
Analogy-Making as a Complex Adaptive System

Melanie Mitchell∗

Biophysics Group
Los Alamos National Laboratory

In L. Segel and I. Cohen (editors), Design Principles for the Immune System and Other

Distributed Autonomous Systems. New York: Oxford University Press, 2001.

1 Introduction

This paper describes a computer program, called Copycat, that models how people make
analogies. It might seem odd to include such a topic in a collection of papers mostly on the
immune system. However, the immune system is one of many systems in nature in which
a very large collection of relatively simple agents, operating with no central control and
limited communication among themselves, collectively produce highly complex, coordinated,
and adaptive behavior. Other such systems include the brain, colonies of social insects,
economies, and ecologies. The general study of how such emergent adaptive behavior comes
about has been called the study of “complex adaptive systems”.

The Copycat program is meant to model human cognition, and its major contribution
is to show how a central aspect of cognition can be modeled as the kind of decentralized,
distributed complex system described above. In doing so it proposes principles that I believe
are common to all complex adaptive systems, and that are particularly relevant to the study
of immunology.

Copycat was developed by Douglas Hofstadter and myself, and has been described pre-
viously in [3, 9, 10, 15, 16]. This paper summarizes these earlier works, and makes explicit
links to the immune system.

2 Analogy-Making and Cognition

Analogy-making can be defined as “the perception of two or more non-identical objects or
situations as being the ‘same’ at some abstract level.” We chose to focus on analogy-making

∗Address: P-21, MS D454, LANL, Los Alamos, NM 87545. Email: mmitchell@lanl.gov

1



Figure 1: A page of ‘A’s in different typefaces from a recent Letraset catalog. Reprinted
from [8], p. 243.

2



because of its centrality to every aspect of cognition.

For example, analogy-making is at the core of recognition and categorization. Children
learn to recognize instances of categories such as “dog” or “cat”. Even though different dogs
look very different, children perceive some essential sameness at an abstract level and can
differentiate a dog from a cat. Likewise, children learn to recognize cats and dogs in books
as well as in real life, even though on the surface such images are very different from one
another and from the corresponding real-life creatures. Hofstadter has pointed out that even
the ability to recognize the letter ‘A’ in many different typefaces and handwriting styles
requires a highly sophisticated analogy-making ability [6]. For example, the collection of
‘A’s given in Figure 1, taken from a typeface catalog, illustrates the ease with which people
can recognize vastly different shapes as instances of ‘A’ because of some essential abstract
similarity. Hofstadter points out that “no single feature, such as having a pointed top or a
horizontal crossbar (or even a crossbar at all) is reliable” as an indicator of being an ‘A’.
([8], p. 242.)

At a more abstract level, people can easily recognize styles of music—“That sounds like
Mozart”—or familiar music transported to a less familiar idiom—“Hey, that’s a muzak ver-
sion of ‘Hey Jude’.” When you think about it, these are examples of sophisticated analogy-
making as well. Any two pieces by Mozart are superficially very different, but at some level
we perceive a common essence. Likewise, the Beatles rendition of Hey Jude and the ver-
sion you might hear in the supermarket have little in common in terms of instrumentation,
tempo, vocals, and other readily apparent musical features, but we can easily recognize it as
“the same song”.

People make analogies all the time, both consciously and unconsciously. You’ve probably
had the experience of hearing a friend’s story about how her flight from Boston to San
Francisco was delayed for four hours, and how her four pieces of luggage were lost. You
exclaim “The same thing happened to me”, thinking of your flight from Adelaide to Perth
and how it was delayed for two hours and how two of your three pieces of luggage were lost.
Not exactly the same thing, but close. Or you might have read about a war waged by the
Soviets in Afghanistan in which their superior military power was thwarted again and again
by the determination of a small Western-supported army fighting on its own soil, and been
instantly reminded of a war the Americans waged during the 60s and 70s in Asia against a
small Soviet-supported army fighting on its own soil; you might have even thought, “This
is another Vietnam”. Again, it’s not exactly the same, but basically. It is that “basically”
where analogy lies. Anytime you recognize something, are reminded of something, or see
a similar essence in two different situations, you are making an analogy. (For an excellent
discussion of analogies, conscious and unconscious, in human thought, see [3].) Such abstract
analogies come about by what might be called high-level perception, in which objects, pieces
of music, memories, or complex situations are viewed in the mind’s eye and found to be
similar to one another.

It should be clear from all these examples that in making analogies, elements of one
situation are fluidly mapped to another situation. A four-hour flight delay in Boston is
easily mapped to a two hour flight delay in Adelaide or perhaps even a six hour train stop-
over in Providence. The parallel diagonal crossbar in the Tintoretto face (third row, second

3



column of Figure 1) is easily seen to correspond to the curved and striped crossbar/foot of
the Stripes face (seventh row, sixth column of Figure 1). The lilt and clean lines of Mozart’s
Eine Kleine Nachtmusik is easily seen to be similar to the style of his Divertimento in D.
The ability for concepts to “slip” from situation to situation in this fluid way is a hallmark
of human thought and is one of the salient differences between human intelligence and the
rigid literality of computers. Our goals in the Copycat project are to understand how human
concepts attain this fluidity and how to impart such fluidity to computers.

3 Idealizing Analogy-Making

As a first step in modeling analogy-making in a computer, Hofstadter devised a “microworld”
consisting of analogies between strings of letters [3]. This microworld captures many of the
features of analogy-making described above, in an idealized fashion.

For example, consider the following problem: if abc changes to abd, what is the analogous
change to ijk? Most people describe the change as something like “Replace the rightmost
letter by its alphabetic successor”, and answer ijl. But clearly there are many other possible
answers, among them:

• ijd (“Replace the rightmost letter by a d”),

• ijk (“Replace all c’s by d’s; there are no c’s in ijk”), and

• abd (“Replace any string by abd”).

There are, of course, an infinity of other, even less plausible answers, such as ijxx (“Re-
place all c’s by d’s and all k’s by two x’s”), and so on, but almost everyone immediately
views ijl as the best answer. This being an abstract domain with no practical consequences,
I may not be able to convince you that ijl is a better answer than, say, ijd if you really
believe the latter is better. However, it seems that humans have evolved in such a way as
to make analogies in the real world that affect their survival and reproduction, and their
analogy-making ability seems to carry over into abstract domains as well. This means that
almost all of us will, at heart, agree that there is a certain level of abstraction that is “most
appropriate”, and here it yields the answer ijl. Those people who truly believe that ijd is
a better answer would probably, if alive during the Pleistocene, have been eaten by tigers,
which explains why there are not many such people around today.

The knowledge available to an analogy-maker in this microworld is fairly limited. The 26
letters are known, but only as members of a Platonic linear sequence; shapes of letters, capital
versus lower case, sounds, words, and all other linguistic and graphic facts are unknown. The
only relations explicitly known are predecessor and successor relations between immediate
neighbors in the alphabet. Ordinal positions in the alphabet (e.g., the fact that S is the 19th
letter) are not known. (In this paper I denote “Platonic” letters by italic capitals—“S is the
19th letter”. I denote their instances by non-italic lower case–“the a in abc is the leftmost
letter in its string”. Strings of letters appearing in analogy problems are in boldface.)

4



A and Z, being alphabetic extremities, are salient landmarks of equal importance. The
alphabet is not circular; that is, A has no predecessor and Z has no successor. The alphabet
is known equally well backward and forward (i.e., the fact that N is the letter before O is as
accessible as the fact that P is the letter after O). In addition, strings (such as abc or kkjjii)
can be parsed equally well from left to right and from right to left. The analogy-maker can
count, but is reluctant to count above 3 or so, and has a common-sense notion of grouping
by sameness or by alphabetical adjacency (forward or backward with equal ease).

With these restrictions in mind, let’s proceed to a second analogy problem: if abc changes
to abd, what is the analogous change to iijjkk? The abc ⇒ abd change can again be
described as “Replace the rightmost letter by its alphabetic successor”, but if this rule is
applied literally to iijjkk it yields answer iijjkl, which doesn’t take into account the double-
letter structure of iijjkk. Most people will answer iijjll, implicitly using the rule “Replace
the rightmost group of letters by its alphabetic successor,” letting the concept letter of abc

slip into the concept group of letters for iijjkk.

Another kind of conceptual slippage can be seen in the problem

abc ⇒ abd

kji ⇒ ?

A literal application of the rule “Replace the rightmost letter by its alphabetic successor”
yields answer kjj, but this ignores the reverse structure of kji, in which the increasing
alphabetic sequence goes from right to left rather than from left to right. This puts pressure
on the concept rightmost in abc to slip to leftmost in kji, which makes the new rule “Replace
the leftmost letter by its alphabetic successor”, yielding answer lji. This is the answer given
by most people. Some people prefer the answer kjh, in which the sequence kji is seen as going
from left to right but decreasing in the alphabet. This entails a slippage from “alphabetic
successor” to “alphabetic predecessor”, and the new rule is “Replace the rightmost letter by
its alphabetic predecessor”.

It should be clear by now that the key to analogy-making in this microworld (as well as
in the real world) is what I am calling conceptual slippage. Finding appropriate conceptual
slippages given the context at hand is the essence of finding a good analogy. The Copycat
program is a model of how concepts slip in response to pressures brought about by ongoing
perception of a situation. Copycat is the successor to two previous programs that modeled
high-level perception and conceptual slippage: Jumbo, which produced English-like ana-
grams [4], and Seek Whence, which searched for patterns underlying numerical sequences
[5, 14].

As a prelude to developing Copycat, we created thousands of letter-string analogy prob-
lems to explore what kinds of slippages come about in response to different kinds of percep-
tual pressures. Two more examples will be instructive.

Consider

abc ⇒ abd

mrrjjj ⇒ ?

5



.

You want to make use of the salient fact that abc is an alphabetically increasing sequence,
but how? This internal “fabric” of abc is a very appealing and seemingly central aspect
of the string, but at first glance no such fabric seems to weave mrrjjj together. So either
(like most people) you settle for mrrkkk (or possibly mrrjjk), or you look more deeply.
The interesting thing about this problem is that there happens to be an aspect of mrrjjj

lurking beneath the surface that, once recognized, yields what many people feel is a more
satisfying answer. If you ignore the letters in mrrjjj and look instead at group lengths, the
desired successorship fabric is found: the lengths of groups increase as “1-2-3”. Once this
connection between abc and mrrjjj is discovered, the rule describing abc ⇒ abd can be
adapted to mrrjjj as “Replace the rightmost group of letters by its length successor”, which
yields “1-2-4” at the abstract level, or, more concretely, mrrjjjj.

Finally, consider

abc ⇒ abd

xyz ⇒ ?

At first glance this problem is essentially the same as the problem with target string ijk

given above, but there is a snag: Z has no successor. Most people answer xya, but in Copy-
cat’s microworld the alphabet is not circular and thus the program could not come up with
this answer. We intentionally excluded it because one of the goals of the project is to model
the process by which people deal with impasses. This problem forces an impasse that re-
quires analogy-makers to restructure their initial view, possibly making conceptual slippages
that were not initially considered, and thus to discover a different way of understanding the
situation.

People give a number of different responses to this problem, including xy (“Replace the
z by nothing at all”), xyd (“Replace the rightmost letter by a d”; given the impasse, this
answer seems less rigid and more reasonable than did ijd for the first problem above), xyy

(“If you can’t take the z’s successor, then the next best thing is to take its predecessor”), and
several other answers. However, there is one particular way of viewing problem 7 that, to
many people, seems like a genuine insight, whether or not they come up with it themselves.
The essential idea is that abc and xyz are “mirror images”—xyz is wedged against the
end of the alphabet, and abc is similarly wedged against the beginning. Thus the z in
xyz and the a in abc can be seen to correspond, and then one naturally feels that the x
and the c correspond as well. Underlying these object correspondences is a set of slippages
that are conceptually parallel: alphabetic-first ⇒ alphabetic-last, rightmost ⇒ leftmost, and
successor ⇒ predecessor. Taken together, these slippages convert the original rule into a
rule adapted to the target string xyz: “Replace the leftmost letter by its predecessor”. This
yields a surprising but strong answer: wyz.

It is important to emphasize once again that the goal of this project is not to model specif-
ically how people solve these letter-string analogy problems (it is clear that the microworld
involves only a very small fraction of what people know about letters and what knowledge
they might use in solving these problems), but rather to propose and model mechanisms for

6



high-level perception and analogy-making in general. Analogy-making can be characterized
very broadly as distilling the essence of one situation and adapting it (via conceptual slip-
page) to fit another situation. The letter-string analogy problems were designed to isolate
and make very clear some of the mental abilities that are required for this process of under-
standing and perceiving similarity between situations. These abilities include the following
(which, though listed separately, are of course strongly interrelated):

• Mentally constructing a coherently structured whole out of initially unattached parts.

• Describing objects, relations, and events at the appropriate level of abstraction.

• Grouping certain elements of a situation while viewing others individually.

• Focusing on relevant aspects and ignoring irrelevant or superficial aspects of situations.

• Taking certain descriptions literally and letting others slip when perceiving correspon-
dences between aspects of two situations.

• Exploring many avenues of possible interpretations while avoiding a search through a
combinatorial explosion of possibilities.

The rest of this paper describes how these abilities are modeled in Copycat.

4 Dynamics of Exploring Ways of Understanding Sit-

uations

When given a situation with many components and potential relations among components,
be it a visual scene, a friend’s story, or a scientific problem, how does a person (or how might a
computer program) mentally explore the typically intractably huge number of possible ways
of understanding what is going on and possible similarities to other situations?

The following are two opposite and equally implausible strategies, both to be rejected:

1. Some possibilities are a priori absolutely excluded from being explored. For example,
after an initial scan of mrrjjj, make a list of candidate concepts to explore (e.g.,
letter, letter group of letters, successor, predecessor, rightmost) and rigidly stick to it.
The problem with this strategy, of course, is that it gives up flexibility. One or more
concepts not immediately apparent as relevant to the situation (e.g., group length)
might emerge later as being central.

2. All possibilities are equally available and easy to explore, so one can do a “full-width”
search through all concepts and possible relationships that would ever be relevant in
any situation. The problem with this strategy is that in real life there are always
too many possibilities, and it’s not even clear ahead of time what might constitute
a possible concept or relationship for a given situation. If you hear a funny clacking

7



noise in your engine and then your car won’t start, you might give equal weight to the
possibilities that (a) the timing belt has accidentally come off its bearings or (b) the
timing belt is old and has broken. If for no special reason you give equal weight to the
third possibility that your next-door neighbor has furtively cut your timing belt, you
are a bit paranoid. If for no special reason you also give equal weight to the fourth
possibility that the atoms making up your timing belt have quantum-tunneled into a
parallel universe, you are a bit of a crackpot. If you continue and give equal weight
to every other possibility... well, you just can’t, not with a finite brain. But, on the
other hand, there is some chance you might be right about the malicious neighbor, and
the quantum tunneling possibility shouldn’t be forever excluded from your cognitive
capacities or you risk missing a Nobel Prize.

The moral is that all possibilities have to be potentially available, but they can’t all
be equally available. Counterintuitive possibilities (e.g., your malicious neighbor; quantum
tunneling) must be potentially available but must require significant pressure to be considered
(e.g., you’ve heard complaints about your neighbor; you’ve just installed a quantum tunneling
device in your car; every other possibility that you have explored has turned out to be wrong).

The problem of finding an exploration strategy that achieves this goal has been solved
many times in nature. One example is the way ant colonies forage for food. Many ants
wander in random directions away from the nest. When one locates a food source (by sight
or smell), it picks up some of the food and returns to the nest, leaving a pheromone trail.
Other ants follow such trails when they encounter them, following the trails to the food
sources and reinforcing the trails with more pheromone. In this way, the shortest trails
leading to the best food sources attain the strongest scent, and increasing numbers of ants
follow these trails. But at any given time, some ants are still following weaker, less plausible
trails, and some ants are still foraging randomly, allowing for the possibility of new food
sources to be found.

This is an example of what John Holland has called “the balance between exploration and
exploitation” [11]. When promising possibilities are identified, they should be exploited at
a rate and intensity related to their estimated promise, which is being continually updated.
But at all times exploration for new possibilities should continue. The problem is how to
allocate limited resources—be they ants or thoughts—to different possibilities in a dynamic
way that takes new information into account as it is obtained. Ant colonies have solved this
problem by having large numbers of ants follow a combination of two strategies: continual
random foraging combined with a simple feedback mechanism of preferentially following
trails scented with pheromone and laying down additional pheromone while doing so.

The immune system also seems to maintain a near optimal balance between exploration
and exploitation. At any time large numbers of B lymphocytes with different receptors
are available for matching potential antigens; these different receptor types are formed via
random combinations of genetic material in B cell precursors. In this way the immune system
uses randomness to attain the potential for responding to virtually any antigen it encounters.
This potential is realized when an antigen activates a particular B cell and triggers the
proliferation of that cell and the production of antibodies with increasing specificity for the
antigen in question. Thus the immune system exploits the information it encounters in the

8



form of antigens by allocating much of its resources toward targeting those antigens that are
actually found to be present. But it always continues to explore additional possibilities that
it might encounter by maintaining its huge repertoire of different B cells. Like ant colonies,
the immune system combines randomness with highly directed behavior based on feedback.

Holland formalized the exploitation versus exploration balance in terms of a “multi-armed
bandit” and proved some theorems regarding the optimal allocation of resources in uncer-
tain environments in which information is continually being obtained. He proposed these
as candidate general principles for all adaptive systems [11]. Hofstadter proposed a similar,
more specific scheme for exploring such environments: the “parallel terraced scan” [4]. In
this scheme many possibilities are explored in parallel, each being allocated resources accord-
ing to feedback about its current promise, whose estimation is updated continually as new
information is obtained. Like in an ant colony or the immune system, all possibilities have
the potential to be explored, but at any given time only some are being actively explored,
and not with equal resources. When a person (or ant colony, or immune system) has little
information about the situation facing it, the exploration of possibilities starts out being
very random, highly parallel (many possibilities being considered at once) and “bottom-up”:
there is no pressure to explore any particular possibility more strongly than any other. As
more and more information is obtained, exploration gradually becomes more focused (in-
creasing resources are concentrated on a smaller number of possibilities), less random, and
more “top-down”: possibilities that have already been identified as promising are exploited.
As in ant colonies and the immune system, in Copycat such an exploration strategy emerges
from myriad interactions among simple, autonomous, and interacting components.

5 Overview of the Copycat Program

Copycat’s task is to use the concepts it possesses to build perceptual structures—descriptions
of objects, links between objects in the same string, groupings of objects in a string, and
correspondences between objects in different strings—on top of the three “raw”, unprocessed
strings given to it in each problem. The structures the program builds represent its under-
standing of the problem and allow it to formulate a solution. Since for every problem the
program starts out from exactly the same state with exactly the same set of concepts, its
concepts have to be adaptable, in terms of their relevance and their associations with one
another, to different situations. In a given problem, as the representation of a situation is
constructed, associations arise and are considered in a probabilistic fashion according to a
parallel terraced scan in which many routes toward understanding the situation are tested
in parallel, each at a rate and to a depth reflecting ongoing evaluations of its promise.

Copycat’s solution of letter-string analogy problems involves the interaction of the follow-
ing components:

• The Slipnet: A network of concepts, each of which consists of a central node surrounded
by potential associations and slippages. A picture of some of the concepts and rela-
tionships in the current version of the program is given in Figure 2. Each node in

9



A B X Y Z

 predecessor

successorrightmost

leftmost

opposite

first last

links

label nodes

Figure 2: Part of Copycat’s Slipnet. Each node is labeled with the concept it represents
(e.g., A–Z, rightmost, successor, etc.). Some links between nodes (e.g., rightmost–leftmost)
are connected to a label node giving the link’s relationship (e.g., opposite). Each node
has a dynamic activation value (not shown) and spreads activation to neighboring nodes.
Activation decays if not reinforced. Each link has an intrinsic resistance to slippage, which
decreases when the label node is activated.

the Slipnet has a dynamic activation value which gives its current perceived relevance
to the analogy problem at hand, and which therefore changes as the program runs.
Activation also spreads from a node to its conceptual neighbors, and decays if not
reinforced. Each link has a dynamic resistance value which gives its current resistance
to slippage. This also changes as the program runs. The resistance of a link is in-
versely proportional to the activation of the node naming the link. For example, when
opposite is highly active, the resistance to slippage between nodes linked by opposite
links (e.g., successor and predecessor) is lowered, and the probability of such slippages
is increased.

• The Workspace: A working area in which the letters composing the analogy problem
reside and in which perceptual structures are built on top of the letters.

• Codelets: Agents that continually explore possibilities for perceptual structures to build
in the Workspace, and, based on their findings, attempt to instantiate such structures.
(The term “codelet” is meant to evoke the notion of a “small piece of code”, just as
the later term “applet” in Java is meant to evoke the notion of a small application
program.)

Teams of codelets cooperate and compete to construct perceptual structures defining
relationships between objects (e.g., “b is the successor of a in abc”, or “the two i’s in
iijjkk form a group”, or “the b in abc corresponds to the group of j’s in iijjkk”, or “the
c in abc corresponds to the k in kji”). Each team considers a particular possibility for
structuring part of the world, and the resources (codelet time) allocated to each team
depends on the promise of the structure it is trying to build, as assessed dynamically

10



as exploration proceeds. In this way, a parallel terraced scan of possibilities emerges as
the teams of codelets, via competition and cooperation, gradually build up a hierarchy
of structures that defines the program’s “understanding” of the situation with which
it is faced.

• Temperature, which measures the amount of perceptual organization in the system.
As in the physical world, high temperature corresponds to disorganization, and low
temperature corresponds to a high degree of organization). In Copycat, temperature
both measures organization and feeds back to control the degree of randomness with
which codelets make decisions. When the temperature is high, reflecting little percep-
tual organization and little information on which to base decisions, codelets make their
decisions more randomly. As perceptual structures are built and more information is
obtained about what concepts are relevant and how to structure the perception of
objects and relationships in the world, the temperature decreases, reflecting the pres-
ence of more information to guide decisions, and codelets make their decisions more
deterministically.

6 A Run of Copycat

The best way to describe how these different components interact in Copycat is to display
graphics from an actual run of the program. These graphics are produced in real-time as the
program runs. This section displays snapshots from a run of the program on abc ⇒ abd,
mrrjjj ⇒ ? This is the same run that was described in [9]. For details about the implemen-
tation of the program, see [15]. The source code for Copycat, written in Common Lisp, is
publicly available; see http://www.santafe.edu/∼mm for instructions on how to get it.

1. The problem is presented. The picture above displays the Workspace (here, the as-
yet unstructured letters of the analogy problem); a “thermometer” on the left which gives
the current temperature (initially set at 100, its maximum value, reflecting the lack of any
perceptual structures); and the number of codelets that have run so far (zero).

11



2. Thirty codelets have run and have investigated a variety of possible structures. Con-
ceptually, codelets can be thought of as ant-like agents, each one probabilistically following
a path to explore but being guided by the paths laid down by other codelets. In this case the
“paths” correspond to candidate perceptual structures. Candidate structures are proposed
by codelets looking around at random for plausible descriptions, relationships, and groupings
within strings, and correspondences between strings. A proposed structure becomes stronger
as more and more codelets consider it and find it worthwhile. After a certain threshold of
strength, the structure is considered to be “built” and can then influence subsequent struc-
ture building.

In the picture above, dotted lines and arcs represent structures in early stages of consid-
eration; dashed lines and arcs represent structures in more serious stages of consideration;
finally, solid lines and arcs represent structures that have been built. The speed at which
proposed structures are considered depends on codelets’ assessments of the promise of the
structure. For example, the codelet that proposed the a–m correspondence rated it as highly
promising because both objects are leftmost in their respective strings: identity relationships
such as leftmost⇒ leftmost are always strong. The codelet that proposed the a–j correspon-
dence rated it much more weakly, since the mapping it is based on, leftmost ⇒ rightmost,
is much weaker, especially given that opposite is not currently active. Thus the a–m corre-
spondence will be investigated more quickly than the less plausible a–j correspondence.

The temperature has gone down from 100 to 94 in response to the single built structure,
the “sameness” link between the rightmost two j’s in mrrjjj. This sameness link activated
the node same in the Slipnet (not shown), which creates top-down pressure in the form of
specifically targeted codelets to look for instances of sameness elsewhere.

12



3. Ninety-six codelets have run. The successorship fabric of abc has been built. Note
that the proposed c-to-b predecessor link of the previous picture has been out-competed by a
successor link. The two successor links in abc support each other: each is viewed as stronger
due to the presence of the other, making rival predecessor links much less likely to destroy
the successor links.

Two rival groups based on successorship links between letters are being considered: bc
and abc (a whole-string group). These are represented by dotted or dashed rectangles around
the letters. Although bc got off to an early lead (it is dashed while the latter is only dotted),
The group abc covers more objects in the string. This makes it stronger than bc—codelets
will get around to testing it more quickly and will be more likely to build it than to build
bc. A strong group, jjj, based on sameness is being considered in the bottom string.

Exploration of the crosswise a–j correspondence (dotted line in the previous picture) has
been aborted, since codelets that further investigated it found it (probabilistically) too weak
to be built. A c–j correspondence has been built (jagged vertical line); the mapping on which
it is based (namely, both letters are rightmost in their respective strings) is given beneath it.

Since successor and sameness links have been built, along with an identity mapping (right-
most ⇒ rightmost), these nodes are highly active in the Slipnet, and are creating top-down
pressure in the form of codelets to search explicitly for other instances of these concepts. For
example, an identity mapping between the two leftmost letters is being considered.

In response to the structures that have been built, the temperature has decreased to 76.
The lower the temperature, the less random are the decisions made by codelets, so unlikely
structures such as the bc group are even more unlikely to be built.

13



4. The abc and jjj groups have been built, represented by solid rectangles around the
letters. For graphical clarity, the links between letters in a group are not displayed. The
existence of these groups creates additional pressure to find new successorship and sameness
groups, such as the rr sameness group that is being strongly considered. Groups, such as the
jjj sameness group, become new objects in the string, and can have their own descriptions
as well as links and correspondences to other objects. The capital J represents the object
consisting of the jjj group; the abc group likewise is a new object but for clarity a single
letter representing it is not displayed. Note that the length of a group is not automatically
noticed by the program; it has to be noticed by codelets, just like other attributes of an
object. Every time a group node (e.g., successor group, sameness group) is activated in the
Slipnet it spreads some activation to the node length. Thus length is now weakly activated
and creating codelets to notice lengths, but these codelets are not urgent compared with
others and none so far have run and noticed the lengths of groups.

A rule describing the abc ⇒ abd change has been built: “Replace letter-category of
rightmost letter by successor”. The current version of Copycat assumes that the example
change consists of the replacement of exactly one letter, so rule-building codelets fill in the
template “Replace by ”, choosing probabilistically from descriptions that the
program has attached to the changed letter and its replacement, with a probabilistic bias
toward choosing more abstract descriptions (e.g., usually preferring rightmost letter to C).

The temperature has fallen to 53, resulting from the increasing perceptual organization
reflected in the structures that have been built.

14



5. Two-hundred and twenty five codelets have run. The letter-to-letter c–j correspon-
dence has been defeated by the letter-to-group c–J correspondence. Reflecting this, the
rightmost ⇒ rightmost mapping has been joined by a letter ⇒ group mapping underlying
the correspondence. The c–J correspondence is stronger than the c–j correspondence be-
cause the former covers more objects and because the concept group is highly active and
thus seen as highly relevant to the problem. However, in spite of its relative weakness, the
c–j correspondence is again being considered by a new team of codelets.

Meanwhile, the rr group has been built. In addition, its length (represented by the 2 next
to the R) has been noticed by a codelet (a probabilistic event). This event activated the
node length, creating pressure to notice other groups’ lengths.

A new rule, “Replace the letter category of the rightmost letter by ‘D”’, has replaced
the old one at the top of the screen. Although this rule is weaker than the previous one,
competitions between rival structures (including rules) are decided probabilistically, and this
one simply happened to win. However, its weakness has caused the temperature to increase
to 58.

If the program were to stop now (which is quite unlikely, since a key factor in the program’s
probabilistic decision when to stop is the temperature, which is still relatively high), the rule
would be adapted for application to the string mrrjjj as “Replace the letter category of
the rightmost group by ‘D”’, obeying the slippage letter ⇒ group spelled out under the c-J
correspondence. This yields answer mrrddd, an answer that Copycat does indeed produce,
though on very rare occasions.

Codelets that attempt to create an answer run frequently throughout the program (their
attempts are not displayed here) but are not likely to succeed unless the temperature is low.

15



6. Four hundred and eighty codelets into the run, the rule “Replace letter-category of
rightmost letter by successor” has been restored after it out-competed the previous weaker
rule (a probabilistic event). However, the strong c–J correspondence was broken and replaced
by its weaker rival, the c–j correspondence (also a probabilistic event). As a consequence, if
the program were to stop at this point, its answer would be mrrjjk, since the c in abc is
mapped to a letter, not to a group. Thus the answer-building codelet would ignore the fact
that b has been mapped to a group, putting the slippage letter ⇒ group in the workspace.
However, the (now) candidate correspondence between the c and the group J is again being
strongly considered. It will fight again with the c–j correspondence, but will likely be seen
as even stronger than before because of the parallel correspondence between the b and the
group R.

In the Slipnet the activation of length has decayed since the length description given to
the R group hasn’t so far been found to be useful (i.e., it hasn’t yet been connected up with
any other structures). In the Workspace, the diminished salience of the group R’s length
description “2” is represented by the fact that the “2” is no longer in boldface.

The temperature is still fairly high, since the program is having a hard time making
a single, coherent structure out of mrrjjj, something that it did easily with abc. That
continuing difficulty, combined with strong top-down pressure from the two sameness groups
that have been built inside mrrjjj, caused the system to consider the a priori very unlikely
idea of making a single-letter sameness group. This is represented by the dashed rectangle
around the letter m.

16



7. As a result of these combined pressures, the M sameness group was built, to parallel
the R and J groups in the same string. Its length of 1 has been attached as a description,
activating length, which makes the program again consider the possibility that group length
is relevant for this problem. This activation now more strongly attracts codelets to the
objects representing group lengths. Some codelets have already been exploring relations
between these objects and, likely due to top-down pressures from abc to see successorship
relationships, have built a successorship link between the 1 and the 2.

A consistent trio of letter ⇒ group correspondences have been made, and as a result of
these promising new structures, the temperature has fallen to the relatively low value of 36,
which in turn helps to lock in this emerging view.

If the program were to halt at this point, it would produce the answer mrrkkk, which is
its most frequent answer (see Figure 3 below).

8. As a result of length’s continued activity, length descriptions have been attached to
the remaining two groups in the problem, jjj and abc, and a successorship link between
the 2 and the 3 (for which there is much top-down pressure coming from both abc and
the emerging view of mrrjjj) is being considered. Other less likely candidate structures (a

17



bc group and a c–j correspondence) continue to be considered, though at considerably less
urgency than earlier, now that a coherent perception of the problem is emerging and the
temperature is relatively low.

9. The link between the 2 and the 3 was built, which, in conjunction with top-down
pressure from the abc successor group, allowed codelets to propose and build a whole-string
group based on successorship links, here between numbers rather than between letters. This
group is represented by a large solid rectangle surrounding the three sameness groups. Also,
a correspondence (dotted vertical line to the right of the two strings) is being considered
between the two whole-string groups abc and mrrjjj.

Ironically, just as these sophisticated ideas seem to be converging, a small renegade codelet,
totally unaware of the global movement, has had some good luck: its bid to knock down the
c–J correspondence and replace it with a c–j correspondence was successful. Of course, this
is a setback on the global level; while the temperature would have gone down significantly
because of the strong mrrjjj group that was built, its decrease was offset by the now non-
parallel set of correspondences linking together the two strings. If the program were forced
to stop at this point, it would answer mrrjjk, since at this point, as in pictures 4 and 6, the
object that changed, the c, is seen as corresponding to the letter j rather than the group J.
However, the two other correspondences will continue to put much pressure on the program
(in the form of codelets) to go back to the c–J correspondence.

18



Figure 3: A histogram of the different answers Copycat gave over 1000 runs, each starting
from a different random number seed.

10. Indeed, not much later in the run this happens: the c–j correspondence has been
broken and the c–J correspondence has been restored. In addition, the proposed whole-string
correspondence between abc and mrrjjj has been built; underlying it are the mappings
whole ⇒ whole, successor-group ⇒ successor-group, right ⇒ right (direction of the links
underlying both groups), successor ⇒ successor (type of links underlying both groups),
letter-category ⇒ length, and 3 ⇒ 3 (size of both groups).

The now very coherent set of perceptual structures built by the program resulted in a
very low temperature (11), and (probabilistically) due to this low temperature, a codelet
has succeeded in translating the rule according to the slippages present in the Workspace:
letter ⇒ group and letter-category ⇒ length (all other mappings are identity mappings).
The translated rule is “Replace the length of the rightmost group by its successor”, and the
answer is thus mrrjjjj.

It should be clear from the description above that because each run of Copycat is per-
meated with probabilistic decisions, different answers appear on different runs. Figure 3
displays a histogram of the different answers Copycat gave over 1000 runs, each starting
from a different random number seed. Each bar’s height gives the relative frequency of the

19



answer it corresponds to, and printed above each bar is the actual number of runs producing
that answer. The average final temperature for each answer is also given below each bar’s
label, with the standard error in parentheses.

The frequency of an answer roughly corresponds to how obvious or immediate it is, given
the biases of the program. For example, mrrkkk, produced 705 times, is much more im-
mediate to the program than mrrjjjj, which was produced only 42 times. However, the
average final temperature on runs producing mrrjjjj is much lower than on runs producing
mrrkkk (21 versus 43), indicating that even though the latter is a more immediate answer,
the program judges the former to be a better answer, in terms of the strength and coherence
of the structures it built to produce each answer.

7 Summary

To summarize, Copycat makes sense of and perceives analogies between situations in a fluid
and cognitively plausible way via interaction among three main mechanisms:

• Codelets continually investigating possible structurings in the Workspace and making
probabilistic decisions concerning

– what to look at next;

– whether to build a structure there (possibly destroying an existing structure);

– how fast to build it.

Probabilities are used to insure that no possibilities are ruled out in principle, but that
not all possibilities have to be considered.

• The Slipnet, in which concepts

– become active when instances of them are noticed in the Workspace;

– feed back to the Workspace by creating top-down pressure, via codelets, to look
for further instances of themselves; and

– spread activation to their neighbors.

Objects in the Workspace can be mapped onto one another, often requiring slippages
between their associated concepts. The Slipnet defines intrinsic resistance to such
slippages, but slippages become easier when the concept defining the slippage (e.g.,
opposite for the slippage successor ⇒ predecessor) becomes active.

• Temperature, which starts off high and drops as perceptual structures are built (and
rises when they are destroyed). Temperature in turn feeds back to codelets by making
their decisions more random when temperature is high and more deterministic when
temperature is low.

20



Via these mechanisms, Copycat avoids the Catch-22 of perception: you can’t explore
everything, but you don’t know which possibilities are worth exploring without first exploring
them. You have to be open-minded, but the territory is too vast to explore everything; you
need to use probabilities in order that exploration be fair. In Copycat’s strategy, early on
there is little information, resulting in high temperature and high degree of randomness, with
lots of parallel explorations. As more and more information is obtained and fitting concepts
are found, the temperature falls, and exploration becomes more deterministic and more serial
as certain concepts come to dominate. The overall result is that the system gradually changes
from a mostly random, parallel, bottom-up mode of processing to a deterministic, serial, top-
down mode in which a coherent perception of the situation at hand gradually discovered and
gradually “frozen in”. Our claim is that this gradual transition between different modes of
processing is a feature common to cognitive systems and to adaptive systems in general.

While Copycat’s mechanisms have been shown to be successful to a high degree in its
letter-string microworld [15], it remains to be demonstrated that such a system will work
well on more realistic situations requiring a much larger repertoire of concepts (e.g., visual
images). We believe that it will, and this belief is supported by the success of two projects
using architectures similar to Copycat’s: Tabletop, which makes analogies between objects
and relationships on an idealized cafe table [2], and Letter Spirit, which recognizes and
creates letters in different typeface styles on an idealized grid [12]. Copycat has recently
been extended to incorporate “self-watching”, in which the program monitors at a high
level its own actions [13], an essential component for general high-level perception that was
missing in Copycat. Current work in Hofstadter’s group includes extending these ideas to
the task of solving Bongard problems, a beautiful and open-ended class of visual analogy
problems [1, 7]. If successful, this project will go a long way toward the development of a
general cognitive architecture for high-level perception and analogy-making.

8 Epilogue: Copycat and the Immune System

Copycat is one of the “other distributed autonomous systems” referred to in the title of this
book. Copycat was not designed with the immune system in mind; ant colonies and cell
metabolism (which I didn’t discuss here) were the direct biological inspirations. However
there are some interesting parallels between Copycat and the immune system that are worth
pointing out. At the most general level, both systems produce global behavior that emerges
from the interactions among many simple components with local interactions. At a more
specific level, both systems are faced with complex recognition problems that require explo-
ration of many possibilities. They both rely on search controlled by both bottom-up and
top-down forces. Like Copycat, the immune system must have the potential to deal with
any possibility (i.e., pathogen); it cannot a priori exclude possibilities ahead of time. But
the number of possible pathogens is huge and cannot be prepared for ahead of time. Like
Copycat, the immune system uses randomness to avoid this Catch-22. Random combina-
tions are used to construct B-cell receptors from gene libraries, and random mutations allow
the system to find increasingly better matches to antigens during affinity maturation. Also
like Copycat, the immune system’s search is controlled by both bottom-up and top-down

21



aspects. One example of bottom-up search is the continual patrol of B-cells with different
receptors, collectively prepared to approximately match any antigen. Top-down search con-
sists of focused B-cells, which when activated by a match, create similar B-cells to zero in
on the particular antigen that has been detected. As in all adaptive systems, maintaining
the right balance between these two search modes is essential.

More detailed analogies between Copycat and the immune system are possible. For ex-
ample, a Slipnet node’s activation could be said to correspond to a concentration level of
particular B-cells or cytokines: both reflect a particular possibility that the system has
deemed worth exploring. Codelets that explore structures might correspond to lymphocytes
of various kinds that patrol the body seeking signs of pathogen invasion and other kinds
of disequilibrium. To quote from Hofmeyer’s chapter in this volume: “we can abstractly
view lymphocytes as mobile, independent detectors. There are trillions of these lympho-
cytes, forming a system of distributed detection, where there is no centralized control, and
little, if any, hierarchical control. Detection and elimination of pathogens is a consequence
of trillions of cells—detectors—interacting through simple, localized rules.” This sounds
very much like the way codelets work. Going further, high temperature in Copycat might
correspond to fever in the body—the former a signal to Copycat that it must explore more
broadly and intensely; the latter a signal to the body that it must increase the intensity of
the immune response. (Several of these correspondences were proposed by L. Segel, personal
communication.)

Analogies such as these force us to think more broadly about the systems one is building
or trying to understand. If one notices, say, that the role of cytokines in immune signalling is
similar to that of codelets that call attention to particular sites in an analogy problem, one is
thinking at a general information-processing level about the function of a biological entity. Or
if one sees that temperature-like phenomena in the immune system—fever, inflammation—
emerge from the joint actions of many agents, one might get some ideas on how to better
model temperature in a system like Copycat. The main purposes of this chapter have been to
draw the reader’s attention to mechanisms of recognition and search that we have proposed
as general properties of complex systems, to provoke some thought on how these properties
might be implemented in specific complex systems in nature, and to open discussion on how
artificial intelligence and cognitive science might additionally benefit from what is being
learned about such natural systems.

Acknowledgments

Many thanks to Lee Segel for discussions at the Santa Fe Institute on links between dis-
tributed artificial intelligence and the immune system, for inviting me to a very stimulating
workshop, and for helpful comments on an earlier version of this manuscript.

22



References

[1] M. Bongard. Pattern Recognition. Hayden Book Co., Spartan Books, Rochell Park, NJ,
1970.

[2] R. M. French. The Subtlety of Sameness: A Theory and Computer Model of Analogy-

Making. MIT Press, Cambridge, MA, 1995.

[3] D. R. Hofstadter. Analogies and roles in human and machine thinking. Chapter 24 in
[8].

[4] D. R. Hofstadter. The architecture of Jumbo. Chapter 2 in D. Hofstadter, Fluid Concepts

and Creative Analogies, New York, Basic Books, 1995.

[5] D. R. Hofstadter. To seek whence cometh a sequence. Chapter 1 in D. Hofstadter, Fluid
Concepts and Creative Analogies, New York, Basic Books, 1995.

[6] D. R. Hofstadter. Variations on a theme as the crux of creativity. Chapter 12 in [8].

[7] D. R. Hofstadter. Gödel, Escher, Bach: an Eternal Golden Braid. Basic Books, New
York, 1979.

[8] D. R. Hofstadter. Metamagical Themas. Basic Books, New York, 1985.

[9] D. R. Hofstadter and M. Mitchell. The Copycat project a model of mental fluidity and
analogy-making. Chapter 5 in D. Hofstadter, Fluid Concepts and Creative Analogies,
New York, Basic Books, 1995.

[10] D. R. Hofstadter and M. Mitchell. The Copycat project: A model of mental fluidity and
analogy-making. In K. Holyoak and J. Barnden, editors, Advances in Connectionist and

Neural Computation Theory, Volume 2: Analogical Connections, Norwood, NJ, 1984.
Ablex.

[11] J. H. Holland. Adaptation in Natural and Artificial Systems. MIT Press, Cambridge,
MA, 1992. Second edition (First edition, 1975).

[12] G. E. McGraw Jr. Letter Spirit: Emergent High-Level Peception of Letters Using Fluid

Concepts. PhD thesis, Indiana Unversity, Bloomington, IN, 1995.

[13] J. B. Marshall. Metacat: A Self-Watching Cognitive Architecture for Analogy-Making

and High-Level Perception. PhD thesis, Indiana Unversity, Bloomington, IN, 1999.

[14] M. J. Meredith. Seek-Whence: A Model of Pattern Perception. PhD thesis, Indiana
Unversity, Bloomington, IN, 1986.

[15] M. Mitchell. Analogy-Making as Perception: A Computer Model. MIT Press, Cam-
bridge, MA, 1993.

[16] M. Mitchell and D. R. Hofstadter. Perspectives on Copycat: Comparisons with recent
work. Chapter 6 in D. Hofstadter, Fluid Concepts and Creative Analogies, New York,
Basic Books, 1995.

23


