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1 Introduction

In our work we are studying how genetic algorithms (GAs)
can evolve cellular automata (CAs) to perform compu-
tations that require global coordination. The “evolving
cellular automata” framework is an idealized means for
studying how evolution (natural or computational) can
create systems that perform emergent computation, in
which the actions of simple components with local infor-
mation and communication give rise to coordinated global
information processing [3].

In previous work [4, 5], we analyzed the process by
which a genetic algorithm designed CAs to perform par-
ticular tasks. In this paper we focus on how these CAs
implement the emergent computational strategies for per-
forming a task. In particular, we develop a class of
embedded-particle models to describe the computational
strategies implemented by particular CAs. To do this, we
use the computational mechanics framework of Crutch-
field and Hanson [2, 6], in which a CA’s information pro-
cessing is described in terms of regular domains, embed-
ded particles, and their interactions. We then evaluate
this class of models by comparing their computational
performance to that of the CAs they model. The results
demonstrate, via a generally close quantitative agreement
between the CAs and the embedded particle models, that
this new model class captures the significant functional
features in the CAs’ space-time behavior that underlie the
CAs’ computational capability and evolutionary fitness.

2 CAs and Computation

This paper concerns one-dimensional binary-state CAs
with periodic (circular) boundary conditions. Such a CA
consists of a one-dimensional lattice of N two-state ma-
chines (“cells”), each of which changes its state as a func-
tion only of the current states in a local neighborhood.

The lattice starts out with an initial configuration (IC)
of cell states (0s and 1s) and this configuration changes
at discrete time steps during which all cells are updated
simultaneously according to the CA’s rule φ. A CA’s
rule φ can be expressed as a lookup table that lists, for
each local neighborhood, the state which is taken on by

the neighborhood’s central cell at the next time step. In
a one-dimensional CA, a neighborhood consists of a cell
and its radius r neighbors on either side.

One-dimensional binary-state cellular automata are
perhaps the simplest examples of decentralized, spatially
extended systems in which emergent computation can be
observed. In our studies, a CA performing a computation
means that the input to the computation is encoded as the
IC, the output is decoded from the configuration reached
at some later time step, and the intermediate steps that
transform the input to the output are taken as the steps
in the computation.

To date, we have used a genetic algorithm (GA) to
evolve one-dimensional, binary-state r = 3 CAs to per-
form a density-classification task [3, 4] and a synchro-
nization task [5].

For the density classification task, the goal is to find a
CA that decides whether or not the IC contains a major-
ity of 1s (i.e., has high density). More precisely, we call
this task the “ρc = 1/2” task. Here ρ denotes the density
of 1s in a binary-state CA configuration and ρc denotes
a “critical” or threshold density for classification. Let ρ0

denote the density of 1s in the IC. If ρ0 > ρc, then within
M time steps the CA should reach the fixed-point config-
uration of all 1s (i.e., all cells in state 1 for all subsequent
iterations); otherwise, within M time steps it should reach
the fixed-point configuration of all 0s. M is a parameter
of the task that depends on the lattice size N .

For the synchronization task, the goal is to find a CA
that, from any IC, settles down within M time steps to
a periodic oscillation between an all-0s configuration and
an all-1s configuration. Again, M is a parameter of the
task that depends on N .

Since the CA can only use local interactions, and thus
has to propagate information across the lattice to achieve
global coordination, both tasks require a nontrivial com-
putation by the CA. For example, in the synchroniza-
tion task, the entire lattice has to be synchronized, which
means the CA must, using only local interactions, resolve
separate regions of the lattice that are locally synchro-
nized but are out of phase with respect to one another.
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3 Analysis of Evolved CAs

Due to the local nature of a CA’s operations, it is typi-
cally very hard, if not impossible, to understand the CA’s
global behavior—in our case, the strategy for performing
a computational task—by directly examining either the
bits in the lookup table or the temporal sequence of raw
0-1 spatial configurations of the lattice.

Crutchfield and Hanson developed a method for detect-
ing and analyzing the “intrinsic” computational compo-
nents in the CA’s space-time behavior in terms of regular
domains, particles, and particle interactions [2, 6]. This
method is part of their computational mechanics frame-
work for understanding information processing embedded
in physical systems [1].

Briefly, a regular domain is a homogeneous region of
space-time in which the same “pattern” appears. More
formally, the spatial patterns in a regular domain can be
described by a regular language that is mapped onto itself
by the CA rule φ. An embedded particle is a spatially
localized, temporally recurrent structure found at domain

boundaries, i.e., where the domain pattern breaks down.
When two or more particles “collide” they can produce
an interaction result—e.g., another set of particles or a
mutual annihilation.

Using computational mechanics, we can analyze the
space-time behavior of evolved CAs in terms of these do-
mains, particles, and interactions. Fig. 1 shows a space-
time diagram of φsync1—a CA that was evolved for the
synchronization task—starting with a randomly gener-
ated IC. (Cells in state 1 are colored black, cells in state
0 are colored white. Time increases down the page.) We
define the performance PN,I(φ) of a CA φ on a given task
as the fraction of I randomly generated ICs on which φ
reaches the desired behavior within M time steps on a
lattice of length N . For the synchronization task, we let
M = 2.15N and we measured PN,104(φsync1) to be 1.0 for
N = 149, 599, 999.

In φsync1’s space-time behavior, there are two regular
domains: the “synchronized” domain (the parts of the
lattice which display the desired oscillation) and a sec-
ond domain which looks like a zigzag pattern. (These
regions are readily apparent in Fig. 1.) Having identified
these domains, we can build a filter that removes them,
revealing the domain boundaries, which in this case are
predominantly particles. The filtered space-time diagram
is shown in Fig. 2, where the regular domains are mapped
to 0s (white), and the domain boundaries are mapped to
1s (black).

A catalog of φsync1’s observed particles and their prop-
erties (temporal periodicity and velocity), and all possible
particle interactions, is given in Table 1. The temporal

periodicity of a particle is the number of time steps after
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Figure 1: Space-time diagram of a GA-evolved CA φsync1

with measured performance 1.0 on the synchronization task.
After [5].
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Figure 2: Filtered version of space-time diagram in Fig. 1.
Domains are mapped to white, particles to black. The different
particle types are labeled with Greek letters. After [5].

which its spatial configuration repeats. The velocity of
a particle is the number of sites it is shifted in space af-
ter exactly one temporal period, divided by the temporal
periodicity. For example, the particle µ in Fig. 2 has a
temporal periodicity of 2, and after 2 time steps it has
shifted 6 sites in space, so its velocity is 3.

As was mentioned earlier, we consider the embedded
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φsync1 Particles
Label Temporal Velocity Prob. at tc

Periodicity
α - 0 0.00
β 2 1 0.39
γ 2 -1 0.40
δ 4 -3 0.07
µ 2 3 0.07
ν 2 -1 0.07

φsync1 Interactions
α → γ + β, γ + δ → ∅, µ + β → ∅

β + γ → δ + µ (0.84), β + γ → ν (0.16)
µ + ν → γ, µ + δ → γ + β, ν + δ → β

Table 1: A catalog of φsync1’s particles and their properties,
and interactions, some of which can be observed in the filtered
space-time diagram of Fig. 2. An interaction result denoted by
∅ means that the two particles annihilate. The probabilities
associated with the occurrence of particles at tc and with their
interactions (in parentheses) are given. If no explicit proba-
bility is given for an interaction, the interaction result occurs
with probability 1.0. These particle and interaction probabil-
ities are explained in section 4. For φsync1, tc was measured
to be 26.

particles to be the main behavioral components support-
ing the CA’s emergent computation. Particles transfer
information about a property of a local region across the
lattice to distant sites. Particle collisions are the loci of
information processing and result in either the creation of
new information in the form of other particles or in anni-
hilation. Our claim is that this particle-level description
captures the mechanisms by which the CA is capable of
transferring and processing local information to accom-
plish global coordination.

4 A Formal Model of Computa-

tional Strategies

Interestingly, the high-performance CAs found in both the
density classification and synchronization task GA runs
all exhibited domains, particles, and particle interactions.
Moreover, although these components differed in details
in different CAs, they were all used to implement varia-
tions of a general strategy consisting of competition be-
tween regions of similar density or local synchronization
phase. The largest regions eventually dominate the lattice
and so determine the final configurations. In this sense,
there is a common computational strategy for performing
the tasks.

To formalize the notion of computational strategy in
a CA, we model the CA’s behavior using only the no-
tions of domains, particles, and interactions. The result-

ing embedded-particle model employs a number of sim-
plifying assumptions.

Define the condensation time tc as the first time step
at which the lattice can be completely described in terms
of domains and particles. The occurrence of the conden-
sation time is illustrated in Fig. 3 for a GA-evolved CA,
φsync2, that has lower performance on the synchronization
task than φsync1. The condensation time (tc = 28 in this
particular case) is marked by the solid line. It is the time
step at which the “random” structure at the center of the
lattice has died out and there remain only domains and
particles. As can be seen in Fig. 3, at later time steps af-
ter the condensation time, “random” structures (neither
domains nor particles) can occur again as a consequence
of a particle interaction. We will ignore this in the model
(see the fourth assumption below), and define tc as the
first time step at which the lattice contains only domains
and particles.

The particular value of tc for a given CA depends on the
IC, but we can estimate the average condensation time tc

for a given rule by sampling tc over a large set of random
ICs. The measured value of tc for various rules will be
used later when we test the models. For φsync2, tc was
measured to be 49.
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Figure 3: Space-time diagram of a lower-performance evolved
CA, φsync2, for the synchronization task, starting with a ran-
domly generated IC. The condensation time tc = 28 is marked
by the solid line.

As a first simplifying assumption of the model, we re-
place the spatio-temporal dynamics that can be observed
up to the condensation time by a particle probability dis-
tribution at tc. In this, we assume that the net effect
of the dynamics up until tc is to generate some distri-
bution of particles of various types, randomly located in
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the lattice at that time, and that beyond generating this
distribution, the initial “pre-condensation” dynamics are
not relevant to estimating the average performance. We
estimate this particle probability distribution empirically
over a set of randomly generated ICs to obtain the occur-
rence frequency of each particle type at tc. For example,
the empirical distribution for the particles of φsync1 is
given in Table 1, measured over 104 ICs.

Actually, this particle distribution depends on the to-
tal number of particles that occur at tc. Since the lattice
has periodic boundary conditions, the domain (or parti-
cle) in which site N − 1 participates must agree with the
domain (or particle) that site 0 contributes to. Given a
total number of particles in the lattice, certain particles
have to occur more often than other particles in order to
obey these constraints. For example, some particle types
must always occur in pairs. The embedded-particle model
therefore uses a probability distribution for the total num-
ber of particles occurring at tc, together with a particle
probability distribution conditioned on this total number
of particles. It uses both distributions to generate a par-
ticle configuration at tc.

Furthermore, since the correct final configuration of the
CA (all black or all white) for the density classification
task depends on the density of the initial configuration,
we split up the particle probability distribution for CAs
for this task in a distribution generated by low density ICs
(ρ0 < 0.5) and a distribution generated by high density
ICs (ρ0 > 0.5).

As a second simplifying assumption, in the model all
particles have zero width, even though, as can be seen in
Fig. 3, particles actually have varying widths.

As a third simplifying assumption, we allow interactions
only between pairs of particles. No interactions involving
more than two particles are included in the model.

A fourth simplifying assumption we make is that par-
ticle interactions are instantaneous. As can be seen in
Fig. 3, when two particles collide and interact with each
other, typically the interaction takes time to occur—for
some number of time steps the lattice cannot be com-
pletely described in terms of domains and particles. In
the embedded-particle model when two particles collide
they are immediately replaced by the interaction result.

In a CA’s space-time behavior, the interaction result
is determined by the phases that both particles are in
at the time of their collision. As a fifth simplifying as-
sumption, we approximate an interaction’s relative phase
dependence by a stochastic choice of phase. To determine
an interaction result, the model uses a table (similar to
Table 1), containing interaction-result probabilities. For
each possible pair of particle types, this table lists all the
interaction results that these two particles can produce,

together with the probability that each particular result
occurs. These probabilities can be estimated empirically
by simply counting, over a set of random ICs, how often
each interaction result occurs in the space-time diagram.
In the model, when two particles collide, the table is con-
sulted and an interaction result is determined at random
according to these probabilities. For example, in Table 1,
the β + γ interaction has two possible outcomes. Each is
given with its estimated probability of occurrence.

In summary, the embedded-particle model of a CA’s
computational strategy consists of:

1. A catalog of possible particle types, their probabili-
ties, and their associated domains.

2. A probability distribution of pure domain-particle
configurations at tc.

3. A set of pairwise particle interactions and results,
along with the interaction-result probabilities for
each.

These components are given in Table 1 for φsync1.

5 Testing the Embedded-Particle

Model

One way to test a model is to compare its performance
to that of the actual CA. If the model can predict the
CA’s performance PN,I(φ), this will support our claim
that the embedded-particle model is a good description
of the CA’s computational strategy. This is a quantita-
tive complement to the computational mechanics analysis
which establishes the structural role of domains, particles,
and interactions.

To run the model, we start by generating an initial par-
ticle configuration at tc, according to the particle proba-
bility distribution in the model. This simply puts a num-
ber of particles of various types in the lattice at random
locations, uniformly distributed over the lattice. Thus at
tc we know for each particle its type, and thus its veloc-
ity, and its spatial location. (The value tc in the model is
assigned the measured value of tc for the CA.)

It is then straightforward to calculate geometrically at
what time step t the first interaction between two particles
will occur (i.e., the time step at which two particles will
collide). The table with interaction-result probabilities is
consulted, and the result of this particular interaction is
determined. The two interacting particles are then re-
placed by the interaction result, yielding a new particle
configuration at time step t. This overall process is iter-
ated either until there are no particles left in the lattice
(they all annihilated) or until a given maximum number
(M − tc) of time steps is reached, whichever occurs first.
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We refer to this iteration process as the “ballistic particle
dynamics” of the model. (See Fig. 4.)

MODEL
- Domains

- Interactions

- Particles

Space

T
im

e

tc

M

Figure 4: Schematic illustration of running the embedded-
particle model. An initial particle configuration at tc is gener-
ated first. Then the ballistic particle dynamics is iterated for
a maximum number (M − tc) of time steps.

Since the embedded-particle model contains informa-
tion about which domains form which particles, we can
keep track of the domains between the particles at each
time step while the model is run. Thus, if all particles
eventually annihilate each other, we know which domain
is left occupying the entire lattice.

6 Results

We can now estimate the performance of a particular CA
by running its model on a large number of ICs and cal-
culating the fraction over which it displays the correct
behavior (i.e., settles down to the correct domain within
the maximum number of allowed time steps).

Fig. 5 shows the results of comparing the average per-
formances of four different evolved CAs with the esti-
mated average performances produced by running the
embedded-particle models of their respective strategies.
In all cases the average performance is calculated over 10
sets of 104 random ICs (in case of the actual CAs) or ini-
tial particle configurations (in case of the models), with
N = 149 and M = 2.15N . Table 2 gives the average
performances (with standard deviations given in paren-
theses).

The first two CAs, φsync1 and φsync2, are GA-evolved
rules for the synchronization task. φsync1 is the best rule
found for this task; its strategy is shown in Fig. 1. φsync2

is a rule that appeared early on in the GA run, and so it
still has relatively low performance; its strategy is shown
in Fig. 3.

The next two rules, φdens1 and φdens2, are GA-evolved
rules for the density classification task. Both rules ap-
peared later on in the GA run, and φdens2 was the best
CA found for this task.
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Figure 5: Comparison of the average performances (labeled
“CA”) and the model-estimated average performances (labeled
“Model”) for four different evolved CA.

As both Fig. 5 and Table 2 show, there is very close
agreement between the average CA and model perfor-
mances for both the synchronization rule φsync2 and the
density rule φdens1, with only 1% and 3% difference re-
spectively.

For φsync1 the discrepancy between the average CA and
model performances is about 5%. This discrepancy is
caused by the temporal periodicity of four of the “zigzag”
domain (see Fig. 1). Because of the periodic boundary
conditions, on a lattice size of 149 the real CA can never
settle down to a configuration containing only the zigzag
domain. However, this can happen in the embedded-
particle model, since it ignores the spatial periodicity of
domains. Such configurations count as incorrect behav-
ior and the model yields a slightly lower performance for
φsync1.

There is a discrepancy of about 23% for φdens2. This
can be explained by the fact that, for φdens2, the distances

between the particles at tc are important characteristics.
These distances—ignored by the model—reflect the sizes
of the domains that are in between the particles and are
key in φdens2’s strategy. Since the model distributes the
particles randomly over the lattice, this leads to a lower
model performance for φdens2. This is less of a problem
for φdens1, since its strategy is much less dependent on
these inter-particle distances.

The generally good agreement between the performance
of a model and that of the corresponding CA demon-
strates the promise of the embedded-particle model.
The discrepancies noted above, which can be explained,
demonstrate where our simplifying assumptions fail. We
expect to be able to improve on the model’s agreement
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P149,104(φ)
Rule CA Model Difference tc
φsync1 1.0000 0.9519 5% 26
FEB1C6EA B8E0C4DA (0.0000) (0.0032)

6484A5AA F410C8A0

φsync2 0.1799 0.1823 1% 49
CEB2EF28 C68D2A04 (0.0034) (0.0039)

E341FAE2 E7187AE8

φdens1 0.6923 0.6675 3% 38
05004581 00000FBF6 (0.0039) (0.0035)

B9F75937 FBDF77F

φdens2 0.7701 0.5904 23% 16
05040587 05000F770 (0.0037) (0.0049)

37755837 BFFB77F

Table 2: Comparison of the CA average performances and
the embedded-particle model average performances for four
different evolved CA rules. These averages are calculated over
10 sets of 104 ICs each. The standard deviations are given in
parentheses. The tc used for each model is given, as is the
hexadecimal code for each CA’s φ, with the most significant
bit being associated with the neighborhood 0000000.

with these and other CAs by incorporating a few addi-
tional features, such as the domain-size distribution. Pre-
liminary results support the validity of these expectations.

7 Conclusions

Emergent computation in decentralized spatially ex-
tended systems, in particular in CAs, is still not well
understood. In previous work we have used an evolution-
ary approach to search for CAs that are capable of per-
forming computations that require global coordination,
and have qualitatively analyzed the emergent “compu-
tational strategies” in terms of domains, particles, and
particle interactions. The embedded-particle models de-
scribed in this paper provide a means to more rigorously
formalize the notion of “emergent computational strat-
egy” in spatially extended systems and to make predic-
tions about their behavior and their evolutionary fitness.
This is an essential, quantitative part of our overall re-
search program—to understand how natural spatially ex-
tended systems can perform globally coordinated compu-
tations and how evolutionary processes can give rise to
systems with sophisticated emergent computational abil-
ities.
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