coevolution combined, with ICs
initially drawn from a density-uniform distribution and allowed to evolve thereafter.

In the GA without resource sharing, the fitness function for a CA was simply the
number of ICs it was able to classify correctly:

f(CAi) =
NIC
∑

j=1

correct(CAi, ICj)

where NIC was the number of ICs in the population, and correct(CAk, ICj) was 1 if
the CA correctly classified the jth IC and 0 otherwise.

When coevolution was used without resource sharing, the fitness function for ICs
was defined analogously, with the addition of a term E(CAi, ρ(ICj)) to artificially lower

1The density-uniform distribution can be contrasted with the binomially distributed densities of ICs
generated by choosing each bit randomly, as is done when calculating PN . The latter produces a distribution
of densities strongly peaked around 0.5—the hardest cases to classify. Using the density-uniform distribution
to generate ICs for evaluating fitness markedly improved the GA’s success in all cases where ICs are chosen
from a distribution.

2The same algorithm was used in [1, 2, 4] but with smaller values for population size and number of
generations, and consequently lower search efficiencies.

5



the fitnesses of especially difficult ICs with densities near ρ = 1/2:

E(CAi, ρ(ICj)) = ln(2) + p ln(p) + (1− p) ln(1− p)

where p was the probability that the ith CA could solve a randomly generated IC of
density ρ(ICj), the density of the jth IC. The IC fitness function was then

f(ICj) =
NCA
∑

i=1

E(CAi, ρ(ICj)) · (1− correct(CAi, ICj))

When resource sharing was used without coevolution, ICs did not evolve but were
generated at each generation from a density-uniform distribution. For the purpose of
calculating CA fitnesses, each IC was assigned a weight based on how many CAs it
defeated:

WICj
=

1
∑NCA

k=1
correct(CAk, ICj)

Each CA was then assigned a fitness according to which ICs it could solve, based on
those weights:

f(CAi) =
NIC
∑

j=1

WICj
· correct(CAi, ICj)

These definitions provided a limited fitness resource, equal to the total number of ICs
in the population, which was divided up among all CAs.

When coevolution was used with resource sharing, CA weights and IC fitnesses
were defined analogously:

WCAi
=

1
∑NIC

k=1
E(CAi, ρ(ICk)) · (1− correct(CAi, ICk))

f(ICj) =
NCA
∑

i=1

WCAi
· E(CAi, ρ(ICj)) · (1− correct(CAi, ICj))

CAi was considered to have correctly classified ICj if after a maximum of 2.15 · 149
successive applications of the CA rule, CAi had reached a fixed point of all 1s if
ρ(ICj) > 0.5 and a fixed point of all 0s otherwise. (The case ρ(ICj) = 0.5 was not
possible on a lattice of 149 cells.)

The initial population of CAs was drawn from a uniform distribution over the
density of the 128-bit update rule (i.e., all densities were equally likely). The elite
CAs (fittest 20%) each generation survived to the next; 60% of the new generation was
created from single-point crossovers between pairs of randomly chosen elite individuals,
with mutation probability 0.02 per bit; 20% was created by copying single elite chosen
randomly (with replacement) with mutation probability 0.02 per bit. Mutation flipped
the bit at the chosen locus.

With coevolution, the evolving IC population was represented as a set of densities,
rather than specific ICs; each generation, a new set of ICs was generated with the
specified densities. At each generation 97% of the IC population survived intact, with

6



the remaining 3% chosen from a density-uniform distribution. As in Juillé and Pollack’s
experiments, no crossover or mutation was applied to the IC population.

As described above, the performance P104 of a CA, evaluated after a run, was
defined as the fraction it classified correctly of 10000 ICs drawn at random from an
unbiased distribution (i.e., each cell in each IC had an equal probability of being 0 or
1).

3 Results

For each experiment, we recorded the number of runs in which block-expanding, par-
ticle, and high-performance particle strategies (“particle+”) were discovered and the
mean number of generations it took to discover each strategy.

The search efficiency Es and the mean generation of first occurrence ts for each
strategy are given in Table 1. The standard deviation σts of ts across the 50 runs of
each alternative GA is also reported there.

The results for GA+RS and GA+RS+C agree, within statistical uncertainty, with
results found by Juillé [6].

As expected from [15], runs with coevolution alone almost never produced particle
strategies (P104 > 0.7). In addition, the use of coevolution increases the average
time taken by the GA to find even low-performance, block-expanding strategies (e.g.,
ts = 104, rather than 14), and likewise increases the variance in that time (σts = 133,
rather than 6).

Runs with resource sharing produce CAs with high performance more consistently
across runs than does the GA alone (Eparticle = 43%, rather than 29%). Moreover,
runs with resource sharing tend to take longer (ts = 33, rather than 14) to find block-
expanding CAs. They also vary more (σts = 63, rather than 6) in how long they take
to do so.

Comparing runs using both resource sharing and coevolution to those using resource
sharing alone, the addition of coevolution appears to heighten these effects of resource
sharing. Runs using both techniques take longer (ts ≈ 84, rather than 33) to find
block-expanding CAs, vary more in how long it takes them to do so (σts ≈ 157 rather
than 63), and find particle CAs more frequently (e.g., Eparticle = 47% rather than 43%
and Eparticle+ = 27% rather than 10%) than do runs with resource sharing alone.

By contrast, comparing runs with resource sharing and coevolution to those with
coevolution alone and to those with neither, we see that coevolution has entirely dif-
ferent effects in the presence or absence of resource sharing. Coevolution alone greatly
decreases the effectiveness of the basic GA in discovering high-performance CA rules,
while if resource sharing is also present, the success of the GA in discovering high-
performance rules is improved considerably.

As an aside, note that the large variances σts in mean time to find a given strategy
are typical of and to be expected in evolutionary search algorithms. The nature of
such fluctuations is discussed in [18]. What is notable here is that for the discovery of
particle strategies, the GA using resource sharing has much less variation than seen in
the GA alone. The addition of coevolution to resource sharing appears to have little

7



(beneficial) effect in reducing the variations for the appearance times of particle CAs.
In fact, in reaching high-performance particle CAs, the addition of coevolution roughly
doubles the variance in ts.

In short, for increased efficiency in finding particle strategies, the differences be-
tween resource sharing with coevolution (GA+RS+C) and resource sharing alone
(GA+RS) are much less pronounced than the corresponding differences between GA+RS
and GA+C, and between GA+RS and GA. What the addition of coevolution does
most clearly is improve the search efficiency for high-performance particle strategies,
and that only in the presence of resource sharing. Thus, while Juillé and Pollack
[9, 10] attributed all the improvements they observed to the addition of coevolution,
our results make it clear that resource sharing plays a major, if not the major role in
producing these improvements.

4 The Operation of Resource Sharing

We also investigated whether the effectiveness of resource sharing is actually due, as
was intended in its design, to a preservation of diversity in the GA population, or
whether its success results from some other mechanism entirely.

One rough measure of diversity in a population is the average pairwise Hamming
distance 〈d〉. The Hamming distance d between two CAs is simply the number of bits by
which the genetic specification of their rule tables differ. CAs with different strategies
are likely to differ in more bits and thus to be separated by a greater Hamming distance
than CAs with similar strategies. When averaged over the population, 〈d〉 is greater if
a population is more strategically diverse overall and its members are more spread out
across the genotype space.3

To give a sense of the scale of Hamming distances here, recall that a CA’s rule table
is specified by 27 = 128 binary update states. Thus, 0 ≤ 〈d〉 ≤ 128. Since the initial
CA population was randomly initialized, 〈d〉 ≈ 128/2 = 64 bits at the start of a run.

Figure 1 shows 〈d〉 at each generation for sample runs that evolved high-fitness
particle-based CAs, with (a) neither resource sharing nor coevolution, (b) coevolution
alone, (c) resource sharing alone, and (d) both techniques. In all cases, as expected,
〈d〉 starts out at approximately 64 and then quickly decreases over a few generations,
as the fittest CAs and their descendants take over the population, which settles down
to CAs with similar strategies.

Beyond this transient phase, over each run 〈d〉 fluctuates about 10% to 20% as
evolution progresses. Nonetheless, as the plots show, each run does follow an overall
trend in population diversity. We measured these trends using a least-squares fit to
estimate the average rate of change in population diversity, 〈ḋ〉. We also estimated the
standard deviation σ〈d〉 of fluctuations in 〈d〉 about the fit. Both estimates for each
run are reported in Table 1. Since such trends are interrupted as the GA discovers

3Concerned about possible long-tailed distributions governing d, we calculated the median, in addition
to the average, pairwise Hamming distances. There was no qualitative change to the results. Moreover, the
median distance never differed from the average by more than a single bit after the first few generations.
For these reasons, we report here only average pairwise Hamming distances.

8



progressively more effective CAs, the fits were made only over a stationary epoch—a
period in which average population fitness remains roughly constant. For Fig. 1(a),
the fit is made for an epoch lasting from generation 50 to generation 800; in Fig. 1(b),
from generation 100 to 1000; in Fig. 1(c), from 200 to 1000; and in Fig. 1(d), from
100 to 750.

In runs with neither resource sharing nor coevolution, 〈d〉 decreases slowly over time,
with temporary increases each time a new, more effective type of strategy is discovered.
In Figure 1(a), for example, 〈d〉 declines slowly over nearly 800 generations, from close
to 18 bits to a minimum of approximately 12 bits. At that point, a new strategy
appears around generation 900 and 〈d〉 increases again. The estimated trend shows a
negative slope, and one concludes that with this algorithm, diversity steadily decreases
during an epoch.

When the GA with coevolution is used, as in Fig. 1(b), 〈d〉 remains roughly constant
over a period of several hundred generations. However, its value here is only about 10
bits, implying that in this rare case where coevolution alone does manage to produce
high-performance CA rules, the diversity of the CA population is considerably lower
than in any of the other versions of the GA. This fact suggests that part of the reason
coevolution by itself finds high-performance rules so infrequently may be because its
search through the space of possible CAs is relatively narrow.

When the GA with resource sharing is used, as illustrated by the run in Fig. 1(c),
〈d〉 remains roughly constant at approximately 17 bits. There may also be slightly
greater fluctuation in the population diversity about this trend than in the alternative
GAs; see σ〈d〉 in Table 1.

When coevolution and resource sharing are both used, as shown by the run in Fig.
1(d), 〈d〉 increases over time, after the population initially settles down. Here, 〈d〉 goes
from about 15 bits to about 21 bits over the course of 700 generations.

It would appear then that resource sharing maintains diversity, as it was intended to
do. Its use prevents the slow decrease in, and lower values of, total Hamming distance
that otherwise occur as the population converges on a narrower range of strategies.
In other words, it maintains a wider variation in the space of CAs. The addition of
coevolution appears to enhance the effect of resource sharing when the latter is also
used: the total Hamming distance increases and reaches markedly higher values over
a similar number of generations.

5 Conclusions and Further Work

We have presented evidence that when a combination of resource sharing and coevolu-
tion improves GA performance, the improvement is largely (though not wholly) due to
resource sharing rather than to coevolution on its own. This contradicts the conclusion
offered in [9, 10] that coevolution was the driving force behind improved GA perfor-
mance. We have also presented evidence that resource sharing works by preserving
diversity in the population.

Like [9, 10] and other published work on coevolution and resource sharing, our
analysis was confined to a single example, here evolving cellular automata to perform

9



density classification. We do not know if the results will generalize to other evolu-
tionary computation applications, but we believe that they will for the reasons given
in the introduction. We hope that our results will spur other researchers to examine
carefully the mechanisms by which claimed improvements in evolutionary computa-
tion methods occur, especially when more than one improvement mechanism is being
used in combination. Coevolution has been widely proposed as a promising mechanism
for improvement, and we particularly want to understand how, and in what cases, it
can lead to better performance. The work described here is a step in that long-term
project.

Underlying these overall questions is a complicated problem in nonlinear popula-
tion dynamics. Like many other examples in the evolutionary computation literature,
high-performance CAs evolve via a series of epochs of stasis punctuated by sudden
innovations [1, 2, 4], whether resource sharing, coevolution, both, or neither are em-
ployed. The dynamics of epochal evolution has recently been analyzed mathematically
in some detail [18, 19, 20]. It would be useful, therefore, to bring the current investi-
gations together with this mathematical analysis to understand why epochal evolution
with resource sharing affects, as it does, the variance in the time it takes moderate- and
high-performance individuals to emerge in the population, why higher-performance in-
dividuals appear more frequently with resource sharing, and how it is that coevolution
increases these effects. Here we have begun to understand more systematically how
resource sharing and coevolution affect the evolutionary process, but not yet the details
of their underlying mechanisms.

Acknowledgments

We thank Rajarshi Das andWim Hordijk for their help in performing these experiments
and Hugues Juillé for helpful discussions. We thank Wim Hordijk for comments on
the manuscript. This work was supported by the Santa Fe Institute, by National
Science Foundation grants PHY-9531317 (Research Experiences for Undergraduates)
and IIS-9705830, and by Keck Foundation grant 98-1677.

References

[1] J. P. Crutchfield and M. Mitchell. The evolution of emergent computation. Pro-
ceedings of the National Academy of Science U.S.A., 92:10742–10746, 1995. Avail-
able at http://www.santafe.edu/projects/evca/evabstracts.html#evec.

[2] J. P. Crutchfield, M. Mitchell, and R. Das. The evolutionary de-
sign of collective computation in cellular automata. Technical Report
98-09-080, Santa Fe Institute, Santa Fe, NM, 1998. Available at
http://www.santafe.edu/projects/evca/evabstracts.html#EvDens.

[3] R. Das, J. P. Crutchfield, M. Mitchell, and J. E. Hanson. Evolv-
ing globally synchronized cellular automata. In L. J. Eshelman, editor,
Proceedings of the Sixth International Conference on Genetic Algorithms,

10



pages 336–343, San Francisco, CA, 1995. Morgan Kaufmann. Available at
http://www.santafe.edu/projects/evca/evabstracts.html#EGSCA.

[4] R. Das, M. Mitchell, and J. P. Crutchfield. A genetic algorithm discovers particle-
based computation in cellular automata. In Y. Davidor, H.-P. Schwefel, and
R. Männer, editors, Parallel Problem Solving from Nature—PPSN III, volume 866,
pages 344–353, Berlin, 1994. Springer-Verlag (Lecture Notes in Computer Science).
Available at http://www.santafe.edu/projects/evca/evabstracts.html#particle.

[5] W. D. Hillis. Co-evolving parasites improve simulated evolution as an optimization
procedure. Physica D, 42:228–234, 1990.

[6] H. Juillé. Personal communication, 1998.

[7] H. Juillé and J. B. Pollack. Dynamics of co-evolutionary learning. In P. Maes,
M. J. Mataric, J.-A. Meyer, J. Pollack, and S. W. Wilson, editors, From Animals
to Animats 4: Proceedings of the Fourth International Conference on Simulation
of Adaptive Behavior, Cambridge, MA, 1996. MIT Press.

[8] H. Juillé and J. B. Pollack. Semantic niching and coevolution in optimization
problems. In P. Husbands and I. Harvey, editors, Fourth European Conference on
Artificial Life, Cambridge, MA, 1997. MIT Press.

[9] H. Juillé and J. B. Pollack. Coevolutionary learning: A case study. In ICML ’98—
Proceedings for the International Conference on Machine Learning, San Francisco,
CA, 1998. Morgan Kaufmann.

[10] H. Juillé and J. B. Pollack. Coevolving the ‘ideal’ trainer: Application to the
discovery of cellular automata rules. In J. R. Koza, W. Banzhaf, K. Chellapilla,
M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. L. Riolo,
editors, Genetic Programming 1998: Proceedings of the Third Annual Conference,
San Francisco, CA, 1998. Morgan Kaufmann.

[11] M. Mitchell, J. P. Crutchfield, and R. Das. Evolving cellular automata to
perform computations: A review of recent work. In Proceedings of the First
International Conference on Evolutionary Computation and its Applications
(EvCA ’96), Moscow, Russia, 1996. Russian Academy of Sciences. Available at
http://www.santafe.edu/projects/evca/evabstracts.html#evca-review.

[12] M. Mitchell, J. P. Crutchfield, and P. T. Hraber. Evolving cellular automata to per-
form computations: Mechanisms and impediments. Physica D, 75:361–391, 1994.
Available at http://www.santafe.edu/projects/evca/evabstracts.html#compCA.

[13] F. Jimenez Morales, J. P. Crutchfield, and M. Mitchell. Evolving two-dimensional
cellular automata to perform density classification: A report on work in progress.
Parallel Computing, 2000. In Press.

[14] N. H. Packard. Adaptation toward the edge of chaos. In J. A. S. Kelso, A. J.
Mandell, and M. F. Shlesinger, editors, Dynamic Patterns in Complex Systems,
pages 293–301, Singapore, 1988. World Scientific.

[15] J. Paredis. Coevolving cellular automata: Be aware of the red queen! In
T. Bäck, editor, Proceedings of the Seventh International Conference on Genetic
Algorithms, pages 393–400, San Francisco, CA, 1997. Morgan Kaufmann.

11



[16] C. D. Rosin and R. K. Belew. Methods for competitive coevolution: Finding
opponents worth beating. In L. J. Eshelman, editor, Proceedings of the Sixth
International Conference on Genetic Algorithms, pages 373–380, San Francisco,
CA, 1995. Morgan Kaufmann.

[17] C. D. Rosin and R. K. Belew. New methods for competitive evolution. Evolution-
ary Computation, 5(1), 1997.

[18] E. van Nimwegen and J. P. Crutchfield. Optimizing epochal evolutionary search:
Population-size dependent theory. Machine Learning, In press, 1999. Available at
http://www.santafe.edu/projects/evca/evabstracts.html#oeespsdt.

[19] E. van Nimwegen, J. P. Crutchfield, and M. Mitchell. Finite populations induce
metastability in evolutionary search. Phys. Lett. A, 229:3:144–150, 1997. Available
at http://www.santafe.edu/projects/evca/evabstracts.html#fpimies.

[20] E. van Nimwegen, J. P. Crutchfield, and M. Mitchell. Statistical dynamics of the
Royal Road genetic algorithm. Theoret. Comp. Sci., 229:41–102, 1999. Available
at http://www.santafe.edu/projects/evca/evabstracts.html#sdrrga.

12



Search Technique CA Strategy Search Efficiency Time to s Diversity

s Es ts σts 〈ḋ〉 σ〈d〉

block-expanding 100% 14 6
GA particle 29% 397 380 -4.7 2.30

particle+ 6% 488 442

block-expanding 100% 104 133
GA+C particle 4% 90 96 0.24 2.39

particle+ 0% N/A N/A

block-expanding 100% 33 63
GA+RS particle 43% 316 287 1.3 2.50

particle+ 10% 479 127

block-expanding 100% 84 157
GA+RS+C particle 47% 289 266 7.7 1.90

particle+ 27% 438 235

Table 1: Statistics for the evolutionary emergence of CAs with different strategies:
block-expanding (here defined as 0.65 < P < 0.7), particle (P ≥ 0.7), and particle+
(P ≥ 0.8). The four main rows give results for four experiments of 50 runs each:
“GA” refers to the GA alone, “GA+C” refers to the GA with coevolution only,
“GA+RS” refers to the GA with resource sharing only, and “GA+RS+C” refers
to the GA with resource sharing and coevolution. Search efficiency Es is given for
each CA strategy s over the 50 runs of each experiment. ts is the mean number of
generations to first occurrence of strategy s across the 50 runs. σts is the standard
deviation in ts measured across the runs. 〈ḋ〉 is the rate of change in population
diversity 〈d〉 (quoted in bits per 1000 generations), and σ〈d〉 is the standard deviation
of the fluctuation in 〈d〉 about the best-fit line estimated in the least-squares fits of
Figs. 1(a)–(d).

13



4

6

8

10

12

14

16

18

20

22

24

0 100 200 300 400 500 600 700 800 900 1000

4

6

8

10

12

14

16

18

20

22

24

0 100 200 300 400 500 600 700 800 900 1000

4

6

8

10

12

14

16

18

20

22

24

0 100 200 300 400 500 600 700 800 900 1000

4

6

8

10

12

14

16

18

20

22

24

0 100 200 300 400 500 600 700 800 900 1000

(d)(c)

(b)(a)

GenerationGeneration

<d>

<d>

Figure 1: Average pairwise Hamming distance 〈d〉 over time for single GA runs with
(a) neither resource sharing nor coevolution, (b) coevolution alone, (c) resource
sharing alone, (d) resource sharing and coevolution. 〈d〉 is large (≈ 64) during the
initial generations, and so these data points do not appear on the scales plotted. The
straight lines show the trends in population diversity. They are least-squares fits
over stationary fitness epochs in the population dynamics. The estimated slopes 〈ḋ〉
of the lines and the standard deviations σ〈d〉 of fluctuations about them are quoted
in Table 1. The runs shown here are typical of those that evolved particle strategies
under each alternative GA.

14


