
Mechanisms of Emergent Computation in

Cellular Automata

Wim Hordijk, James P. Crutchfield, Melanie Mitchell

Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, 87501 NM, USA
email: {wim,chaos,mm}@santafe.edu

In A. E. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel (eds.), Parallel

Problem Solving from Nature-V, 613-622, Springer-Verlag, 1998.

Abstract. We introduce a class of embedded-particle models for de-
scribing the emergent computational strategies observed in cellular au-
tomata (CAs) that were evolved for performing certain computational
tasks. The models are evaluated by comparing their estimated perfor-
mances with the actual performances of the CAs they model. The results
show, via a close quantitative agreement, that the embedded-particle
framework captures the main information processing mechanisms of the
emergent computation that arise in these evolved CAs.

1 Introduction

In previous work we have used genetic algorithms (GAs) to evolve cellular au-
tomata (CAs) to perform computational tasks that require global coordination.
The evolving cellular automata framework has provided a direct approach to
studying how evolution (natural or artificial) can create dynamical systems that
perform emergent computation; that is, how it can find dynamical systems in
which the interaction of simple components with local information storage and
communication gives rise to coordinated global information processing [3].

In [5, 6], we analyzed the evolutionary search process by which a genetic al-
gorithm designed CAs to perform various tasks. In this paper we focus on how
the behavior of evolved CAs implements the emergent computational strategies
for performing these tasks. We develop a class of “embedded-particle” models
to describe the computational strategies. To do this, we use the computational
mechanics framework of Crutchfield and Hanson [2, 7], in which a CA’s infor-
mation processing is described in terms of regular domains, embedded particles,
and particle interactions. We then evaluate this class of models by comparing
their computational performance to that of the CAs they model. The results
demonstrate, via a close quantitative agreement between the CAs and their re-
spective models, that the embedded particle framework captures the functional
features that emerge in the CAs’ space-time behavior and that underlie the CAs’
computational capability and evolutionary fitness.

The paper is organized as follows. Section 2 gives a brief overview of CAs
and the notion of computation in CAs that we use here. Next, section 3 explains



the computational mechanics framework for CAs in some detail and defines the
notions of regular domains, embedded particles, and particle interactions. Sec-
tion 4 then introduces the embedded-particle models, while section 5 describes
how these models can be evaluated quantitatively. The results of these evalua-
tions are provided in section 6.

2 CAs and Computation

This paper concerns one-dimensional binary-state CAs with spatially periodic
boundary conditions. Such a CA consists of a one-dimensional lattice of N two-
state machines (“cells”), each of which changes its state as a function, denoted
φ, of the current states in a local neighborhood. In a one-dimensional CA, a
neighborhood consists of a cell and its radius r neighbors on either side.

The lattice starts out with an initial configuration (IC) of cell states (0s and
1s) and this configuration changes at discrete time steps during which all cells
are updated simultaneously according to the CA’s rule φ. The rule φ can be
expressed as a look-up table that lists, for each local neighborhood, the state
which is taken by the neighborhood’s central cell at the next time step.

One-dimensional binary-state cellular automata are perhaps the simplest ex-
amples of decentralized, spatially extended systems in which emergent computa-
tion can be observed. In our studies, a CA performing a computation means that
the input to the computation is encoded as the IC, the output is decoded from
the configuration reached at some later time step, and the intermediate steps
that transform the input to the output are taken as the steps in the computation.

To date we have used a genetic algorithm (GA) to evolve one-dimensional,
binary-state r = 3 CAs to perform a density-classification task [3, 5] and a
synchronization task [6].

For the density classification task, the goal is to find a CA that decides
whether or not the IC contains a majority of 1s (i.e., has high density). Let ρ0

denote the density of 1s in the IC. If ρ0 > 1/2, then within M time steps the
CA should reach the fixed-point configuration of all 1s (i.e., all cells in state 1
for all subsequent iterations); otherwise, within M time steps it should reach the
fixed-point configuration of all 0s. M is a parameter of the task that depends
on the lattice size N . As an example, figure 1(a) shows a space-time diagram
of a GA-evolved CA φdens5 for the density classification task, starting with a
randomly generated IC (in this case with ρ0 < 1/2). Cells in state 1 are colored
black, cells in state 0 are colored white. Time increases down the page.

For the synchronization task, the goal is to find a CA that, from any IC,
settles down within M time steps to a periodic oscillation between an all-0s
configuration and an all-1s configuration. Again, M is a parameter of the task
that depends on N . Figure 1(c) shows a space-time diagram of a GA-evolved
CA, denoted φsync5, for the synchronization task, again starting with a randomly
generated IC.

Since a CA uses only local interactions, and thus has to propagate information
across the lattice to achieve global coordination, both tasks require nontrivial



computation. For example, in the synchronization task, the entire lattice has to
be synchronized, which means the CA must resolve, using only local interactions,
separate regions of the lattice that are locally synchronized but are out of phase
with respect to one another.

We define the performance PN,I(φ) of a CA φ on a given task as the fraction
of I randomly generated ICs on which φ reaches the desired behavior within M
time steps on a lattice of length N . Here, we use N = 149, M = 2N and I = 104.

3 Analysis of Evolved CAs

Due to the local nature of a CA’s operations, it is typically very hard, if not
impossible, to understand the CA’s global behavior—in our case, the strategy
for performing a computational task—by directly examining either the bits in
the look-up table or the temporal sequence of 0-1 spatial configurations of the
lattice.

Crutchfield and Hanson developed a method for detecting and analyzing the
“intrinsic” computational components in the CA’s space-time behavior in terms
of regular domains, embedded particles, and particle interactions [2, 7]. This
method is part of their computational mechanics framework for understanding
information processing embedded in physical systems [1].

Briefly, a regular domain is a homogeneous region of space-time in which the
same “pattern” appears. More formally, the spatial patterns in a regular domain
can be described by a regular language that is mapped onto itself by the CA rule
φ. An embedded particle is a spatially localized, temporally recurrent structure
found at domain boundaries, i.e., where the domain pattern breaks down. When
two or more particles “collide” they can produce an interaction result—e.g.,
another set of particles or a mutual annihilation.

In the space-time diagram of φdens5 in figure 1(a), some of the domains, par-
ticles, and interactions are labeled. Three regular domains are readily apparent
in φdens5’s space-time behavior: the all-white domain, the all-black domain, and
a checkerboard domain (alternating white and black cells). The boundaries be-
tween these domains form the embedded particles, which can collide and interact
with each other, creating other particles or simply annihilating.

Using computational mechanics, we can analyze the space-time behavior of
evolved CAs in terms of these domains, particles, and interactions. In particular,
the particles and their interactions can be made more explicit by suppressing the
domains. Figure 1 shows examples for both φdens5 and φsync5. For example, in
φsync5’s space-time behavior (figure 1(c), there are two regular domains: the
“synchronized” domain (the parts of the lattice which display the desired oscil-
lation) and a second domain which has a zigzag pattern. Having identified these
domains, we can build a filter based on the regular languages that represent the
domains. Using this filter, the domains can be detected and then suppressed,
revealing the domain boundaries. The filtered space-time diagram for φsync5 is
shown in figure 1(d), where the regular domains are mapped to 0s (white) and



0

T
im

e

74

74Site0

Domain

Domain

Domain

Particle

Particle

Interaction

tc

74Site0

(c)

0 74

β γ

δ

α

γ

β

δ

γ

µ
ν

Site0 74

0

74

(c)
Site

T
im

e

(a) (b)

(d)

α β

δ

γ
µ

Fig. 1. (a) Space-time diagram of a GA-evolved CA φdens5 that classifies high or
low density of 1s in the initial configuration. Different regular domains, embedded
particles, and particle interactions can be observed. (b) Filtered version of the space-
time diagram in (a). Domains are mapped to white, domain boundaries to black. The
different particles are labeled with Greek letters. (c) Space-time diagram of GA-evolved
CA φsync5 that, starting from a random IC, comes to global synchronization. (d)

Filtered version of (c). Note that the same Greek letters in figures (b) and (d) do not
denote the same particles.



the domain boundaries are mapped to 1s (black). A similar procedure for φdens5
leads to the filtered space-time diagram in figure 1(b).

Briefly, the domain filter can be constructed in the following way. First, the
(minimal) finite automata representing the regular languages of the domains
need to be constructed. A series of transitions between states within each one
of these finite automata represents an allowed sequence of site values in the
domain configuration. That is, following these transitions is equivalent to re-
maining within a specific regular domain. Next, a finite-state transducer is built
by connecting the separate finite automata of the regular domains by “wall”
transitions. The latter represent transitions from one domain to another and so
correspond to domain boundaries. Output symbols can be added to the wall
transitions to give distinct labelings to the boundaries, if desired. As this trans-
ducer scans a CA configuration from left to right (say), it reads the consecutive
cell states (0 or 1) and outputs a 0 or a 1 depending on whether it made an
intradomain or a wall transition, respectively. In this way, a new, filtered con-
figuration of “domain” and “wall” values is generated based on the presence of
regular domains in the original configuration. Doing this for the configuration at
each time step results in a filtered space-time diagram as shown in figures 1(b)
and (d). (See [2] for details of transducer construction and use.)

The regular domains of φdens5 and φsync5 are readily apparent in their space-
time diagrams, being easily identified by eye. The identification and construction
of domain minimal automata are not always so straightforward. Computational
mechanics provides an algorithm, called ε-machine reconstruction, for the recog-
nition and identification of regular domains, including construction of their cor-
responding finite automaton representations, in spatio-temporal data [2, 4, 7].

Using computational mechanics, we can extract the relevant information
about the domains, particles, and their interactions from the space-time dia-
grams of a given CA. A catalog of φsync5’s observed domains, particles and
their temporal periodicities and velocities, and all possible particle interactions,
is given in table 3. The temporal periodicity p of a particle is the number of time
steps after which its spatial configuration repeats. The velocity v of a particle
is the displacement d (the number of sites the particle has shifted in space af-
ter exactly one temporal period), divided by the temporal periodicity: v = d/p.
For example, the particle µ in figure 1(d) has a temporal periodicity of p = 2
and after two time steps it has shifted d = 6 sites in space, so its velocity is
v = 6/2 = 3.

Particles transfer information about properties of local regions across the
lattice to distant sites. Particle collisions are the loci of information processing
and result in either the creation of new information in the form of other parti-
cles or in annihilation. The computational mechanics analysis provides us with
this particle-level description, which we claim captures the main mechanisms
by which the CA transfers and processes local information to accomplish the
emergent computation required by the task.



Table 1. A catalog of φsync5’s domains, particles and their properties, and interac-

tions, some of which can be observed in the filtered space-time diagram of figure 1(c).
An interaction result denoted by ∅ means that the two particles annihilate. The prob-
abilities associated with the interaction results are also provided. If no explicit proba-
bility is given for an interaction result, it occurs with probability 1. These interaction
result probabilities are explained in section 4.

φsync5 Particle Catalog

Domains
�

Label Regular language

Λs Λs

0 = 040∗, Λs

1 = 141∗

Λz Λz

0 = (0001)∗, Λz

1 = (1110)∗

Particles P

Label Wall p d v

α Λs

1Λ
s

0 - - -
β Λz

0Λ
s

0, Λ
z

1Λ
s

1 2 2 1
γ Λs

0Λ
z

1, Λ
s

1Λ
z

0 2 -2 -1
δ Λz

0Λ
s

1, Λ
z

1Λ
s

0 4 -12 -3
µ Λs

0Λ
z

0, Λ
s

1Λ
z

1 2 6 3
ν Λz

0Λ
z

1, Λ
z

1Λ
z

0 2 -2 -1

Interactions I

Type Interaction Interaction

decay α → γ + β

react β + γ
0.84

→ δ + µ β + γ
0.16

→ ν

µ + δ → γ + β ν + δ → β

µ + ν → γ

annihilate µ + β → ∅ γ + δ → ∅

4 A Formal Model of Computational Strategies

To formalize the notion of computational strategy in a CA, and the resulting
emergent computation, we model the CA’s behavior using only the notions of
domains, particles, and interactions, moving away from the underlying individual
cells in a configuration to a higher level description. The resulting embedded-
particle model employs a number of simplifying assumptions.

Before the assumptions are stated, we first define the condensation time tc as
the first time step at which the lattice can be completely described in terms of
domains and particles. To identify this condensation time in a CA’s space-time
diagram, we can extend the transducer that is used to filter out domains to also
recognize particles. In terms of the transitions in the transducer, particles are
specific sequences of wall transitions that lead from states in one domain to those
in another. Including these transition paths in the set of allowed transitions,
the transducer can recognize both regular domains and the particles. (A more
detailed example of how to extend the transducer to incorporate the particles
can be found in [8].) Using this extended transducer, the condensation time tc is



then defined as the first time step at which filtering the lattice does not generate
any disallowed transitions.

The occurrence of the condensation time is illustrated in figure 1(a) for
φdens5. The condensation time (tc = 4 in this particular case) is marked by
the solid line. It is the time step at which the nondomain/particle structures
at the first few time steps have died out and there remain only domains and
particles. The particular value of tc for a given CA depends on the IC, but we
can estimate the average condensation time tc for a given rule by sampling tc
over a large set of random ICs. The measured value of tc for various rules will
be used later when we evaluate the particle models. For φdens5 on a lattice size
of 149, tc ≈ 12.

As a first simplifying assumption of the model, we ignore the details of the
space-time dynamics up to tc and assume that the net effect of this behavior
is to generate some distribution of particles of various types, probabilistically
located in the configuration at time tc. In other words, we assume that beyond
generating this distribution at tc, the initial “pre-condensation” dynamics are
not relevant to predicting the performance of the CA.

To estimate this particle probability distribution at tc, we again employ the
extended transducer that is used for determining tc. Using a large set of random
ICs (in our case 104), the CA is run on each one up to the actual condensation
time, i.e., up to the first time step at which the extended transducer only goes
through domain and wall transitions while scanning the configuration. Next,
the number of times each of these transitions are taken is counted and this
is averaged over the set of 104 condensation-time configurations. From these
counts, a transition probability for each allowed transition can be calculated.
The extended transducer, together with the estimated transition probabilities,
provides an approximation of the actual particle probability distribution at tc.

As a second simplifying step, we assume that all particles have zero width,
even though, as can be seen in figure 1, particles actually have varying widths.

As a third simplification, we allow interactions only between pairs of particles.
No interactions involving more than two particles are included in the model.

A fourth simplifying assumption we make is that particle interactions are
instantaneous. As can be seen in figure 1, when two particles collide and interact
with each other, typically the interaction takes time to occur—for some number
of time steps the configuration cannot be completely decomposed into domains
and particles. In the embedded-particle model when two particles collide they
are immediately replaced by the interaction result.

The interaction result of a particle collision is determined by the phases that
both particles are in at the time of their collision. As a fifth simplifying assump-
tion, we approximate this relative phase dependence by a stochastic choice of
interaction result. To determine an interaction result, the model uses a particle
catalog (e.g., as shown in table 3 for φsync5) that contains interaction-result
probabilities. For each possible pair of particle types, this catalog lists all the
interaction results that these two particles can produce, together with the prob-
ability that each particular result occurs. These probabilities can be estimated



empirically by simply counting, over a set of 104 random ICs, how often each
interaction result occurs in the space-time diagram. In the model, when two par-
ticles collide, the catalog is consulted and an interaction result is determined at
random according to these probabilities. For example, in table 3, the β +γ inter-
action has two possible outcomes. Each is given with its estimated probability
of occurrence.

In summary, the embedded-particle model of a CA’s computational strategy
consists of:

1. A catalog of possible domains, particle types, and a set of pairwise particle
interactions and results, along with the interaction-result probabilities for
each.

2. An approximate particle probability distribution at tc, represented by the
domain-particle transducer with estimated transition probabilities.

The first of these two components is given in table 3 for φsync5.

5 Evaluating the Embedded-Particle Model

One way to evaluate an embedded-particle model is to compare its task per-
formance to that of the CA it models. A close agreement would support our
claim that the embedded-particle model is a good description of the CA’s com-
putational strategy. This is a quantitative complement to the computational
mechanics analysis which establishes the structural roles of domains, particles,
and interactions.

To run the model, we start by generating an initial particle configuration
at tc, according to the particle probability distribution in the model (i.e., we
ignore the “pre-condensation” phase). Since this probability distribution is rep-
resented by the transducer with estimated transition probabilities, we now use
this transducer as a domain-particle generator instead of a recognizer. Starting
in a randomly chosen state (according to an empirically determined probability
distribution), the transducer traverses N lattice sites, and at each site it chooses
a transition according to the estimated probabilities and then outputs either a
domain or a particle symbol, according to which transition was chosen.

This process creates an initial particle configuration by placing a number of
particles of various types in the configuration at random locations according to
the approximated particle probability distribution. The result is that we know
for each particle in the initial particle configuration (t = tc) its type and also its
velocity and spatial location. It is then straightforward to calculate geometrically
at what time step ti the first interaction between two particles will occur. The
particle catalog is then consulted and the result of this particular interaction is
determined. The two interacting particles are then replaced by the interaction
result, yielding a new particle configuration at time step ti.

This process of calculating the next interaction time and replacing the inter-
acting particles with their interaction result is iterated either until there are no
particles left in the lattice (i.e., they have all annihilated one another) or until



a given maximum number (M − tc) of time steps is reached, whichever occurs
first. We refer to this iteration process as the model’s ballistic particle dynamics.

Since the embedded-particle model contains information about which do-
mains are associated with which particles, we can keep track of the domains
between the particles at each time step while the model is run. Thus, if all parti-
cles eventually annihilate one another, we know which domain is left occupying
the entire lattice. This way, we can check whether running the model resulted
in the correct final behavior for the given task.

6 Results

We can now evaluate the performance of an embedded-particle model by running
it on a large number I of initial particle configurations at tc and calculating the
fraction over which it displays the correct behavior; i.e., that it settles down to
the correct domain within the maximum number of allowed time steps. This
performance estimate can then be compared to the actual performance of the
CA from which the model was built. The parameters used here are N = 149,
M = 2N , and I = 104.

Figure 2(a) shows the results of comparing the average performance of five
evolved CAs for density classification with the performance predicted by their
respective models. In all cases the average performance is calculated over 10 sets
of 104 random ICs (in case of the actual CAs) or initial particle configurations
(in case of the models). The five CAs appeared at different generations during
one particular run of the GA on the density classification task. Each successive
CA implemented an improved computational strategy for performing the task,
reflected in the successive increases in performance. The evolutionary process
that gave rise to these CAs is discussed in more detail in [5].

Figure 2(b) shows similar results for five CAs that appeared during a GA run
on the synchronization task (note that the first one, φsync1, had performance
0). These CAs were described in [6]. Table 2 shows the performance data for
all ten CAs, including the standard deviations of the measured average perfor-
mances. Recall that typical space-time behavior of φdens5 and φsync5 was shown
in figures 1(a) and (c), respectively.

Generally, there is very good agreement between the CA and embedded-
particle model performances. Furthermore, most of the discrepancies can be
traced back directly to the simplifying assumptions underlying the particle mod-
els. For example, the discrepancies for φsync4 and φsync5 are partly caused by
the “zigzag” domain having a spatial periodicity of four (see figure 1(c)). Due to
the periodic boundary conditions on a lattice of size 149, a CA can never settle
down to a configuration containing only the zigzag domain, since 149 is not di-
visible by 4. However, this can happen in the embedded-particle model, since it
ignores the spatial periodicity of domains. Such configurations are counted as in-
correct behavior in the models and this results in slightly lower predicted versus
actual performances. Furthermore, for the synchronization CAs some possible
particle collisions have multiple interaction results, depending on the relative



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

fo
rm

an
ce

φdens1 φdens2 φdens3 φdens4 φdens5

CA

Model

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

fo
rm

an
ce

φsync1 φsync2 φsync3 φsync4 φsync5

CA

Model

(a) (b)
Fig. 2. Comparison of the average CA performances (labeled “CA”) and the model-
estimated average performances (labeled “Model”) for (a) five evolved density classifi-
cation CAs and (b) five evolved synchronization CAs.

particle phases at the time of collision. Since this is modeled by a probabilistic
choice of interaction results, the particle models for the synchronization CAs are
slightly less accurate than the models for the density classification CAs, where
all collisions have just one possible interaction result.

The generally good agreement between the performance of a model and that
of the corresponding CA demonstrates the promise of the embedded-particle
framework for explaining the spatially extended computation performed by CAs.
The observed discrepancies, which will be explained in more detail elsewhere,
demonstrate where our simplifying assumptions fail. We can improve on the
model’s agreement with these and other CAs by incorporating additional fea-
tures, such as taking particle phases into account.

7 Conclusions

Emergent computation in decentralized spatially extended systems, such as in
CAs, is still not well understood. In previous work we have used an evolutionary
approach to search for CAs that are capable of performing computations that
require global coordination. We have also qualitatively analyzed the emergent
“computational strategies” of the evolved CAs in terms of domains, particles,
and particle interactions. The embedded-particle models described here provide
a means to more rigorously formalize the notion of “emergent computational
strategy” in spatially extended systems and to make quantitative predictions
about the computational behavior and evolutionary fitness of the evolved CAs.
This is an essential, quantitative part of our overall research program—to under-
stand how natural spatially extended systems can perform globally coordinated
computations and how evolutionary processes can give rise to systems with so-
phisticated emergent computational abilities.



Table 2. Comparison of the average CA performances and the model-predicted average
performances for five evolved density-classification CAs and five evolved synchroniza-
tion CAs. The averages are calculated over 10 sets of 104 ICs each. The standard
deviations are given in parentheses. The tc used for each model is given, as is the hex-
adecimal code for each CA’s φ, with the most significant bit being associated with the
neighborhood 0000000.

P149,104 (φ)
Rule Hex CA Model Difference tc

φdens1 04004489 020107FF 0.5000 0.5000 0% 10
6B9F7793 F9FFBF7F (0) (0)

φdens2 04004581 00000FFF 0.5145 0.5291 2.8% 15
6B9F7793 7DFFFF7F (0.0026) (0.0034)

φdens3 05004581 00000FFF 0.5487 0.5405 1.5% 34
6B9F7793 7FBFFF5F (0.0027) (0.0055)

φdens4 05004581 00000FBF 0.6923 0.7447 7.6% 29
6B9F7593 7FBDF77F (0.0055) (0.0070)

φdens5 05040587 05000F77 0.7702 0.7689 0.2% 12
03775583 7BFFB77F (0.0036) (0.0052)

φsync1 F8A19CE6 B65848EA 0.0000 0.0000 0% 28

D26CB24A EB51C4A0 (0) (0)

φsync2 F8A1AE2F CF6BC1E2 0.3161 0.3316 4.9% 40

D26CB24C 3C266E20 (0.0033) (0.0047)

φsync3 F8A1AE2F CE6BC1E2 0.5063 0.4923 1.4% 29

C26CB24E 3C226CA0 (0.0059) (0.0037)

φsync4 F8A1CDAA B6D84C98 0.9991 0.9655 3.4% 33

5668B64A EF10C4A0 (0.0002) (0.0019)

φsync5 FEB1C6EA B8E0C4DA 1.0000 0.9596 4.0% 21

6484A5AA F410C8A0 (0) (0.0021)

Acknowledgments

This research was supported by the Santa Fe Institute under ONR grant N00014-
95-1-0975, NSF grants IRI-9320200 and IRI-9705853, and DOE grant DE-FG03-
94ER25231.

References

1. Crutchfield, J. P.: The calculi of emergence: Computation, dynamics, and induction.
Physica D 75 (1994) 11–54.

2. Crutchfield, J. P., Hanson, J. E.: Turbulent pattern bases for cellular automata.
Physica D 69 (1993) 279–301.

3. Crutchfield, J. P., Mitchell, M.: The evolution of emergent computation. Proceedings
of the National Academy of Sciences, USA 92 23 (1995) 10742–10746.

4. Crutchfield, J. P., Young, K.: Inferring statistical complexity. Physical Review Let-
ters 63 (1989) 105–108.



5. Das, R., Mitchell, M., Crutchfield, J. P.: A genetic algorithm discovers particle-based
computation in cellular automata. Parallel Problem Solving from Nature—PPSN
III, Davidor, Y., Schwefel, H.-P., Männer, R., eds. (1994) 244–353.

6. Das, R., Crutchfield, J. P., Mitchell, M., Hanson, J. E.: Evolving globally syn-
chronized cellular automata. Proceedings of the Sixth International Conference on
Genetic Algorithms, Eshelman, L. ed., (1995) 336–343.

7. Hanson, J. E., Crutchfield, J. P.: The attractor-basin portrait of a cellular automa-
ton. Journal of Statistical Physics 66 (5/6) (1992) 1415–1462.

8. Hanson, J. E., Crutchfield, J. P.: Computational Mechanics of Cellular Automata:
An Example. Physica D 103 (1997) 169–189.

9. Wolfram, S.: Cellular Automata and Complexity. Addison-Wesley, 1994.


