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Abstract

Genetic algorithms (GAs) play a major role
in many artificial-life systems, but there is of-
ten little detailed understanding of why the
GA performs as it does, and little theoreti-
cal basis on which to characterize the types
of fitness landscapes that lead to successful
GA performance. In this paper we propose
a strategy for addressing these issues. Our
strategy consists of defining a set of features
of fitness landscapes that are particularly rel-
evant to the GA, and experimentally study-
ing how various configurations of these fea-
tures affect the GA’s performance along a
number of dimensions. In this paper we in-
formally describe an initial set of proposed
feature classes, describe in detail one such
class (“Royal Road” functions), and present
some initial experimental results concerning
the role of crossover and “building blocks” on
landscapes constructed from features of this
class.

1 Introduction

Evolutionary processes are central to our understand-
ing of natural living systems, and will play an equally
central role in attempts to create and study artificial
life. Genetic algorithms (GAs) [13, 9] are an idealized
computational model of Darwinian evolution based on
the principles of genetic variation and natural selec-
tion. GAs have been employed in many artificial-life
systems as a means of evolving artificial organisms,
simulating ecologies, and modeling population evolu-
tion. In these and other applications, the GA’s task

∗In Toward a Practice of Autonomous Systems: Pro-
ceedings of the First European Conference on Artificial Life
Cambridge, MA: MIT Press, 1992.

is to search a fitness landscape for high values (where
fitness can be either explicitly or implicitly defined),
and GAs have been demonstrated to be efficient and
powerful search techniques for a range of such prob-
lems (e.g., there are several examples in [19]). How-
ever, the details of how the GA goes about searching
a given landscape are not well understood. Conse-
quently, there is little general understanding of what
makes a problem hard or easy for a GA, and in par-
ticular, of the effects of various landscape features on
the GA’s performance.
In this paper we propose some new methods for

addressing these fundamental issues concerning GAs,
and present some initial experimental results. Our
strategy involves defining a set of landscape features
that are of particular relevance to GAs, constructing
classes of landscapes containing these features in vary-
ing degrees, and studying in detail the effects of these
features on the GA’s behavior. The idea is that this
strategy will lead to a better understanding of how the
GA works, and a better ability to predict the GA’s
likely performance on a given landscape. Such long-
term results would be of great importance to all re-
searchers who use GAs in their models; we hope that
they will also shed light on natural evolutionary sys-
tems.
To date, several properties of fitness landscapes

have been identified that can make the search for high-
fitness values easy or hard for the GA. These include
deception, sampling error, and the number of local
optima in the landscape (see Section 3 for details).
However, almost all the theoretical work on GA per-
formance has been based on the assumption that de-
ception is the leading cause of difficulty for the GA.
This paper extends this work by (1) proposing several
new relevant fitness landscape features, (2) studying
one of these features in detail, and (3) demonstrating
that there are “GA-easy” functions [27] which are not
necessarily easy for the GA.



2 GAs and Schema Processing

In a GA, chromosomes are represented by bit strings,
with individual bits representing genes. An initial pop-
ulation of individuals (bit strings) is generated ran-
domly, and each individual receives a numerical “fit-
ness” value—often via an external “fitness function”—
which is then used to make multiple copies of higher-
fitness individuals and eliminate lower-fitness individ-
uals. Genetic operators such as mutation (flipping in-
dividual bits) and crossover (exchanging substrings of
two parents to obtain two offspring) are then applied
probabilistically to the population to produce a new
population (or generation) of individuals. New gener-
ations can be produced synchronously, so that the old
generation is completely replaced, or asynchronously,
so that generations overlap. The GA is considered to
be successful if a population of highly fit individuals
evolves as a result of iterating this procedure. When
the GA is being used in the context of function opti-
mization, success is measured by the discovery of bit
strings that represent values yielding an optimum (or
near optimum) of the given function.
A common interpretation of GA behavior is that

the GA is implicitly searching a space of patterns, the
space of hyperplanes in {0, 1}l (where l is the length
of bit strings in the space). Hyperplanes are repre-
sented by schemas, which are defined over the alpha-
bet {0, 1, ∗}, where the * symbol means “don’t care.”
Thus, *0 denotes the pattern, or schema, which re-
quires that the second bit be set to 0 and will accept
a 0 or a 1 in the first bit position. A bit string x obey-
ing a schema s’s pattern is said to be an instance of
s; for example, 00 and 10 are both instances of *0. In
schemas, 1’s and 0’s are referred to as defined bits, and
the order of a schema is simply the number of defined
bits. The fitness of any bit string in the population
provides an estimate of the average fitness of the 2l dif-
ferent schemas of which it is an instance, so an explicit
evaluation of a population of M individual strings is
also an implicit evaluation of a much larger number of
schemas. The GA’s operation can be thought of as a
search for schemas of high average fitness, carried out
by sampling individuals in a population and biasing
future samples towards schemas that are estimated to
have above-average fitness.
Holland’s Schema Theorem [13, 9] demonstrates

that, under certain assumptions, schemas whose esti-
mated average fitness remains above the population’s
average fitness will receive an exponentially increas-
ing number of samples. That is, schemas judged
to be highly fit will be emphasized in the popula-
tion. However, the Schema Theorem does not address
the process by which new schemas are discovered; in

fact, crossover appears in the Schema Theorem as a
factor that slows the exploitation of good schemas.
The “building-blocks hypothesis” [13, 9] states that
new schemas are discovered via crossover, which com-
bines instances of low-order schemas (partial solutions
or “building blocks”) of estimated high fitness into
higher-order schemas (composite solutions). For ex-
ample, if a string’s fitness is a function of the number
of 1’s in the string, then a crossover between instances
of two high-fitness schemas (each with many 1’s) has
a better than average chance of creating instances of
even higher-fitness schemas. However, the actual dy-
namics of the discovery process—and how it interacts
with the emphasis process—are not well understood,
and there is no general characterization of the types of
landscapes on which crossover will lead to the discov-
ery of highly fit schemas. Specifically, there is no firm
theoretical grounding for what is perhaps the most
prevalent “folk theorem” about GAs—that they will
outperform hillclimbers and other common search and
optimization techniques on a wide spectrum of diffi-
cult problems, because crossover allows the powerful
combination of partial solutions.
Our main purpose in this paper is to outline

a strategy for examining these questions in detail.
In particular, we are interested in understanding
more precisely the relation between various fitness-
landscape features and the performance of GAs, and
we would like to confirm or disconfirm folk theorems
such as the one mentioned above. Our approach
stresses that there are many factors that make a land-
scape easy or difficult for the GA. Thus, we are inter-
ested in defining a set of landscape features that cap-
ture the various sources of facilitation and difficulty.
We believe that such a set of features will be relevant
both to practical domains in which people wish to ap-
ply the GA and to interesting biological phenomena.
Once such a set of relevant features is defined, a large
number of fitness landscapes can be “hand-designed,”
where each landscape consists of some configuration
of these features. Different landscapes will present dif-
ferent types and degrees of difficulty for the GA, de-
pending on what features they contain and how the
features are arranged. We can then study the per-
formance of the GA on such landscapes to learn the
effects of different configurations. A longer-term goal
of this research is to develop statistical methods of
classifying any given landscape in terms of our spec-
trum of hand-designed landscapes, thus being able to
predict some aspects of the GA’s performance on the
given landscape.
It should be noted that by stating this problem in

terms of the GA’s performance on fitness landscapes,
we are sidestepping the question of how a particular



problem can best be represented to the GA. The suc-
cess of the GA on a particular function is certainly
related to how the function is “encoded” [9, 20] (e.g.,
using Gray codes for numerical parameters can greatly
enhance the performance of the GA on some prob-
lems), but since we are interested in biases that per-
tain directly to the GA, we will simply consider the
landscape that the GA “sees.”

3 Landscape Features and GA

Performance

There is no comprehensive theory that relates char-
acteristics of a fitness landscape directly to the per-
formance of the GA, or that predicts what the GA’s
performance will be on a given problem. Such a the-
ory will be difficult to articulate because the GA has
many conflicting tendencies (e.g., the need to continue
exploring new regions of the search space versus the
need to exploit the currently most promising direc-
tions). At different times in the search or on different
problems, one of these tendencies may dominate the
others.
However, several properties of fitness landscapes

have been identified that can make the search for high-
fitness values easy or hard for the GA. Most research
up to now has concentrated on three types of features:
deception, sampling error, and the “ruggedness” of a
fitness landscape. Bethke [2] defined a class of func-
tions that are “misleading” for the GA and therefore
hard to optimize. Goldberg extended this work, defin-
ing the class of GA-deceptive functions [7, 8, 10], in
which low-order schemas lead the GA away from the
fittest higher-order schemas. There have been a num-
ber of studies of GA performance on deceptive land-
scapes (e.g., [7, 3, 21]). Grefenstette and Baker stud-
ied a function in which high variance in the fitness
of a correct low-order schema leads to sampling error
that misleads the GA [12]. Other authors also iden-
tify sampling error as a problem in GA performance
(for example, [20, 11]). Kauffman [18] has studied
how the degree of ruggedness of a landscape affects
the ease of adaptation under mutation and crossover.
Finally, Forrest and Mitchell have identified the exis-
tence of multiple mutually conflicting partial solutions
as a cause of difficulty for GAs [5].
In our current research, we are studying param-

eterizable landscape features that are more directly
connected to the building-block hypothesis. As a start-
ing point, these include the degree to which schemas
are hierarchically structured, the degree to which
intermediate-order fit schemas act as “stepping stones”
between low-order and high-order fit schemas, the de-
gree of isolation of fit schemas, and the presence or

absence of conflicts among fit schemas.
We can then “mix and match” the various land-

scape features to create a wide variety of fitness func-
tions. We conjecture that interactions among the fea-
tures are nontrivial, and that this is one reason that
it is so difficult to understand and predict GA perfor-
mance.
Our landscapes will be defined by constructing fit-

ness functions F : {0, 1}l → < , (where l is the length
of the bit string). Each function F will be defined in
terms of various numbers, or densities, of the different
landscape features (for example, a schema tree (see be-
low) would be considered to be a landscape feature).
A landscape will be parameterized in two ways, with
one set of parameters corresponding to the relative fre-
quency and location of each type of feature, and with a
set of local defining parameters for each feature (e.g.,
the height of a hill). This separation of parameters
allows us to include the notion of features embedded
within other features, allowing the possibility of defin-
ing fractal-like landscapes. For the remainder of this
paper we focus on the properties of particular land-
scape features with the understanding that they can
be combined with one another in the manner just de-
scribed.

Hierarchical Structure of Schemas, and Step-

ping Stones

The building blocks hypothesis implies that an im-
portant component of GA performance should be the
extent to which the fitness landscape is hierarchical,
in the sense that crossover between instances of fit
low-order schemas will tend to yield fit higher-order
schemas. Consider the fitness function defined in Fig-
ure 1, which we term a “Royal Road” function. This
function involves a set of schemas S = {s1, . . . , s15},
and is defined as

F (x) =
∑

s∈S

csσs(x),

where x is a bit string, each cs is a value assigned to the
schema s, and σs(x) is as defined in the figure. In this
example, cs = order(s). The fitness of the optimum
string (64 1’s) is 8 ∗ 8 + 4 ∗ 16 + 2 ∗ 32 + 64 = 256.
As shown in Figure 1, a Royal Road function can

be represented as a tree of increasingly higher-order
schemas, with schemas of each order being compos-
able to produce schemas of the next higher order. The
hierarchical structure of such a function should in prin-
ciple lead the GA, via crossover, very quickly to the
optimum; in effect, this structure should in principle
lay out a “royal road” for the GA to follow to the
global optimum. In contrast, an algorithm such as
hillclimbing that relies on single-bit mutations cannot



s1 = 11111111********************************************************; c1 = 8
s2 = ********11111111************************************************; c2 = 8
s3 = ****************11111111****************************************; c3 = 8
s4 = ************************11111111********************************; c4 = 8
s5 = ********************************11111111************************; c5 = 8
s6 = ****************************************11111111****************; c6 = 8
s7 = ************************************************11111111********; c7 = 8
s8 = ********************************************************11111111; c8 = 8
s9 = 1111111111111111************************************************; c9 = 16
s10 =****************1111111111111111********************************; c10 = 16
s11 =********************************1111111111111111****************; c11 = 16
s12 =************************************************1111111111111111; c12 = 16
s13 =11111111111111111111111111111111********************************; c13 = 32
s14 =********************************11111111111111111111111111111111; c14 = 32
s15 =1111111111111111111111111111111111111111111111111111111111111111; c15 = 64

Figure 1: Example Royal Road Function. F (x) =
∑

s∈S csσs(x), where x is a bit string, cs is a value assigned

to the schema s (here, cs = order(s)), and σs(x) =

{

1 if x is an instance of s
0 otherwise.

easily find high values in such a function, since a large
number of single bit-positions must be optimized si-
multaneously in order to move from an instance of
one schema to an instance of a schema at the next
higher-order level of the tree.
The Royal Road functions provide the simplest ex-

amples of the features of schema hierarchies and inter-
mediate stepping stones, and as we discuss later in this
paper, they can be used to study in detail the effects
of these features on the GA’s performance.

Isolated High-Fitness Regions

A second type of feature is an isolated region of high
average fitness (say, containing the global optimum)
contained in a larger region of lower average fitness,
which is in turn contained in an even larger area of
intermediate average fitness [14]. These are related
to cases of “isolated optima” described by Bethke [2].
For example, using the same notation as for the Royal-
Road functions, a simple isolate can be defined as fol-
lows:

F (x) = 5σ∗∗11(x)− 16σ∗111(x) + 5σ11∗∗(x)−

16σ111∗(x) + 31σ1111(x).

Here the highest value is 9 (with optimum point
x′ = 1111), and the average fitnesses u(s) of the five
schemas are:

u(∗ ∗ 11) = 2
u(∗111) = −1
u(11 ∗ ∗) = 2
u(111∗) = −1
u(1111) = 9.

In such a feature, the region of highest fitness is

isolated from supporting (lower-order) schemas by the
intervening region of lower fitness. A search algorithm
such as hillclimbing will reach the largest areas of inter-
mediate fitness (**11 and 11**), but will in general be
slow at crossing the intervening “deserts” of lower fit-
ness (*111 and 111*). One hypothesis [14] is that the
GA should be better able to search landscapes con-
taining such features because the lower-fitness deserts
can be quickly crossed via crossover (here, between in-
stances of 11** and **11). Isolates are a special case of
what have been called “partially deceptive functions”
[8].
The idea of isolated regions of high fitness sur-

rounded by flat deserts of low fitness is similar to the
“mesa phenomenon” proposed by Minsky [24] and to
the error surfaces identified by Hush et al. for multi-
layer perceptron neural networks [16]. Thus, the shape
of the surface may be as important to GA performance
as the actual direction of the gradient (deceptive func-
tions emphasize direction). This feature allows us to
control the shape as well as the direction of the surface
the GA is searching.

Multiple Conflicting Solutions

Finally, landscapes with multiple conflicting solutions
can be difficult for the GA. For example, consider a
function with two equal peaks: for example, f(x) =
(x− ( 1

2
))2, which has two optima, 0 and 1. In this en-

vironment, a conventional GA initially samples both
peaks, but eventually converges on one by exploit-
ing random fluctuations in the sampling process (ge-
netic drift). Since both peaks are equally good, the
population may maintain samples of both for some
time. However, if the solutions are mutually exclusive



(00 . . . 0 vs. 11 . . . 1 in many encodings), crossover may
be hindered by crossing good solutions from different
peaks, creating useless hybrids.
Moving away from a strict function-optimization

setting, similar difficulties are encountered for any
kind of ecological environment in which the popula-
tion needs to maintain multiple conflicting schemas.
Examples include classifier systems [15] (where genetic
operators are used to search for a useful set of rules
that collectively performs well) and GA models of the
immune system [6] (where a population of antibodies
is evolving to cover a set of antigens). In functions
with conflicting pressures, issues such as crossover dis-
ruption [17] and carrying capacity (how many different
solutions a population of a given size can maintain) [4]
are relevant factors.
The three categories of features sketched above

constitute an initial set from which to construct land-
scapes for the purpose of studying GA performance.
This set is by no means complete; two goals of our
current work are to extend this set and to determine
appropriate dimensions along which to parameterize
both the individual features and the landscapes con-
structed out of such features. However, we believe
that this initial set captures several important aspects
of landscapes that to date have been largely ignored
in the GA literature, and that experiments involving
GA performance on landscapes constructed out of such
features will yield a number of important insights. In
the next section we describe experimental results con-
cerning the Royal Road landscapes, thus illustrating
our overall approach.

4 GA Performance on Royal Road

Functions

According to the building-blocks hypothesis, the Royal
Road function shown in Figure 1 defines a fitness land-
scape that is tailor-made for search by the GA, since
crossover should allow the GA to follow the tree of
building-block schemas directly to the optimum. It
provides an ideal laboratory for studying the GA’s be-
havior for the following reasons: (1) all of the desired
schemas are known in advance, since they are explic-
itly built into the function, so dynamics of the search
process can be studied in detail by tracing the onto-
genies of individual schemas; (2) the landscape can be
varied in a number of ways, and the effects of these
variations on the GA’s behavior can likewise be stud-
ied in detail; and (3) since the global optimum, and,
in fact, all possible fitness values, are known in ad-
vance, it is easy to compare the GA’s performance on
different instances of Royal Road functions.
There are several ways in which the degree of “re-

gality” of the path to the optimum can be varied. For
example, the number of levels (schema orders) in the
tree can be varied. In Figure 1, there are four levels
(schemas of orders 8, 16, 32, and 64); this could be
changed to 3 levels, effectively truncating the hierar-
chy by eliminating all of the order-8 schemas. Another
variation would be to introduce gaps in the hierarchi-
cal structure, say, by deleting an entire intermediate
level in the tree (thus eliminating some of the inter-
mediate stepping stones to the optimum). Another
variation would be to modify the steepness of increase
in the coefficients cs as a function of height in the
tree. Finally, deception can be introduced by mutat-
ing some of the supporting schemas, effectively cre-
ating low-order schemas that lead the GA away from
the good higher-order schemas. Royal Road functions
can be made arbitrarily difficult for the GA (e.g., by
changing the values of the coefficients or by truncating
the tree).
The Royal Road functions can be used to ad-

dress a number of general questions about the effects
of crossover on various landscapes, including the fol-
lowing: For a given landscape, to what extent does
crossover help the GA find highly fit schemas? What
is the effect of crossover on the waiting times for de-
sirable schemas to be discovered? What are the bot-
tlenecks in the discovery process: the waiting times
to discover the components of desirable schemas, or,
once the components are in the population, the wait-
ing times for them to cross over in the desired manner?
What is the cause of failure for desired schemas to be
discovered? To what degree is a complete hierarchy (as
opposed to an incomplete one with gaps in the tree)
necessary for successful GA performance? Answering
these questions in the context of the idealized Royal
Road functions is a first step towards answering them
in more general cases.
In the following subsections, we report results from

our initial studies of Royal Road functions. These re-
sults address three basic questions:

1. What is the effect of crossover on the GA’s per-
formance on different landscapes?

2. More specifically, what is the effect of crossover
on the waiting time for desirable schemas to be
discovered, and how can we account for this ef-
fect?

3. What is the role of intermediate levels in the hi-
erarchy (intermediate-order supporting schemas)
on the difficulty of these functions with respect to
the GA?

We report results of computational experiments
that test the GA’s performance on these functions,



both with and without crossover. We also report re-
sults of control experiments which compare the GA’s
performance with a stochastic iterated hillclimbing al-
gorithm (see [26]) on these functions. For each of these
experiments, we used functions with l = 64 (the indi-
viduals in the GA population were bit strings of length
64). The GA population size was always 128, and in
each run the GA was allowed to continue until the
optimum string was discovered, and the generation of
this discovery was recorded. The GA we used was
conventional [9], with single-point crossover and sigma
scaling [26, 5] with the maximum expected offspring of
any string being 1.5. The crossover rate was 0.7 per
pair of parents and the mutation probability was 0.005
per bit.

4.1 Effect of crossover on GA performance

Our examination of the role of crossover on the Royal
Road functions begins with the following question: To
what extent does crossover contribute to the GA’s
success on simple versions of these functions? That
is, the initial set of experiments attempts to validate
the building-blocks hypothesis on these functions. For
these experiments, we ran the GA with and without
crossover on the function given in Figure 1. We also
ran hillclimbing on this function, allowing the equiv-
alent of 2000 generations (256,000 function evalua-
tions), which is more than three times as long as re-
quired by a typical GA run (see Table 1).
Table 1 summarizes the results of 50 runs of each

algorithm on the function. As was expected, crossover
considerably speeds up the GA’s discovery of the op-
timum. Both versions of the GA significantly outper-
form hillclimbing: in 50 runs of hillclimbing, the op-
timum was never found, and moreover, the highest
fitness attained was only 38% of the optimum.
These results confirm our qualitative expectations:

on landscapes in which fit schemas are organized in
a hierarchy like the one in Figure 1, crossover helps
to significantly speed up the discovery process. This
result may seem obvious, but it is necessary to estab-
lish as a baseline the degree to which crossover speeds
things up before we can study the effects of variations
on the landscape.
As a next step, we look more closely at the effects

of crossover on the GA’s performance, considering the
effect of crossover on the waiting times for the var-
ious schemas defining the fitness function to be dis-
covered. Table 2 displays the average generation at
which the first schema of a given order is discovered
for the runs with and without crossover for the Royal
Road function (the values are averaged over 50 runs).
The results given in the table show that, as expected,
crossover significantly reduces the waiting time for dis-

covering schemas at each level in the tree. However,
even for the runs with crossover, there are, on average,
significant gaps between the discovery of, say, the first
order-16 schema and the first order-32 schema. What
is the cause of these long gaps? That is, what are the
bottlenecks in the discovery process?
To make this question more specific, we note that

there are two stages in the discovery process of a given
schema via crossover: the time for the schema’s lower-
order components to appear in the population, and the
time for two instances to cross over in the right way
in order to create the schema. Which of these stages
contributes the most to the long gaps seen in Table 2?
The building-blocks hypothesis suggests that, once

the lower-order components of a desired schema are
present in the population, these components will then
combine relatively quickly via crossover to form the
desired schema. This would imply that the main bot-
tleneck in the discovery process is the waiting time for
the lower-order components to appear in the popula-
tion, rather than the waiting time for them to cross
over in the required way. We believe that this is the
case, but the results of our experiments in this area
were somewhat inconclusive. Given the importance of
testing this rigorously, it is worth discussing some of
the issues related to answering this question.
It seems that one could test this hypothesis in a

straightforward manner by separately measuring the
average time required for each stage and comparing the
two times. We made several measurements to identify
these separate stages. For each schema order in the
tree, we measured the average difference in generations
between the time when two components of a given or-
der were both in the population and the time when the
higher-order combination of the two occurred. For ex-
ample, one of the measurements going into the order-8
average would be the difference between the discov-
ery time for 11111111*. . . * or ********11111111*. . . *
(whichever was discovered later), and the time when
the combination 1111111111111111*. . . * is created.
Table 3 gives the results of these measurements, av-
eraged over all schemas of a given order, and over 50
runs. The data in the table seems to indicate that
there is on average a large gap between the time the
lower-order components are discovered and the time
they are combined to form the higher-order schema.
However, there are several problems with this

method of measurement. One problem is that there
are times when one of the component schemas and
the desired combination schema are created simulta-
neously through mutation (e.g., 11111111*. . . * is in
the population first, but 1111111111111111*. . . * and
********11111111*. . . * are created at the same time
via mutation). Since the hypothesis we are consider-



Mean gens to optimum Median gens to optimum
GA with Xover 590 (50) 542
GA, No Xover 1022 (46) 1000
Hillclimbing > 2000 > 2000

Table 1: Summary of results on the Royal Road function for GA with and without crossover, and for hillclimbing.
Each result summarizes 50 runs. The numbers in parentheses are the standard errors. Each run of hillclimbing
was for the equivalent of 2000 generations (256,000 function evaluations), but the optimum was never found.

Order 8 Order 16 Order 32 Order 64
GA with Xover .01 (.1) 28 (4) 152 (16) 590 (50)
GA, No Xover .3 (.25) 106 (14) 386 (26) 1022 (46)

Table 2: The average generation of first appearance of a schema of each order for the Royal Road function. The
values are averaged over 50 runs for the GA with and without crossover. The numbers in parentheses are the
standard errors.

Order 8 Order 16 Order 32
Mean time 179 (26) 139 (27) 165 (21)
to combine (110 cases) (27 cases) (21 cases)

Table 3: The average difference in generations between
the first appearance of two component schemas of a
given order and the appearance of the schema that is
the combination of those two components. The num-
bers in parentheses are the standard errors. The num-
ber of cases being averaged is also given. Since the
data for all schemas of a given order are being aver-
aged, there are more cases for the order-8 schemas than
for the higher-order schemas. Cases in which there was
simultaneous discovery of a low-order component and
a higher-order combination were not included in the
averages. See the text for a discussion of the problems
with the data in this table.

Order 8 Order 16 Order 32
Mean time 118 (31) 20 (7) 1 (0)
to combine (55 cases) (13 cases) (3 cases)

Table 4: The same data as in Table 3 but with the first
appearance of a component schema defined as the first
appearance after which the schema persists in the pop-
ulation for at least 10 generations. This modification
resulted in a decrease in the number of cases for each
order, since under this new measurement, the number
of cases of simultaneous discovery increased dramati-
cally.

ing concerns cases where the component schemas are
in the population before the combination schema, we
did not include the cases of simultaneous discovery in
the averages given in Table 3.
A second problem is using the discovery time

of the lower-order components in this measurement.
Further analysis of our data indicated that very of-
ten, a lower-order component (e.g., an instance of
11111111*. . . *) would be discovered fleetingly, only
to disappear in the next one or two generations. It
would appear again later on, and only then be used
in a crossover with another lower-order component
(e.g., ********11111111*. . . *) to form the higher-
order combination. So in essence, the component was
discovered twice; in Table 3 we recorded only the orig-
inal discovery time. This resulted in a large increase
in the measured time to cross over.
To remedy this problem, we recorded the discovery

time of a component only if instances of it persisted in
the population for at least 10 generations after the dis-
covery. The results of those measurements are given
in Table 4. Under this measurement, the average time
for order-8 schemas to combine is still high, but seems
to be much less for higher-order schemas. However,
under this measurement, the number of cases of si-
multaneous discovery of a lower-order component and
the higher-order combination increased dramatically,
so the number of cases over which the average is being
taken is much less in this case. This means that the
results are less statistically reliable.
In summary, the various problems with the mea-

surements cause these results to be somewhat incon-
clusive. The purpose of giving these data is to point
out some of the problems. We believe that more ap-
propriate measuring techniques will demonstrate that



the main bottlenecks in the discovery process are the
waiting times for components to appear rather than
the waiting times for crossovers to take place. Test-
ing this hypothesis is of great importance, and we are
currently exploring methods that will enable us to do
so.
Even though we were not able to satisfactorily con-

firm what the building-blocks hypothesis predicts—
that the main bottleneck in the discovery process is the
waiting time for the lower-order components to appear
in the population—it turns out that some surprising
results about the role of intermediate-order schemas
(discussed in the next section) actually provide some
validation for this prediction and thus give some clues
as to the source of the long gaps seen in Table 2.

4.2 Do intermediate levels help?

To study the effect of intermediate levels on the per-
formance of the GA, we ran the GA with crossover on
a variant of the original Royal Road function—one in
which the intermediate-order schemas were removed.
The variant function contains eight order-8 schemas
and one order-64 schema; the fitness of the optimum
string (64 1’s) is now 8 ∗ 8 + 64 = 128.
Table 5 shows the results of the standard GA, the

GA without crossover, and hillclimbing on this func-
tion.
We expected the GA’s performance to be worse

than on the original Royal Road function, since we
believed that the intermediate-level schemas act as
stepping-stones, providing reinforcement for the lower-
order schemas, and speeding up the process of finding
the optimum. However, the results were the opposite
of what we expected. On average, the GA finds the
optimum faster on the function with no intermediate
schemas.
What is the cause of this unexpected phenomenon?

Further analysis led us to the conclusion that the
intermediate schemas cause a kind of premature-
convergence phenomenon [9]. For example, suppose
that, on the function with intermediate levels, the
GA finds 11111111*. . . *, ********11111111*. . . *, and
then 1111111111111111*. . . *. Strings that are in-
stances of the order-16 schema receive much higher
fitness (since the fitness values go up exponentially
with the level of the schema). The fitness differ-
ential between instances of 1111111111111111*. . . *
and any order-8 schema (say, *. . . *11111111) is
large enough (32 vs. 8) that the instances of
1111111111111111*. . . * will virtually take over the en-
tire population in just a few generations, often with
many zeros in the right half of the string “hitchhik-
ing” along with the 16 1’s in the left half of the string.
This convergence therefore can negate progress that

the population has made towards good schemas in
the right half of the string. Thus, once one order-16
schema is discovered, the GA must start over to dis-
cover the second order-16 schema. We observed this
process directly by plotting the densities (percentage
of the population that are instances) of the relevant
schemas over time: on a typical run, once an order-
16 schema is discovered, its density in the population
quickly rises, and the density of one or more of the dis-
joint order-8 schemas is simultaneously seen to drop
significantly, sometimes to zero. Often, this effect will
prevent an order-8 schema from being discovered for
a long time. This explains the relatively long inter-
vals between the first discoveries of an order-16 and
an order-32 schema, shown in Table 2, and gives evi-
dence that the main bottleneck in the discovery of a
higher-order schema is the waiting time for its lower-
order components to come into the population.
In the function without the intermediate levels,

this problem does not occur to such a devastating de-
gree. The fitness of an order-16 combination of two
order-8 schemas is only 16, so its discovery does not
have such a dramatic effect on the discovery and per-
sistence of other order-8 schemas in the tree. It seems
that once order-8 schemas are discovered, crossover
combines them relatively quickly to find the optimum.
Contrary to our intuitions, it appears that reinforce-
ment from the intermediate layers is not required in
these functions. It is possible that larger problems (for
example, defined over bit strings much longer than 64)
or different coefficients may create landscapes in which
reinforcement is an advantage rather than a detriment.
These results point to a pervasive and important

issue in the performance of GAs in any domain: the
problem of premature convergence. The fact that we
observe a form of premature convergence even in this
very simple setting suggests that it can be a factor
in any GA search in which the population is simul-
taneously searching for two or more non-overlapping
high fitness schemas (e.g., the two order-8 schemas
discussed above), which is often the case. The fact
that the population loses useful schemas once one of
the disjoint good schemas is found suggests that the
rate of effective implicit parallelism of the GA [13, 9]
may need to be reconsidered.
It is suggestive that in many biological settings

functionality is evolved sequentially rather than in par-
allel. For example, it is hypothesized that the immune
system evolved by learning to recognize a base set of
antigens and then successively extended the base set
[25]. Thus, it may be completely appropriate for the
GA to use sequential search (first learning one set of
schemas, then another) under certain circumstances.



Mean gens to optimum Median gens to optimum
Intermediate 590 (50) 542
Levels

No Intermediate 427 (34) 372
Levels

Hillclimbing > 2000 > 2000
No Intermediate

Levels

Table 5: Summary of results for the original Royal Road function (repeated from Table 1) and a variant with
no intermediate-level schemas. Each result summarizes 50 runs. The numbers in parentheses are the standard
errors. Each run of hillclimbing (on the function with no intermediate levels) was for the equivalent of 2000
generations (256,000 function evaluations), but the optimum was never found.

5 Conclusions

This paper reports the beginning of an investigation of
the role of crossover in GAs and the characteristics of
landscapes in which crossover improves the GA’s per-
formance. We have proposed several features of fitness
landscapes that we believe are relevant to the perfor-
mance of GAs (hierarchy, isolation, and conflicts) and
we have sketched a method of creating parameterized
fitness landscapes built out of combinations of these
features, on which the GA’s performance can be stud-
ied very clearly. To illustrate our overall approach, we
have introduced a class of functions, the Royal Road
functions, which isolate one important aspect of fitness
landscapes: hierarchies of schemas. We presented ex-
perimental results that show how crossover contributes
to GA performance on these functions, as well as more
surprising experimental results that show the detri-
mental role of the intermediate-level schemas in the
hierarchy.
Given that genetic algorithms have been applied

to so many complex domains, it may seem like a back-
wards step to be studying their behavior on landscapes
as simple as the Royal Road functions. However, the
unexpected results we describe in this paper indicate
that there is much about the GA’s behavior that is
not well understood, even on very simple landscapes.
The building-blocks hypothesis is generally taken as
an article of faith by those using GAs, but making the
meaning of this hypothesis more precise and charac-
terizing the types of landscapes on which it is valid
remain open topics of great importance. Understand-
ing the detailed workings of the GA on these simple
functions is a first step to understanding the degree
to which crossover can be expected to help on more
complex landscapes containing similar features.
Another long-term goal of this work is to develop

a set of statistical measures that will make it possible
to compare our hand-constructed landscapes with ones

that arise more naturally in GA applications, and thus
to be able to predict the GA’s performance on such
landscapes. Statistical measures such as correlation
length and length of adaptive walks to optima—both
defined in terms of Hamming distance—have been ap-
plied to various landscapes for this purpose [18, 22].
These measures give some indication of the “rugged-
ness” of a landscape, which has some relation to the
GA’s expected performance, but we believe that more
useful characterizations may require statistical mea-
sures that take into account the way crossover oper-
ates and measure correlations in terms of some kind
of “crossover distance” rather than Hamming distance
(a version of this approach was studied in [23]).
Additionally, we are interested in understanding

how our discoveries about the GA relate to biological
systems, including in the following questions: What
is the relation of function optimization to adaptation
and evolution? What is the relation of our results
on the role of crossover to current work in theoretical
population genetics on the types of environments in
which recombination is favored [1]? To what extent
can we understand biological environments in terms
of the features we are proposing for our fitness land-
scapes (e.g., hierarchies of building blocks)? We hope
that studying the relation of landscape features to GA
performance will not only shed light on what types of
problems are likely to be suited to GAs, but will also
lead to insights concerning the evolution of natural—
and artificial—biological systems.
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