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Abstract

We present results from experiments in which a genetic algorithm (GA) was used to evolve
cellular automata (CAs) to perform a particular computational task—one-dimensional den-
sity classification. We look in detail at the evolutionary mechanisms producing the GA’s
behavior on this task and the impediments faced by the GA. In particular, we identify four
“epochs of innovation” in which new CA strategies for solving the problem are discovered by
the GA, describe how these strategies are implemented in CA rule tables, and identify the
GA mechanisms underlying their discovery. The epochs are characterized by a breaking of
the task’s symmetries on the part of the GA. The symmetry breaking results in a short-term
fitness gain but ultimately prevents the discovery of the most highly fit strategies. We dis-
cuss the extent to which symmetry breaking and other impediments are general phenomena
in any GA search.

1. Introduction

Cellular automata (CAs) are spatially-extended discrete dynamical systems whose archi-
tecture has many desirable features for a large class of parallel computations. In scientific
modeling applications, CAs have been used to simulate, for example, magnetic spin sys-
tems [15, 90], fluid dynamics [21, 27], chemical oscillations [53, 64], crystal growth [52, 65],
galaxy formation [30], stellar accretion disks [77], dynamics in cytoskeletal lattices [82], and
the formation of biological patterns (e.g., the intricate fractal patterns seen on mollusk
shells [11], or vertebrate pigment patterns [92]). Common to all these modeling applications
is the belief that CAs can capture essential features of physical systems in which large-
scale behavior arises from the collective effect of large numbers of locally interacting simple
components. In engineering applications, CAs have been used to perform, among other
things, parallel formal-language recognition [70, 81] and a range of image-processing tasks
[55, 72, 73, 76, 83, 93]. There are many other potential engineering applications of CAs,
such as forecasting, spatio-temporal noise-reduction, the discovery of coherent structures in
data, texture detection, and so on.

The massive parallelism and local connection architecture of CAs, as well as their ca-
pacity for resistance to error and noise, means that hardware implementations have the
potential for extremely fast and reliable computation that is robust to noisy input data and
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component failure [28]. The standard approach to parallel computation is to split up a
problem into independent modules that are then parceled out to different processors, solved
simultaneously, and the piecewise solutions recombined. In contrast, a CA performs com-
putation in a distributed fashion on a spatially-extended lattice. CAs suggest new ways of
parallelizing problems that are hard to split up and parcel out. Recent work on CAs has
yielded much new insight into the mechanisms by which complex behavior can arise in non-
linear spatially-extended systems with local interactions (e.g., see [23, 34, 88, 91]). However,
little is known about how to harness this complex behavior to perform useful computation,
since in general it is hard to predict, much less design, the behavior of such systems. The
study of CA-based information processing is a case of the general problem of harnessing the
computational power of spatially-extended dynamical systems. The difficulty of designing
CAs to have desired behavior or to perform a particular task has up to now severely limited
their applications in science and engineering, and for general computation. Finding a way
to automate the design of CAs would thus have great significance for a number of fields.

In this paper we describe research on using genetic algorithms (GAs) to evolve CAs
to perform computations. GAs are search and optimization methods based on ideas from
natural genetics and evolution [19, 31, 42, 56]. A GA works on populations of “chromosomes”
that represent candidate solutions to a given problem, applying “genetic” operators such as
fitness-based reproduction, crossover, and mutation to members of the population over a
number of “generations”. GAs have become increasingly popular in recent years in machine
learning and other disciplines because of their utility in a range of applications. Examples of
application areas include engineering design (e.g., aircraft design [10], circuit design [80], and
engine-turbine design [71]), operations research (e.g., [4, 36]), automatic programming (e.g.,
[40, 46]), neural-network design (e.g., [8, 12, 38, 58, 62, 33]), robot control (e.g., [22, 39, 18]),
and molecular biology (e.g., DNA sequence assembly [69] and protein-structure prediction
[17, 79, 89]). GAs have also been used as scientific models of evolutionary processes in
natural systems. Examples include models of economic systems (e.g., [3, 44]), models of the
immune system (e.g., [26]), models of ecological phenomena such as biological arms races,
host-parasite co-evolution, symbiosis, and resource flow in ecologies (e.g., [5, 6, 13, 14, 40,
42, 43, 45, 50, 51, 67, 74, 75, 85]), models of phenomena in population genetics such as
the evolution of recombination (e.g., [9, 24, 54, 78]), and models of the interaction between
evolution and learning (e.g., [1, 2, 7, 25, 41, 63, 57, 68, 86, 87]).

The goals of our research are: (1) to better understand the ways in which CAs can per-
form computations; (2) to learn how best to use GAs to evolve computationally useful CAs;
and (3) to understand the mechanisms by which evolution—as modeled by a GA—can cre-
ate complex, coordinated global behavior in a system consisting of many locally interacting
simple parts. CAs are perhaps the simplest examples of such systems. In nature, evolu-
tion has resulted in high levels of computational capability within much more complicated
systems—a preeminent example being the human nervous system.

In this paper we analyze the GA’s behavior in evolving one-dimensional CAs to perform
a particular computational task. We investigate both the mechanisms underlying the GA’s
performance and the impediments it faces in finding CAs that achieve high performance.
We argue that the results of our analysis are relevant not only to the particular task we have
chosen, but to GA behavior in general.
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2. CA Review and Terminology

A CA is spatial lattice of N cells, each of which is in one of k states at time t. Each cell
follows the same simple rule for updating its state; the cell’s state s at time t + 1 depends
on its own state and the states of some number of neighboring cells at time t. For one-
dimensional CAs, the neighborhood of a cell consists of the cell itself and r neighbors on
either side. The number of states k and the radius r are parameters of the CA.

The CA starts out with some initial configuration (IC) of cell states, and at each time
step the states of all cells in the lattice are synchronously updated. We use the term “state”
to refer to the local state s — the value of a single cell. Here we will restrict our attention
to binary (k = 2) CAs with s ∈ {0, 1}. The state at site i is denoted by si. The term
“configuration” will refer to the pattern of local states over the entire lattice. This is the
CA’s global state, denoted s = s0s1 . . . sN−1. The density of 1s in a configuration s will be
denoted ρ(s).

The equations of motion φ for a CA (the CA “rule”) can be expressed as a look-up table
that lists, for each local neighborhood, the update state for the neighborhood’s central cell.
A sample rule (the “majority” rule) for a one-dimensional “elementary” (k = 2, r = 1) CA
is the following. Each possible neighborhood η is given along with the “output bit” s = φ(η)
to which the central cell is updated.

η 000 001 010 011 100 101 110 111
s 0 0 0 1 0 1 1 1

In words, this rule says that for each neighborhood of three adjacent cells, the new state
is decided by a majority vote among the three cells. At time step t, this look-up table is
applied to each neighborhood in the current lattice configuration, respecting the choice of
boundary conditions, to produce the configuration at t + 1. The configuration at time t
will be denoted st = s0

t s
1
t . . . sN−1

t , where si
t is the local state of site i at time t. The CA

equations of motion then specify a spatially-local update of a site’s value as a function of
its neighborhood: si

t+1 = φ(ηi
t), where ηi

t is the neighborhood pattern about site i at time
t. This local update induces a global mapping Φ that takes a lattice configuration at t to a
new configuration at t + 1: st+1 = Φ(st). This can also be denoted in terms of the tth iterate
of Φ as: st+1 = Φt+1(s0).

The λ value of a binary CA is defined as the fraction of 1s in the output bits of its rule φ.
For example, the λ value of the majority rule is 1/2. The λ parameter was originally used in
studies of CA behavior [47], but, as we will show, it turns out to be useful in understanding
the GA’s behavior. (There is a simple interpretation of how λ is related to a CA’s behavior.
λ gives the density of 1s in the first iterate of a random initial configuration s0: ρ(s1) = λ.)

The behavior of a one-dimensional CA is often presented as a “space-time diagram”, a
plot of st over a range of time steps. Two examples are given in Figure 1. These show
the actions of the Gacs-Kurdyumov-Levin (GKL) CA [29] on two random ICs; one with
ρ0 > 1/2 and the other with ρ0 < 1/2 . (Here and later on we use the shorthand ρ0 for the
density ρ(s0) of an IC.) In both cases, the CA relaxes to a fixed pattern—in one case all 0s
(ρ(s∞) = 0) and in the other case all 1s (ρ(s∞) = 1). The GKL CA will be discussed further
below.
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Figure 1: Two space-time diagrams for the binary-state Gacs-
Kurdyumov-Levin CA. N = 149 sites are shown evolving, with time
increasing down the page, from two different ICs over 149 time steps.
Here cells with state 0 are white, and cells with state 1 are black. In
(a), ρ0 ≈ 0.48, and in (b), ρ0 ≈ 0.52. Notice that by the last time
step the CA has converged to a fixed pattern of (a) all 0s and (b) all
1s. In this way the CA has classified the ICs according to whether
ρ0 > 1/2 or ρ0 < 1/2.

In this paper we restrict the discussion to one-dimensional CAs with k = 2 and r = 3,
and with spatially periodic boundary conditions: si

t = si+N
t . We most often set N to 149,

but also look at the behavior of CA on larger N (up to 999).

3. Previous Work

In [61] we reported results of evolving one-dimensional CAs to perform a particular density
classification task: the “ρc = 1/2” task. This work was a re-examination of an experiment
performed by Packard [66], meant to test the hypothesis that a GA evolving CA rules to
perform a difficult computational task will tend to select rules close to conjectured phase
transitions in rule space between ordered and chaotic behavior (“the edge of chaos”). In [66],
the locations of these phase transitions were claimed to correspond to “critical” λ values,
λc. In [66] the GA tended to select rules close to these critical values; these results were
interpreted by Packard as supporting the “edge of chaos” hypothesis. As reported in [61],
however, our similar experiments did not support this hypothesis. We also gave a theoretical
argument that the ρc = 1/2 task requires rules with λ = 1/2 rather than the λc values given
in [66]. We argued that the results reported in [66] were an artifact of the particular GA
used there rather than due to any intrinsic computational advantage of rules with λ = λc,
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and concluded that to date there is no direct experimental evidence linking computational
capability with λ in cellular automata. For a review of these issues and of relations among
computation, dynamics, and cellular automata, see [59].

Although the results in [66] were not replicated in our experiments, we did observe several
interesting phenomena in the GA’s behavior. In [61] we qualitatively described the “epochs
of innovation” in the GA’s search for successful rules, as well as a breaking of the task’s
symmetries on the part of the GA. We interpreted the symmetry-breaking as impeding the
GA’s ability to find the best-performing rules. We also described the competing pressures
of selection and “combinatorial drift”. In this paper we analyze these phenomena in detail
and explain the mechanisms underlying the GA’s behavior and the impediments the GA
encounters.

4. The Computational Task

The ρc = 1/2 task is defined as follows. If ρ0 < ρc, then the CA is to relax, after a certain
number M of time steps, to a fixed pattern of all 0s; otherwise, it is to relax to a fixed
pattern of all 1s. The desired behavior is undefined at ρ0 = ρc; this case will be precluded
by using odd N . On a N site lattice then we have

Tρc(N, M) =






ΦM (s0) = 0N if ρ(s0) < ρc

ΦM (s0) = 1N if ρ(s0) > ρc

undefined if ρ(s0) = ρc





∀s0 ∈ {0, 1}N

In this notation the ρc = 1/2 task is denoted T1/2. This task is an example of “useful
computation” in our characterization of the different types of computation in CAs [61]. That
is, the global mapping ΦM is interpreted as a program for performing a useful computation,
the IC s0 is interpreted as the input to that program, and the CA runs for some specified
number M of time steps or until it reaches one of a set of “goal” patterns, 0N or 1N . The
final pattern is interpreted as the output.

The task T1/2 is interesting for a number of reasons. Density classification is closely
related to a number of image-processing tasks, and studying simple versions of such tasks in
one dimension will help in understanding how to use the GA to scale up to more complex
two-dimensional tasks. In addition, the task is nontrivial for a small-radius (r # N) CA,
since density is a global property of a configuration, whereas a small-radius CA relies only
on local interactions. In other words, the task difficulty derives from the fact that a CA
is specified by φ but the useful computation is effected by the global map ΦM . In fact,
the minimum amount of memory for T1/2 is proportional to log(N), since the equivalent of
a counter register is required to track the excess of 1s in a serial scan of the IC. In other
words, the task requires computation which corresponds to the recognition of a non-regular
language. Since the 1s can be distributed throughout the CA lattice, the CA must transfer
information over large space-time distances (≈ N).

T1/2 possesses two symmetries. Denoting the task’s global mapping of strings s ∈ {0, 1}N

to classifications {LO, HI} by T , these are given as follows.

1. If an IC s0 is spatially reversed on the lattice, T gives the same classification. That
is, T (s0) = T (Rs0), where the symmetry operator R reverses the order of the bits in
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s0.

2. If all the bits in s0 are flipped (i.e., 1s are exchanged with 0s and 0s with 1s), then
T gives the opposite classification. That is, T (s0) = FT (Fs0), where the symmetry
operator F flips the bits in s0. F is its own inverse.

Thus, there are at least two symmetries in T1/2 that we expect any high-performance can-
didate rule to respect—either locally (i.e., with respect to individual neighborhoods in the
rule table φ) or globally (i.e., with respect to Φ, the global mapping), or both.

The second symmetry of T1/2 has an important consequence when interpreted with re-
spect to ρ0. Recall that on exactly half the possible ICs — the low density s0 — the desired
behavior is to relax to a fixed point of all 0s, and on the other half — the high density s0

— the desired behavior is to relax to a fixed point of all 1s. This ρ0 symmetry requires that
any rule that performs this task has λ = 1/2. Suppose, for example, a rule that carries out
the T1/2 task has λ < 1/2. This implies that for the majority of neighborhoods η, φ(η) = 0.
This, in turn, means that there will be some s0 with ρ(s0) > ρc on which the action of
the rule will decrease ρ(s). This is the opposite of the desired action. If the rule acts to
decrease ρ(s), it risks producing an intermediate configuration st′ with ρ(st′) < ρc. This then
would lead, under the original assumption that the rule carries out the task correctly, to a
fixed point of all 0s, misclassifying s0. A similar argument holds in the other direction for
λ > 1/2. This informal argument shows that a rule with λ %= 1/2 will misclassify certain ICs.
Generally, the further away the rule is from λ = 1/2, the larger the fraction of misclassified
ICs.

5. The Strategy of a Hand-Designed CA

Does there exist a CA that can perform the ρc = 1/2 task? It is possible that no CA exists
which performs the task perfectly for all N . However, a k = 2, r = 3 rule designed by
Gacs, Kurdyumov, and Levin (the GKL rule) [29] appears to perform the task with error
decreasing as N → ∞ [48]. (We are not aware of any proof of this, however.) The observed
classification performance of the GKL rule as a function of ρ0 is given in Figure 2 for N =
149, 599, and 999. To make this plot, we ran the GKL rule on 500 randomly generated ICs
close to each of 19 densities ρ ∈ [0.0, 1.0]. The fraction of correct classifications was then
plotted at each ρ0. The rule was run either until a fixed point was reached or for a fixed
maximum number of time steps M = 10 × N .

Figure 2 indicates that all the misclassifications occur for ρ0 ≈ ρc, with the width of the
error region decreasing as N increases. At ρ0 = ρc, in fact, it appears no better than an
unbiased random classification. We found that most errors were a result of relaxing to the
wrong fixed point (e.g., all 0s for ρ0 > ρc). For future reference note that on an N = 149
lattice the GKL rule’s performance on ρc = 1/2 classification is ≈ 0.972 when averaged over
104 ICs uniformly distributed in 19 equally-spaced ρ bins.

The GKL rule is instructive for the density-classification task in that it happens to give
a concrete, though approximate, solution to the optimization facing the GA. The manner
in which it implements the required computation, its “strategy”, is of equal importance.
The rule’s “strategy” here refers to the behavioral elements employed during its temporal
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Figure 2: Experimental performance of the GKL rule as a function
of ρ0 for the ρc = 1/2 task. Performance plots are given for three
lattice sizes: N = 149 (the size of the lattice used in the GA runs),
599, and 999. Note that the N = 599 and N = 999 curves are almost
indistinguishable. (This figure differs slightly from Figure 4 in [61],
since 21 density bins were used there.)

evolution that effect the classification.

It should be emphasized, however, that the GKL rule was invented not for the purpose
of performing any particular computational task, but rather as part of studies of reliable
computation and phase transitions in one spatial dimension. The goal was to find a rule
whose behavior is robust to small errors in the rule’s update of the configuration. Reliable
computation in this context meant the robust storage of a single bit of information in the
presence of arbitrarily small noise. A zero or one was encoded as the CA configuration being
close to an all 0s or all 1s pattern, respectively. In the absence of noise, it has been proved that
the GKL rule has only two attracting patterns, either all 0s or all 1s [20]. Attracting patterns
here are those invariant patterns which, when perturbed a small amount, return to the same
pattern under the noise-free rule. Figure 2 shows that the basins of attraction for the all-1
and all-0 patterns are not precisely the ICs with ρ0 > 1/2 or ρ0 < 1/2, respectively. If they
did coincide then the GKL rule would exactly implement ρc = 1/2-density classification.

The GKL rule is given by an equation of motion φ that updates the current configuration
st = s0

t , s
1
t , . . . , s

N−1
t as follows

si
t+1 = φ(ηi

t) =

{
majority[si

t, s
i−1
t , si−3

t ] if si
t = 0

majority[si
t, s

i+1
t , si+3

t ] if si
t = 1

In words, this rule says that for each neighborhood ηi of seven adjacent cells, if the state of
the central cell is 0, then its new state is decided by a majority vote among itself, its left
neighbor, and the cell three sites to the left. Likewise, if the state of the central cell is 1,
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then its new state is decided by a majority vote among itself, its right neighbor, and the cell
three sites to the right.

By listing the neighborhoods in lexicographic order, increasing from 0000000 to 1111111,
the output bits of the GKL rule table can be given by a string C as follows.

C = 00000000010111110000000001011111 (5.1)

00000000010111110000000001011111

00000000010111111111111101011111

00000000010111111111111101011111

This lexicographic ordering is how CA rule tables will be represented as chromosomes to the
GA. As expected, the GKL rule’s λ value is exactly 1/2.

Locally in space-time the GKL dynamic φ does not satisfy the task symmetries individu-
ally. Over one time step it does so in a composite way: φ(η) = F ◦φ(F ◦Rη). That is, if the
neighborhood pattern is spatially-reversed and the bits are flipped, the opposite output bit
results. This can be seen in Figure 1. Roughly speaking, inverting white to black and black
to white and spatially reversing the patterns takes the downward pointing cross-hatched
region in a black sea (Figure 1(b)) to the same in a white sea (Figure 1(a)). This composite
symmetry is more stringent than that required by T1/2. Moreover, under the lexicographic
ordering of neighborhoods, the composite symmetry imposes constraints on pairs of output
bits that are spread throughout C. The functionality of contiguous bits is a feature to which
the GA’s genetic operators can be sensitive.

Typical space-time behaviors of the GKL rule for ICs with ρ0 < ρc and ρ0 > ρc were
shown in Figure 1. It can be seen that, although the patterns eventually converge to fixed
points, there is a transient phase during which a spatial and temporal transfer of information
about local regions takes place. This local information interacts with other local information
to produce the desired final state. Very crudely, the GKL rule successively classifies “local”
densities with a locality range that increases with time. In regions where there is some
ambiguity, a “signal” is propagated. This is seen either as a checkerboard pattern propagated
in both spatial directions or as a vertical white-to-black boundary. These signals indicate
that the classification is to be made at a larger scale. Note that regions centered about each
signal locally have ρ = ρc. The consequence is that the signal patterns can propagate, since
the density of patterns with ρ = ρc is neither increased nor decreased under the rule.

In this way, local information processing at later times classifies larger patches of the IC.
In a simple sense, this summarizes the rule’s “strategy” for performing the computational
task. But how is the strategy related to the CA’s dynamical behavior? The overall strategy
can be decomposed into the CA’s intrinsic computational elements: domains, particles, and
particle interactions [37]. There are three time-invariant spatially-homogeneous domains: (i)
all white, W = 0∗, (ii) all black, B = 1∗, and (iii) checkerboard, # = (10)∗

⋃
(01)∗. The

results in [20] establish that W and B are regular attractors, as defined in [37]. When the
domains are filtered out using the methods of [16], one finds that the domain boundaries
form six particles, the first five of which are time-invariant. These are listed in Table 1.
The types of interactions between particles are also evident when the space-time diagrams
are filtered as in [16]. There are two annihilative interactions: c + b → ∅ and d + e → ∅.
Three of the interactions are reactive: a + d → c, b + a → e, and c + e → a. There is one
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Particle Wall Type Velocity
a WB 0
b #W 1
c W# 3
d B# -1
e #B -3
f BW 0

Table 1: The six particles generated by the GKL CA.

spontaneous decay: f → d + b. At moderate to long times, it is these particle interactions
which perform the local, but “emergent” logic that classifies successively larger portions of
the IC. (A more complete analysis along these lines will be presented elsewhere.) As will be
seen shortly, dynamical structures like these, and a few others, will be what the GA takes
advantage of in evolving CA to implement the computational task.

6. Details of the GA and CAs in Our Experiments

Following Packard [66], we used a form of the GA to evolve one dimensional k = 2, r = 3 CAs
to perform the ρc = 1/2 task. The k and r values were chosen to match those of the GKL
rule. The GA begins with a population of P randomly generated rules: the “chromosomes”,
which are strings containing the rule table output bits. Like the bit-string listing of the
GKL rule given above (equation 5.5.2), the output bits are given in lexicographic order of
neighborhood patterns. For k = 2, r = 3 rules, the chromosomes representing rules are of
length 22r+1 = 128. The size of the rule space the GA searches is thus 2128—far too large for
any kind of exhaustive search.

The fitness of a rule in the population is calculated by: (i) randomly choosing I ICs that
are uniformly distributed over ρ0 ∈ [0.0, 1.0], with exactly half with ρ0 < ρc and half with
ρ0 > ρc; (ii) running the rule on each IC either until it arrives at a fixed point or for a
maximum of M time steps; (iii) determining whether or not the final pattern is correct—i.e.,
sM = 0N with ρ0 < ρc and sM = 1N with ρ0 > ρc. ρ0 is never exactly 1/2, since N is chosen
to be odd. The rule’s fitness is the fraction of the I ICs on which the rule produces the
correct final pattern.

This fitness function was termed “performance fitness” in [61]. It differs from “propor-
tional fitness” in which the rule is given partial credit equal to the fraction of correct bits in
the final pattern. The runs using performance fitness produced qualitatively similar results
to those using proportional fitness [61], and in this paper we restrict our attention to the
former. We denote the performance-fitness function using I ICs by FI .

It should be pointed out as an aside that sampling ICs with uniform distribution over
ρ ∈ [0.0, 1.0] is highly biased with respect to an unbiased distribution of ICs, which is
binomially distributed over ρ ∈ [0.0, 1.0], and very strongly peaked at ρ = 1/2. However,
preliminary experiments indicated a need for such a biased distribution in order for the GA
to make progress in early generations. As we will discuss below, this biased distribution
turns out to impede the GA in later generations because, as increasingly fitter rules are
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evolved, the IC sample becomes less and less challenging for the GA.

Our GA works as follows. At each generation:

1. A new set of I ICs is generated.

2. FI(φ) is calculated for each rule φ in the population.

3. The population is ranked in order of fitness. (The ranking of rules with equal fitness
is decided at random.)

4. A number E of the highest fitness (“elite”) rules is copied without modification to the
next generation.

5. The remaining P − E rules for the next generation are formed by crossovers between
randomly chosen pairs of elite rules. The parent rules are chosen from the elite with
replacement. The offspring from each crossover are each mutated m times.

This defines one generation of the GA; it is repeated G times for one run of the GA. An
experiment consists of a set of runs with identical parameters but different random number
seeds.

Our experiments used single-point crossover, which takes two strings, selects a position
at random, and forms two offspring by exchanging parts of the strings before and after that
position. Mutation consists of flipping a randomly chosen bit in a string.

The fitness function FI is an estimate of the true fitness F2N . It is a random variable,
in fact, since the precise value it returns for a given rule depends on the particular set of
I ICs used to test the rule. Thus a rule’s fitness can vary stochastically from generation
to generation. For this reason, at each generation the entire population, including the elite
rules, is re-evaluated on a new set of ICs.

The parameter values in our main experiment were the following. (Subsequent sections
will describe other experiments in which some parameter values were modified.) For each
CA in the population: N = 149; I = 100, with ICs uniformly distributed over ρ0 ∈ [0.0, 1.0],
half with ρ0 < ρc and half with ρ0 > ρc; and M ≈ 320. Each time a CA was simulated, M
was chosen from a Poisson distribution with mean 320. This mean is the measured maximum
amount of time for the GKL CA to reach an invariant pattern over a large number of ICs
on lattice size 149. Varying M prevents overfitting of rules to a particular M ; see [61]. M
was held to approximately 320 in order to force the GA to evolve rules that would perform
the computation in at most the maximum amount of time taken by the GKL rule. To test
the effect of this limit, we performed some experiments setting M to 10 × N . These runs
produced rules with similar strategies to those produced when M ≈ 320. The only difference
was that, not too surprisingly, the similar strategies took longer to reach a fixed point.

In [61], I was set to 300, but we later found that setting I to 100 did not significantly
change the results of our experiments and greatly reduced the required computation time.
For the GA runs the chromosomes in the initial population were uniformly distributed over
λ ∈ [0.0, 1.0] and we set P = 100; E = 20; m = 2; and G = 100.

In GA parlance, our GA has a “generation gap”—the fraction of new strings in the next
generation—of 1 − E/P = 0.8. That is, once the population is ordered according to fitness,
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the top 20% of the population—the set of elite strings—is copied without modification into
the next generation. Since testing a rule on 100 ICs provides only an approximate gauge
of the true fitness, this relatively small generation gap was a good way of making a “first
cut” and allowing rules that survive to be tested over more ICs. Since a new set of ICs
was produced every generation, rules that were copied without modification were always
retested on this new set. If a rule performed well and thus survived over a large number of
generations, then it was likely to be a genuinely better rule than those that were not selected,
since it was tested with a large set of ICs. An alternative method would be to test every rule
in each generation on a much larger set of ICs, but this would waste computation time. Too
much effort, for example, would go into testing very weak rules, which can safely be weeded
out early using our method. As in most GA applications, in our GA the fitness-function
evaluation dominates the required computational resources.

7. The GA’s Epochs of Innovation

In [61] we qualitatively described a series of “epochs of innovation” that we observed in the
GA runs using the proportional fitness function. We defined the “onset” of an epoch to be the
generation at which a rule with a significant innovation in strategy was discovered. The onset
generation of each epoch corresponded to a marked jump in the best fitness measured in the
population. In this section we describe in more detail similar phenomena that we observed
in a set of experiments using F100 that were performed subsequent to those reported in [61].
The account of the epochs given here differs slightly from—and is more rigorous than—that
given in [61]. We will distinguish the onset generation from the “takeover” generation in
which all or almost all of the elite rules implement the epoch’s strategy.

We performed a total of 50 runs of the GA with the parameters given above. We also
performed 50 runs of the GA with no crossover, 50 runs of the GA with no crossover and an
initial population clustered close to λ = 1/2, and 50 runs of a Monte Carlo search method.
Some statistics from these various runs are given in Table 2. Those given in columns 2–4
will be discussed in Section 11.

Figure 3 displays the best fitness at each generation for two typical GA runs (with
crossover). The best fitnesses found under F100 ranged from 0.9–1.0. The standard deviation
of F100, when run 100 times on the same rule, is approximately 0.02. Naturally, it would be
preferable to use a larger number of ICs to evaluate fitness during the evolution process, but
this is computationally expensive. To obtain a truer value for best fitness after each run,
we evaluated each of the best rules at the last generation of each run with 104 randomly
chosen ICs, uniformly distributed over ρ ∈ [0.0, 1.0]. This fitness function is denoted F104 .
Under F104 , with the exception of one rule in the most successful of the 50 runs, all of the
best fitnesses were between 0.883 and 0.936. The standard deviation of F104 , when run 100
times on the same rule, is approximately 0.002. On the most successful of the 50 runs, a rule
with F104 = 0.945 was discovered. On one an addition run, performed subsequent to the set
of 50 runs described in this paper, the GA discovered a rule with an even higher fitness—
F104 = 0.954. These two rules—to be discussed later—were substantially different from those
found in typical runs; one of them had behavior very similar to that of the GKL rule. Recall
that under F104 , the fitness of the GKL rule is 0.972. Under F104 , this is a significantly higher
level of fitness than the level achieved in any of the GA runs. Therefore, the GA did not
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GA, xover GA, no xover GA, no xover, initpop 1/2 Monte Carlo
Runs reaching Epoch 3 46/50 (92%) 13/50 (26%) 22/50 (44%) 21/50 (42%)
Runs used in averages 44/50 13/50 22/50 21/50

T2 3.6 (3.3) 65.9 (12.9) 39.3 (20.6) 44.6 (25.6)
T3 − T2 3.8 (2.8) 9.9 (5.3) 7.6 (3.5) 2.5 (2.6)

Table 2: Fraction of runs reaching Epoch 3, fraction of runs used to
compute averages (for “GA, xover” case, two outlyer runs were om-
mitted), mean generations to onset of Epoch 2 (T2), and mean length
of Epoch 2 in generations (T3 − T2) for those runs reaching Epoch 3
by generation 99 in four different experiments. Standard deviations
are given in parentheses. The experiments are: the original experi-
ment (“GA, xover”), an experiment in which crossover was turned off
(“GA, no xover”), an experiment in which crossover was turned off
and the strings in the initial GA population all had λ ≈ 1/2, and an
experiment in which a Monte Carlo method instead of a GA was used
to search the space of CA rules. The last three will be discussed in
Section 11.

succeed in evolving the GKL rule or a rule at an equal level of performance, though on one
run it came close. On the other runs, the GA evolved a different set of strategies than ones
that might be expected from the GKL rule. Here we will primarily discuss the GA’s typical
behavior on the ρc task rather than its much rarer but more successful behavior.

The two plots in Figure 3 have four similar large-scale features, which turn out to cor-
respond to four epochs of innovation. As was defined in [61], the onset of each epoch
corresponds to the discovery of a new, higher-fitness strategy. The onset generation of each
new epoch was determined by examining the actual strategies carried out by the elite rules
in each run—i.e., the actual space-time dynamics of each rule. The onset generations are
indicated in Figures 3. At generation 0, the onset of Epoch 1, the best fitness is 0.5 and
remains at that level for several generations. Then there is a gradual or sharp rise in best
fitness to F100 ≈ 0.53− 0.70 at the onset of Epoch 2. This is followed by a sharp rise to 0.80
or higher at the onset of Epoch 3. The sharp rise is followed by a sharp or gradual rise to 0.9
or higher, corresponding to the onset of Epoch 4. The fitness then stays relatively constant,
with moderate fluctuations arising from the stochastic nature of F100. These same large-scale
features are seen in the best-fitness time histories for almost every run. We examined rules in
each run at different stages and, in almost all runs, observed roughly the same progressions
through epochs and similar strategies at each epoch. Out of the 50 GA runs performed, 46
displayed a best-fitness plot similar to those in Figure 3. The only major differences were
the generation of onset of Epoch 2 (T2) and the length of Epoch 2 (T3 − T2, where T3 is the
generation of onset of Epoch 3). On a small number of runs, the GA jumped from Epoch 1
directly to Epoch 3 without passing through Epoch 2.

T2 and T3 are defined by the emergence of new strategies, but they can be determined
from best fitness values. We found that, with very few execptions, T2 corresponded to the
best fitness rising to 0.52 or higher, and T3 corresponded to the best fitness rising to 0.78 or

13



0

Time

148
148Site0

(a)

0

Time

148
148Site0

(b)
Figure 4: Two spacetime diagrams for an Epoch 1 rule with λ ≈ 0.05.
In (a), ρ0 ≈ 0.40 and in (b), ρ0 ≈ 0.67.

higher. We used these indicators to calculate the mean values of T2 and T3 − T2 over 44 of
the 50 runs. These means are given in the first column of Table 2. Two “outlier” runs were
omitted from these averages. In these, T2 = 48, T3 = 61 and T2 = 49, T3 = 58 respectively.
The best fitnesses in the remaining four runs never went beyond 0.5; we assume that if those
runs had been allowed to continue, Epochs 2–4 eventually would have been reached.

The common strategies implemented by the best rules in different epochs in almost all
runs are illustrated by the space-time diagrams in Figures 4–7. These are discussed in order
below.

Epoch 1: Best rules specialize on low ρ0 or high ρ0

In Epoch 1 there are two best-performing strategies: rules that always relax to a fixed point
of all 0s and rules that always relax to a fixed point of all 1s. Figure 4 illustrates the former
strategy on two ICs with low and high ρ0, respectively. Since exactly half the ICs at each
generation have ρ0 < ρc and exactly half have ρ0 > ρc, each of these strategies is correct on
exactly half the ICs, so each has fitness 0.5. This default behavior is hardly worthy of the
name “strategy”, but these rules perform significantly better than randomly chosen rules,
which classify almost no ICs correctly. Since the rules in the initial populations are uniformly
distributed over λ ∈ [0.0, 1.0], the initial population always contains both very low and very
high λ rules, which tend to have this behavior. This is why the best fitness in the initial
population is almost always 0.5.
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Figure 5: Three spacetime diagrams for an Epoch 2 rule with λ ≈ 0.33.
In (a), ρ0 ≈ 0.37, in (b), ρ0 ≈ 0.86, and in (c), ρ0 ≈ 0.97.
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Figure 6: Two spacetime diagrams for an Epoch 4 rule with λ ≈ 0.38
that implements Strategy 1. In (a), ρ0 ≈ 0.41 and in (b), ρ0 ≈ 0.52.

Epoch 2: Best rules correctly classify additional “extreme” ρ0

At Epoch 2, the GA discovers rules that, while similar in behavior to Epoch 1 rules, correctly
classify some additional ICs with extreme ρ0. The behavior of one such rule is illustrated
in Figure 5. Like the rule illustrated in Figure 4, this rule is a “low-ρ0 specialist”. But
unlike the previous rule, it correctly classifies some very high ρ0 ICs as well. In Figure 5(a),
ρ0 < ρc and the CA quickly relaxes to all 0s. In Figure 5(b), ρ0 > ρc and the CA again
relaxes to all 0s (a misclassification), but information from high-density blocks in the IC
persist for some time. In Figure 5(c), ρ0 , ρc and the pattern is correctly classified. An
Epoch 2 rule’s additional correct classifications of very high (or very low) ρ ICs yields a
slightly higher fitness, as seen in Figure 3. On approximately half the runs the GA discovers
Epoch 2 low-ρ0 specialists and on the other half it discovers Epoch 2 high-ρ0 specialists. The
strategies are almost never found together in the same run. Rules in Epoch 2 have fitnesses
ranging from 0.51 to about 0.75, depending on how many additional high-density ICs are
classified correctly and on the particular set of ICs being used at a given generation.

Epochs 3 and 4: Expanding blocks of 0s or 1s

Epoch 3 is characterized by a major innovation discovered by the GA. As in Epochs 1 and
2, there are two opposite strategies in Epoch 3:

• Strategy 1: Relax to a fixed point of all 0s unless there is a sufficiently large block of
adjacent (or almost adjacent) 1s in the IC. If so, expand that block.
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Figure 7: Two spacetime diagrams for an Epoch 4 rule with λ ≈ 0.59
that implements Strategy 2. In (a), ρ0 ≈ 0.39 and in (b), ρ0 ≈ 0.54.

• Strategy 2: Relax to a fixed point of all 1s unless there is a sufficiently large block of
adjacent (or almost adjacent) 0s in the IC. If so, expand that block.

The meaning of “sufficiently large” varies from rule to rule, and generally ranges from around
6 to 11 cells. (Note that “sufficiently large” can be larger than the neighborhood size 2r+1 =
7. This can occur via the interaction between adjacent neighborhoods on the lattice.) As
will be seen, in the higher-fitness rules, the size of blocks that are expanded is tuned to be
a good predictor of high or low density for N = 149.

Epoch 3 begins with the discovery of such a rule, which typically has fitness F100 ≈ 0.8.
During Epoch 3, the GA discovers variants on the original rule and small improvements
to these rules, having the effect of raising their fitnesses to F100 ≈ 0.9. Epoch 4 begins
when no additional improvements are made. From that time on, the best fitnesses remain
approximately constant, though there is moderately high variation in F100 as seen in Figure 3.
Two examples of such rules from Epoch 4 are given in Figures 6 and 7. The rule in Figure 6
implements Strategy 1. In 6(a), ρ0 < ρc, and the CA quickly relaxes to all 0s. In 6(b),
ρ0 > ρc, and there is a sufficiently large block of 1s, which the CA expands toward the
right until the configuration reaches a fixed point of all 1s. Both ICs are correctly classified.
Figure 7 displays a rule with Strategy 2. In 7(a), ρ0 < ρc, and there is a sufficiently large
block of 0s which is expanded. In 7(b), ρ0 > ρc, and the configuration quickly relaxes to all
1s. Again, both ICs are correctly classified.

The best rules in Epochs 3 and 4 are specialists for low or high ρ0, but rather than
ignoring the opposite half of the ICs as in Epoch 1 or only dealing with special extreme
cases as in Epoch 2, these rules deal with the other half of the ICs by expanding sufficiently
large blocks of the non-default state. In this way they obtain a marked increase in fitness.
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In effect, the strategy of Epochs 3 and 4 use the presence or absence of such blocks as local
predictors of the global ρ0.

Typical errors made in Epoch 3 are illustrated in Figure 8. In 8(a), an Epoch 3 rule
expands blocks that are too small, resulting in an incorrect classification for ρ0 < ρc. In
8(b), another Epoch 3 rule expands blocks too slowly from an IC with ρ0 > ρc, eventually
reaching a fixed point of all 1s but not by the maximum allotted number M of iterations.
(In the figure, M = 149; in our experiments, M ≈ 320.) This also results in a failure to
correctly classify within the given time. In Figure 8(c), a third Epoch 3 rule creates a block
not present in s0 and expands it, resulting in a misclassification for ρ0 # ρc. Such errors are
largely corrected by Epoch 4, though even the best Epoch 4 rules still misclassify a number
of ICs. The experimental performance of an Epoch 4 rule as a function of ρ0 is given in
Figure 9. This plot was made in the same way as that in Figure 2. Like the GKL rule, most
of the classification errors occur close to λ = 1/2, though the width of the error region is
much larger here than that seen for the GKL rule in Figure 2.

8. λ, Selection, and Combinatorial Drift

Up to this point we have described the GA’s behavior in terms of (i) the large-scale time
history of the best fitness, (ii) the strategy epochs in this time history, and (iii) the details of
the actual strategies discovered at each epoch. This description examined properties of the
best individual rules rather than properties of the entire elite population. We now present
an intermediate-level description of the GA’s behavior in terms of the distribution of λ in the
elite population over time. This will reveal how population-level structures emerge in the
different epochs and will aid in understanding the mechanisms by which the GA progresses
through the epochs.

The strategies described in the previous section each have two opposite instantiations—
one that specializes for low ρ0 and the other that specializes for high ρ0. On a given run, the
GA discovers one or the other class of strategies, but not both. Figure 10 displays histograms
of rule frequency versus λ for the elite rules at generation 99 in two typical runs. In 10(a)
all the elite rules have λ < 1/2; this run resulted in a population of low-ρ0 specialists which
implement Strategy 1. In 10(b), all the elite rules have λ > 1/2; this run resulted in a
population of high-ρ0 specialists which implement Strategy 2.

Figure 11 is a mosaic of histograms plotting the frequency of elite rules versus λ, where
the elite rules from 44 different runs are merged together. Each histogram therefore contains
counts from 20× 44 = 880 elite rules. These 44 runs were the same ones for which statistics
are given in Table 2. The figure shows how the structure of the elite populations changes with
time. In generation 0, the elite rules are clustered close to λ = 0 and λ = 1. Why is this?
Recall that in each run, the rules in the initial population are uniformly distributed over
λ ∈ [0.0, 1.0]. Most of these rules have very low fitness; the best strategies φ found are those
of Epoch 1 (“always relax to all 0s” or “always relax to all 1s”). These have F100(φ) = 0.5.
At generation 0 the rules implementing these strategies have either very low or very high
λ—for example, a rule with λ = 0 maps all neighborhoods to 0 and thus implements the
all-0s strategy. This results in the peaks at extreme λ in the initial generation.

Very quickly, however, the elite populations move away from these extremes and towards
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Figure 8: Three typical errors made by Epoch 3 rules. In (a), a rule
with λ ≈ 0.49 incorrectly expands blocks in an IC with ρ0 ≈ 0.38. In
(b), a rule with λ ≈ 0.42 expands blocks too slowly on an IC with
ρ0 ≈ 0.56. In (c), a rule with λ ≈ 0.52 creates a block that was not
present in s0 with ρ0 ≈ 0.19, and expands it. All these examples led
to incorrect classifications.
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λ = 1/2. The populations peak there between generations 5 and 10. The values for T2 and
T3−T2 given in the first column of Table 2 indicate that the appearance of the peak roughly
corresponds with Epochs 2 and 3. By generation 15 the distribution has changed again—it
now has two peaks on either side of λ = 1/2. By generation 20, these two peaks have grown
and the dip at λ = 1/2 has deepened. After generation 20 or so, the distribution does not
change appreciably.

The two peaks on either side of λ = 1/2 result from merging together the elite rules from
runs with low-ρ0 specialists and runs with high-ρ0 specialists. Each peak represents rules
from runs of one or the other type, as seen in Figure 10. What is seen clearly in Figure 11
at generation 15 is a symmetry breaking on the part of the GA: as we discussed above, the
ρc = 1/2 task requires certain symmetries, in particular, the 0–1 exchange symmetry F that
requires λ = 1/2 for high performance. The GA breaks this symmetry, producing rules on
either side of λ = 1/2.

The spatial-reverse symmetry R is also broken as seen in Figures 5(b), 6(b), 7(a), 8(b),
and 8(c). Since this need not lead to a bias in λs, it is not directly reflected in the histograms
we will use here; another coordinate would be more appropriate for monitoring this symmetry
breaking.

To understand the degree to which selection for performance fitness rather than intrinsic
effects of crossover and mutation cause the effects seen in Figure 11, we performed 50 runs
of the GA with random selection. Everything about the GA was the same as in the original
experiment, except that F100 was not calculated and instead at each generation fitnesses were
assigned at random. Figure 12 is a mosaic of histograms from these runs. Each histogram
plots the frequency of elite rules at the given generation as a function of λ. Since the fitness
function is not calculated, all effects seen in Figure 12 are due to the combined intrinsic
effects of random selection, crossover, and mutation, which we term “combinatorial drift”.
As can be seen, by generation 10 the population has largely drifted to the region of λ = 1/2
and this clustering becomes increasingly pronounced as the run continues.

This drift to λ = 1/2 is related to the combinatorics of the space of bit strings. For
binary CA with neighborhood size n (= 2r + 1), the space consists of all 22n

binary strings
of length 2n. Denoting the subspace of CAs with a fixed λ and n as CA(λ, n), we see that
the size of the subspace is binomially distributed with respect to λ:

|CA(λ, n)| =
(

2n

λ2n

)

where |S| denotes the size of set S. The distribution is symmetric in λ and tightly peaked
about λ = 1/2 with variance 2−n/4. Thus, the vast majority of rules is found at λ = 1/2.
Using Sanov’s theorem, for example, with r = 3 there are about 10−16 fewer rules at λc ≈
0.146 [49] than at λ = 1/2. The steepness of the binomial distribution near its maximum
gives an indication of the magnitude of the drift “force”. Note that the last histogram in
Figure 12 gives the GA’s rough approximation of this distribution.

Drift is thus a powerful force moving the population to cluster around λ = 1/2. It is
partially responsible for the initial clustering around λ = 1/2 seen in Figure 11. However, the
distribution in early generations (e.g., generation 10) in Figure 11 is more sharply peaked at
λ = 1/2 than that for the same generation in Figure 12, indicating that there is an additional
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Figure 12: Frequency of elite rules versus λ given every five gener-
ations, merged from 50 GA runs with random fitnesses assigned at
each generation.
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clustering force due to selection for performance fitness. The striking difference in the two
distributions in later generations shows that the symmetry breaking seen at generation 15
is due to selection forces rather than drift forces.

This completes our overview of the phenomena that were observed in the GA runs. In
the remainder of this paper, we answer the following questions:

Major questions:

• How are the strategies in each epoch implemented in the rule tables?

• In what way are the macroscopic properties of the λ distributions presented in Figure 11
related to the four epochs? In particular, what causes the symmetry breaking seen at
generation 15 in Figure 11?

• By what mechanisms does the GA produce the behavior that we have observed? In
particular, what are the mechanisms underlying the epochs of innovation?

• What impedes the GA from discovering better strategies? In particular, what prevents
the GA from discovering the GKL rule or similar rules, except on rare occasions?

9. Implementation of Strategies

To investigate how the strategies in each epoch are implemented in the rule tables, we will
define a new statistic over rule tables, denoted As(d), that measures the degree of agreement
of output bits with neighborhood densities. (This statistic is similar, though not identical,
to Gutowitz’s mean-field theory for CAs [35].) Let the density of symbol s in a neighborhood
pattern η be denoted by ρs(η). For example, ρ1(0000001) = 1/7; ρ0(0000001) = 6/7. Let
the set of neighborhoods η for which ρs(η) ≥ d be denoted by Ns(d), where d ∈ [0.0, 1.0] is
some constant, then

Ns(d) = {η : ρs(η) ≥ d}
Note that |Ns(d)| is monotonically decreasing from 128 to 1 as d varies from 0 to 1. For
k = 2, r = 3 rules, N1(1/2) is the set of 64 neighborhoods with a majority of 1s in the
neighborhood pattern, and N1(6/7) is the set of eight neighborhoods with at least 6 1s
in the neighborhood pattern. (Note that |N1(d)| = |N0(d)| for all d, by the 0-1 exchange
symmetry.)

Then for a given rule table φ, consider the set Ms(d) of neighborhoods η ∈ Ns(d), that
map to output symbol s:

Ms(d) = {η : η ∈ Ns(d) and φ(η) = s}

The “s-agreement” As(d) is the fraction of these neighborhoods; that is

As(d) =
|Ms(d)|
|Ns(d)|

Note that A1(0) = λ. A1(1/2) is the fraction of rule-table neighborhoods with a majority of
1s whose output bits are 1. For the “majority” rule given in Section 2, A1(1/2) = 1, since
this is precisely how the rule was defined. For the GKL rule, A1(1/2) = 0.75.
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The temporal development of As(1/2) and As(6/7) for s = 0 and s = 1 averaged over
the elite population helps identify how the different epochs’ strategies are implemented. For
rules with 7-bit neighborhoods, |η| = 7, As(1/2) measures the degree to which φ(η) agrees
with ρs(η) in neighborhoods that have at least 4 s’s (“majority agreement”). Similarly,
As(6/7) measures the degree to which φ(η) agrees with with ρs(η) in neighborhoods that
have at least 6 s’s (“super-majority agreement”).

Figure 13 caption: A0(d) statistics for a run that resulted in low-ρ0 spe-
cialists. (a) Mean and standard deviation of elite 0-agreement A0(6/7)
versus generation. The mean elite fitness F elite is plotted for reference.
(b) Mean and standard deviation of elite 0-agreement A0(1/2) versus
generation. Mean elite fitness F elite is plotted for reference. (c) Scatter
plot of elite λ values. The takeover generations of Epochs 1, 2, and 3
are marked by vertical dashed lines. In this run the onset generations
of Epochs 1, 2, and 3—the generation in which the first instance of a
new strategy was discovered (not shown here since the fitness shown is
an average over the elite)—were 0, 13, and 19, respectively.

Figure 13 displays plots for {s = 0}-agreement and Figure 14 displays plots for {s = 1}-
agreement, for one run that resulted in low-ρ0 specialists. This run is atypical in that the
onset of Epoch 2 is later than average, as is the time from Epoch 2 onset to Epoch 3 onset
(cf. Table stats-table, column 1). This run was chosen for illustration because the relatively
stretched-out time scales make it easier to see how changes in As(d) correlate with epochs.
The correlations seen in this run were also seen in almost all of the other runs.

Figures 13(a) and 14(a) plot the mean and standard deviation σ of As(6/7) over the
elite rules at each generation. For reference, the mean fitness F elite of the elite rules is also
plotted. The takeover generations of Epochs 1, 2, and 3 in the elite are marked by vertical
dashed lines. Recall that the takeover generation of a given epoch is defined as the first
generation at which all or almost all elite rules implement the strategy associated with that
epoch. For example, here the Epoch 1 takeover generation is the generation at which all
elite rules implement the “always relax to all 0s” strategy.

The A0(d) statistics reveal how the Epoch 1 strategies (“always relax to all 0s”) are
implemented. In Figure 13(a), A0(6/7) rises quickly and saturates at 1.0 (with σ = 0.0) at
generation 9. The initial sharp rise does not indicate the onset of a new epoch, since no new
strategy is discovered. Rather, the rise is due to the depletion of high-λ, high-ρ0 specialist
rules, as can be seen in Figure 13(c), a scatter plot of the elite λ values at each generation.
At generation 0 the λ values are clustered at the two extremes, but they quickly consolidate
at low values, since the chromosomes with λ = 0 and λ = 1, to take the extremes, are
destroyed by recombination and mutation without compromising fitness. The population
consists entirely of low values by generation 9, at which time A0(6/7) is essentially saturated
at 1.0. This saturation indicates that in all rules in the elite, the eight neighborhood patterns
consisting of at least six out of seven 0s map to s = 0. This is a necessary condition for
implementing the Epoch 1 strategy of “always relax to all 0s”.

The saturation of A0(6/7) marks the takeover of the Epoch 1 strategy. From the onset
of Epoch 1 at generation 1 to the takeover at generation 9, the shape of the 0-agreement
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statistics indicates the rate at which the strategy spreads in the population. As Figures 13(a)
and 13(b) show, this occurs without an increase in mean fitness F elite. The extreme λ rules
die out, but their strategy lives on in later generations.

Figure 13(b) plots the mean and σ of A0(1/2) over the elite rules at each generation.
The mean A0(1/2) also rises quickly during Epoch 1 and σ sharply decreases, particularly
at generation 9, indicating that most neighborhoods with even four and five 0s have 0 as the
output bit. A high A0(1/2) is necessary for the “always relax to all 0s” strategy, since both
low and high ρ0 configurations must relax to all 0s. The rise in mean A0(1/2) corresponds
to more and more rules implementing this strategy. The sharp drop in σ corresponds to
this consolidation. A0(1/2) begins to fall close to the Epoch 2 takeover: when the dominant
strategy is no longer “always relax to all 0s”, the high level of agreement is no longer
necessary, and some of the previously agreeing bits can be mutated from 0 to 1 without
harm to an Epoch 2 strategy.

The A1(d) statistics reveal how the Epoch 2 strategies are implemented. Figure 14(a)
plots the mean and σ of the 1-agreement A1(6/7) averaged over the elite rules at each
generation of the same run. During Epoch 1, the mean A1(6/7) is noisy, with σ remaining
above 0.15, though σ drops sharply at the Epoch 1 takeover, corresponding to the loss of
high-λ, high-ρ0 specialist rules. Four generations after the Epoch 1 takeover, the mean
A1(6/7) begins to rise, coinciding with a slight rise in F elite. This is the onset of Epoch 2, at
generation 13, which in this run is about three times longer than the average T2 quoted in
Table 2. At the Epoch 2 takeover—at generation 16—the mean A1(6/7) makes a sharp jump
to become saturated at 1.0 with σ = 0.0. A similar sharp jump at the Epoch 2 takeover
is observed in every run in which Epoch 2 was reached. (In high-ρ0 specialist runs, the
sharp jump is seen in mean A0(6/7).) What does this sharp jump tell us? Recall that the
initial Epoch 2 low-ρ0 specialists always relax to 0 except on ICs with extremely high density
(cf. Figure 5). The GA implements this strategy by finding rules with A1(6/7) = 1. Most
neighborhoods in an IC with very high density will thus map to 1, quickly filling the lattice
with 1s as the CA is iterated.

Figure 14(b) plots the mean and σ of A1(1/2) over the elite rules at each generation.
Again the mean A1(1/2) is noisy over most of Epoch 1, though again there is a sharp drop in
σ at the Epoch 1 takeover, corresponding to the sudden disappearance of high-ρ0 specialists.
But close to the Epoch 2 onset, A1(1/2) begins to rise—at the same time as, though less
sharply than A1(6/7)—and rises significantly at the takeover as σ falls to near 0. (Again, a
similar rise was seen in every run.) This rise is partially due to the saturation of A1(6/7),
which reflects a uniform mapping of ρ1(η) ≥ 6/7 neighborhoods to 1s. But it is also due to
the additional mapping of some 1/2 ≤ ρ1(η) < 6/7 neighborhoods to 1s. This rise coincides
with a rise in F elite. By mapping many of the 1/2 ≤ ρ1(η) < 6/7 neighborhoods to 1s,
the GA is discovering rules that are doing an increasingly good job of implementing the
Epoch 2 strategies. That is, it is finding rules that correctly classify an increasing number
of high-density ICs, and thus obtain increasingly higher fitness.

At the Epoch 3 takeover, the mean A1(1/2) begins to fall, and continues to fall appreciably
for several generations. (A similar fall was seen in every run.) Note that this is different
from the behavior of the mean A1(6/7), which remains saturated at 1.0. The reason for
this decrease is the following. The elite rules at Epoch 3 implement a wholly new strategy—
relaxing to all 0s by default but expanding sufficiently large blocks of 1s if they are present in
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the IC. Once A1(6/7) = 1.0, implementing the block-expanding strategy only requires setting
a few additional neighborhoods to 1s—this does not affect A1(1/2) appreciably. This block-
expanding strategy accomplishes the same thing as the Epoch 2 trick of increasing A1(1/2),
but in a different way. In the later part of Epoch 2, the elite rules correctly classify many
high-density ICs because ρ1(η) ≥ 1/2 neighborhoods map to 1. However, a high-density
IC is very likely to contain at least one, if not many, sufficiently large blocks of 1s, and so
the Epoch 3 rules do not need this trick of immediately mapping most of the ρ1(η) ≥ 1/2
neighborhoods to 1—they can rely on expanding blocks to do the job instead. Thus many
of the ρ1(η) ≥ 1/2 neighborhoods are not required have output 1s for high fitness, so under
mutation, some of these 1s drift to 0s. The latter also enhances fitness since it reduces the
creation of spurious 1-blocks as shown in Figure 8(c).

Let us summarize this section briefly. For runs resulting in low-ρ0 specialists, Epoch 1
strategies (“relax to all 0s”) are implemented by mapping almost all ρ0(η) ≥ 1/2 neighbor-
hoods to 0. Epoch 2 strategies (“relax to all 0s, unless the IC has very high density, in which
case relax to all 1s”) are implemented by mapping many of ρ1(η) ≥ 1/2 neighborhoods to
1s. The more such mappings, the more high-density ICs will be correctly classified. Epoch
3 strategies (“relax to all 0s, unless the IC contains a sufficiently large block of 1s, in which
case expand it”) are implemented, once all the ρ1(η) ≥ 6/7 neighborhoods map to 1s, by
mapping a small number of specific neighborhoods to 1s.

Which bits in the rule table need to be set in order to expand 1-blocks? This can be
determined by direct enumeration. To expand a 1-block in both directions at equal velocities
in a sea of 0s, for example, a . . . 111000 . . . wall must be propagated to the right and a
. . . 000111 . . . wall must be propagated to the left. (Note that walls can be more complicated
than this, as seen in Figures 5(b), 6(b), and 7(a), for example.) The neighborhoods which
participate in this are those patterns of length 2r + 1 that contain one or both types of
wall. The required output bit for each such neighborhood is simply read off the space-time
diagram from the cell below the pattern’s center at the next time step. From this it can
be seen that a bi-directional expansion of 1-blocks of length greater than the neighborhood
size requires 14 bits in the chromosome to be properly set. Presumably, these bits or similar
constellations that support the observed strategies are set during Epoch 2 and become fixed
in Epochs 3 and 4. In light of this, a better statistic for Epoch 3 would be based not on
A1(6/7) but on the appearance of the constellations of output bits supporting walls that
expand blocks. Such a statistic would be correlated with more detailed behavior than is the
case for As(d) (or for the mean field theory statistics proposed by Gutowitz [35]).

In any case, the discovery of a strategy to expand 1-blocks relaxes the constraints on
many of the ρ1(η) ≥ 1/2 neighborhoods that were set to 1 in Epoch 2; many of these drift
back to 0, possibly reducing the tendency to create spurious blocks.

This account of how strategies are implemented applies to runs that evolve low-ρ0 spe-
cialists. A similar account applies to runs that evolve high-ρ0 specialists with the roles of 0
and 1 reversed.
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rules merged from 19 runs that evolved high-ρ0 specialists.

10. Epochs and λ Distributions

We have now described in some detail how strategies at different epochs are implemented
in the rule table. This answers the first of our major questions. This understanding helps
us to answer the second question: In what way are the macroscopic properties of the λ
distributions presented in Figure 11 related to the four epochs? In particular, what causes
the symmetry breaking seen at generation 15 in Figure 11?

Figure 15 gives two sets of histograms similar to those in Figure 11. Each histogram in
Figure 15(a) represents elite rules merged from 25 runs that evolved low-ρ0 specialists. The
“Epoch 1” histogram plots the elite rules from each run at generation 0. The “Epoch 2”
histogram plots the elite rules from each run at the generation of Epoch 2 takeover—defined,
as above, as the first generation at which all or almost all the elite rules are implementing
Epoch 2 strategies. This generation is different for each run, so the rules represented in this
histogram are from different generations on different runs. In short, the runs are lined up
with respect to epoch’s takeover generation. The “Epoch 3” histogram plots rules at the
takeover generation of Epoch 3 in each run, and the “Epoch 4” histogram plots the elite
rules at generation 99 in each run. Figure 15(b) gives the same histograms for 19 runs that
evolved high-ρ0 specialists. (These are the same 19 + 25 = 44 runs for which statistics are
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given in the first column of Table 2.)

Both Epoch 1 histograms show most elite rules to be clustered at very low and very high
λ values. As was noted above, these are the rules that are selected in the first generation
because they are the ones that initially implement the Epoch 1 strategies.

The generation 0 clustering of rules at high and low λs could be considered to be an early
“symmetry breaking” that is an artifact of the initial population’s λ distribution. However,
both Epoch 2 histograms show the elite population clustered much closer to λ = 1/2—on
the low side in 15(a) and on the high side in 15(b). This movement of the elite population
towards λ = 1/2 has two sources. The first is combinatorial drift, which moves Epoch 1 rules
closer to λ = 1/2. The second is the selection of rules implementing Epoch 2 strategies. In
runs that evolve low-ρ0 specialists, most Epoch 1 rules have low λ (e.g., see Figure 13(c)).
The innovation at Epoch 2 is to increase the number of ρ1(η) ≥ 1/2 neighborhoods with
output bit 1. These two trends result in an increase in λ. The opposite is true for runs that
evolve high-ρ0 specialists. In both cases, the result is to move closer to λ = 1/2.

Both Epoch 3 histograms show even narrower distributions, now close to being peaked at
λ = 1/2. As was said above, the Epoch 3 block-expanding strategies require only relatively
few bits to be set in the rule table, so the discovery of these strategies does not appreciably
change the λ distribution. (Generally, as Epoch 3 is reached the utility of λ declines as
an information projective coordinate for monitoring changes in the population structure.)
Drift continues to move rules closer to λ = 1/2, and most rules implementing Epoch 3
strategies have λ ≈ 1/2. But by Epoch 4, the populations have moved back to either side of
λ = 1/2. This Epoch 4 move is what was unexpected, given the argument that rules with
good performance should have λ ≈ 1/2. This is what we refer to as “broken symmetry”.

What causes it? As was seen in Figure 8, Epoch 3 rules make a number of errors, such
as expanding blocks that are too small, or creating and expanding blocks that were not
in the IC. There are two ways the GA can correct such errors without destroying the new
strategy: (1) by setting bits so as to increase the minimum block size required for expansion,
and (2) by ensuring that if there are no sufficiently large blocks present in the IC, that the
CA very quickly relaxes to the default fixed-point configuration. For low-ρ0 specialists, both
these corrections require mapping more neighborhoods to 0s. This is a way to ensure that
the all-0s fixed point is reached quickly on ICs without sufficiently large blocks. For high-
ρ0 specialists, they require mapping more neighborhoods to 1s. For low-ρ0 specialists, the
corrections decrease λ; for high-ρ0 specialists, they increase it. This is what seems to cause
the broken symmetry seen in the Epoch 4 histograms. In short, The symmetry breaking in
Epoch 3 results from improvements in the block-expanding strategies. The result is clearly
seen in Epoch 4 where the λ = 1/2 rules are largely suppressed.

11. GA Mechanisms of Innovation

We have now answered the first two of our major questions. In this section we address the
third: What GA mechanisms underlie the epochs of innovation? In particular, we investigate
the roles of crossover and mutation in producing the behavior that we have observed.

To better understand the role of crossover, we performed a set of 50 GA runs with the
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same parameter values as were described in Section 6, but with crossover turned off. In these
runs, the new 80 rules at each generation were created from the 20 elite rules by mutation
only—pairs of parents were chosen at random from the elite as before, but no crossover was
performed and each offspring was a copy of its parent with exactly two mutations.

Figure 16 displays the best fitness at each generation for two of the runs without crossover.
In the run displayed in Figure 16(a), the GA never found a rule with fitness greater than
0.5. This occurred in 37 out of the 50 runs, compared with 4 out of 50 runs when crossover
was turned on. These statistics are given in Table 2.

The other 13 runs were similar to Figure 16(b). More detailed examination of these runs
showed that the GA made the same progression through strategy epochs as in the runs with
crossover, but the onset of Epoch 2 was, on average, much later. However, once Epoch 2
rules were discovered, the GA moved on to Epoch 3 rules very quickly. The first two columns
of Table 2 compare these times for the 44 runs with crossover and for the 13 runs with no
crossover that reached Epoch 3.

Crossover clearly plays a role in speeding up the onset of Epoch 2. However, its role in
the move from Epoch 2 to Epoch 3 is much less pronounced. The analysis we gave above of
how Epoch 2 strategies are implemented in the rule tables helps to explain why. Consider,
for example, a run that evolves low-ρ0 specialists. To get to Epoch 2, the GA must discover
a low-λ rule with A1(6/7) = 1. The lexicographic ordering of neighborhoods in the rule-table
chromosome happens to allow single-point crossover to create such a rule in one time step.
This is because, under our encoding, most of the eight ρ1(η) ≥ 6/7 neighborhoods are at the
extreme “right-hand” side of the chromosome. A crossover between an Epoch 1 low-λ rule
and an Epoch 1 high-λ rule thus has a fair chance of yielding an Epoch 2 rule. And, since
low and high λ rules are in the initial population to begin with, it does not take much time
to discover an Epoch 2 rule when crossover is in effect. However, when crossover is turned
off, the GA must rely on mutation alone to set the ρ1(η) ≥ 6/7 neighborhood bits correctly.
The waiting time for this is reflected in the “GA, no xover” statistics given in Table 2. In
37 out of 50 runs, the no-crossover waiting time was greater than 99 generations.

Once an Epoch 2 rule is discovered, a small number of mutations can turn it into an
Epoch 3 rule. This is seen in the T3 − T2 statistics given in Table 2. The mean length of
Epoch 2 is small for both the crossover and no-crossover runs. Thus, mutation alone suffices
to quickly move to Epochs 3 and 4 and to discover the associated strategies. Crossover does
not play a large role, though it does appear to shorten the times.

We performed an additional experiment without crossover in which, for each run, the
initial population was not uniformly distributed over λ ∈ [0.0, 1.0], but rather each initial
rule had λ ≈ 1/2 (“GA, no xover, initpop 1/2”). Our hypothesis was that there would be
more rules in the initial population with, say, low λ but high A1(6/7), and thus the rules in
the population would be closer than in the original no-crossover experiment to the conditions
necessary for the discovery of Epoch 2 strategies. The results, given in column 3 of Table 2
supported this hypothesis: the number of runs reaching Epoch 3 and the mean values for
T2 and T3 − T2 were intermediate between those measured in the crossover and no-crossover
experiments. In the no-crossover case, the original uniform-λ initial population is responsible
for a long transient; it substantially slows down the GA.

We performed a final experiment in which we used a simple Monte Carlo method instead
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of a GA to search the space of rules. A run of this method is the following. An initial bit
string is chosen by some procedure and its fitness is evaluated. A random bit is flipped, and
if the new fitness is equal to or higher than the original fitness, the mutation is retained; if
not, the original string is retained. This process continues for 10, 000 total evaluations—the
same total number of evaluations as performed in one run of the GA (i.e., the population
size times the number of generations). We performed 50 such runs, each with a different
random-number seed, all starting with an initial string of all 0s (equivalent to one of the
fittest strings in the initial GA population). The purpose of this experiment was, again, to
test the hypothesis that crossover confers an advantage for reaching Epoch 2. The results
of 50 runs of the Monte Carlo method, given in column 4 of Table 2, further support this
hypothesis. Under Monte Carlo search Epoch 3 was reached in only 21 out of 50 runs and
T2 (given here in generations, where each generation equals 100 fitness evaluations) is close
to that of the “GA, no xover, initpop 1/2” experiment. It is interesting that the average
duration of Epoch 2 is smaller with Monte Carlo search than in any of the other experiments.

12. GA Impediments

With this understanding of the GA’s behavior on the ρc = 1/2 task, we now can address the
last of our major questions: What impedes the GA from discovering better strategies? In
particular, what prevents the GA from discovering the GKL rule or similar rules, except on
rare occasions? Here we list a number of impediments that are, or might be, faced by our
GA on this problem. We will discuss their relevance to GAs in general and propose ways in
which they could be overcome. Perhaps surprisingly, most of the impediments we identify
are also forces that help the GA in the initial stages of its search. What is needed is a theory
of how the costs and benefits of these various forces trade off. Such a theory would allow for
active monitoring of the change from beneficial to harmful effects.

Symmetry breaking

A primary impediment is the GA’s tendency to break the task’s symmetries by producing
low-ρ0 or high-ρ0 specialists. A pressure towards symmetry breaking is effectively built into
our fitness function, since specializing on one half of the ICs is an easy way to obtain a higher
fitness than that of a random rule. This kind of symmetry breaking occurs in generation
0 with the selection of the two types of Epoch 1 rules and, in subsequent generations, the
entire elite population naturally drifts into one or the other specialist “camps”. The Epoch
2 and Epoch 3 strategies are simply elaborations of these original symmetry-broken Epoch
1 strategies. (Similar types of symmetry breaking occur even when the initial population
is peaked around λ = 1/2 rather than uniformly distributed over λ.) Symmetry breaking
thus produces a short-term gain for the GA, but later prevents it from making improvements
beyond Epoch 4 strategies, as seen in the long periods of stasis appearing in Figures 3, 11, 13,
and 14 over generations 20 to 99. We hypothesize that this propensity to break symmetries
for short-term gain is a general feature of GAs and even of natural evolution. This suggests
that when one wants to apply a GA to a particular problem, one should first determine
all the relevant symmetries in the optimization, and then restrict the GA’s search space to
candidate solutions with those symmetries. This can be done either by having the fitness
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function penalize asymmetric candidate solutions or by building the desired symmetries into
the representation. This is akin to the general problem of using domain knowledge to assist
the GA’s search (e.g., see [19]). We plan to investigate the effect of the latter approach on
the GA’s performance on the ρc = 1/2 task. As pointed out in our description of T1/2,
the task has a number of symmetries in addition to the ρ0 symmetry that requires λ = 1/2
for high performance. One possible problem in imposing symmetries on the GA, though,
is that this could make innovation substantially more difficult to achieve. In other words,
it could be the case that broken-symmetry solutions can lead to symmetry-respecting ones
more quickly than in a symmetry-restricted chromosome space. This is exactly what has not
happened in our experiments, however.

Drift

A second possible impediment is the force due to combinatorial drift. As was seen in Fig-
ure 12, the intrinsic effects of crossover and mutation, apart from selection, produce a strong
drift force moving the population close to λ = 1/2. This stochastic drift is the force that pro-
duces conditions necessary for Epoch 2 strategies to be discovered. For example, it creates
low-ρ0 specialists with higher λs, in some cases creating low-ρ0 specialists with A1(6/7) = 1.
However, later in the run drift also restricts the GA’s search to one part of the chromosome
space. In the absence of strong selection, it is difficult for the GA to maintain candidate
solutions far away from λ = 1/2. This may present a problem for some GA applications,
though not necessarily for the ρc = 1/2 task. The force due to drift is something GA prac-
titioners should take into account when designing a GA for a particular application, and it
may be necessary to design operators to counteract this force.

ρc = 1/2 fitness landscape

A third possible impediment is the effective fitness landscape of the ρc = 1/2 task. We
have seen that there is a ready path for the GA to take from the easily discovered Epoch
1 rules to Epoch 4 rules—almost every run of the GA follows this path by generation 20
or so. Following this path leads to one or the other of two relatively high-fitness “potential
wells”—to make a physical analogy—by a breaking of symmetries. But if the GA could
avoid this symmetry-broken potential, is there another readily accessible path that the GA
could follow to discover GKL-rule-like behavior?

We performed some preliminary experiments that indicate that such a path could exist.
We ran the GA on populations of mutants of the GKL rule and found that many different
rules have GKL-like behavior, using signals such as those described in Section 5 to classify IC
density. Such rules were found at Hamming distances of up to 30 bits or more from the GKL
rule. They had F104 ≈ 0.96 and thus indicate an intermediate fitness plateau between that of
the Epoch 4 rules with maximum F104 ≈ 0.945 and that of the GKL rule with F104 ≈ 0.972.
Further investigations of the landscape around the GKL rule will be reported in future work.

Finally, a more detailed analysis using F104 of the generation-99 populations revealed that
fairly sophisticated rules had been evolved in two runs (one of them performed subsequent
to the set of 50 runs described here). One run evolved a rule with F104 ≈ 0.945 (most
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Epoch 4 rules had F104 < 0.930). This rule did not expand blocks in a straightforward
way; rather, it exhibited signaling mechanisms with some similarity to those of the GKL
rule. The most sophisticated rule found by the GA was evolved in a second run. This rule
had F104 ≈ 0.954, and its spacetime behavior was very similar to that of the GKL rule
(F104 ≈ 0.972) and the mutants mentioned above (though its Hamming distance from both
the GKL rule and a spatially reversed version of the GKL rule was 49 bits and 35 bits
respectively). We will not discuss the behavior of these rules or the steps leading to their
discovery in detail here, since the statistics that would be required to indicate the emergence
of the computational strategies are complicated. These details will be reported elsewhere.
But these rules do suggest the existence of two additional fitness plateaus between Epoch 4
and the GKL rule. The emergence of such rules, even if only rarely, demonstrates that the
GA, acting on rule tables alone, is in principle capable of discovering rules with sophisticated
computational behavior. It is notable that the GA discovered, albeit rarely, rules similar
to the GKL rule, since the fitness function used in these simulations in no way specified
what particular spacetime behavior is desirable beyond specifying the desired final outcome.
The discoveries are also notable in light of the apparent mean-field nature of the density-
classification task. In particular, the computational strategies use signalling mechanisms
that are not describable in terms of the mean-field theory for CAs [35].

Stochastic nature of F100

A fourth impediment is the stochastic nature of F100. The small sample of ICs used to
compute fitness limits the resolution available to the GA for distinguishing among competing
rules. This limited resolution obscures differences in fitness that might be significant. This
was observed in our experiments with mutations of the GKL rule mentioned above. Even
when the initial population consisted of rules that were each one bit different from the GKL
rule, the GA did not rediscover and retain the GKL rule because F100 could not reliably
distinguish the mutated rules with F104 ≈ 0.96 from the GKL rule with F104 ≈ 0.972. This
problem of low resolution could be solved—at considerable computational cost—by using a
much enlarged sample of ICs. An intermediate solution would be for the GA to retain and
use accumulated fitness information for individuals over many generations; for example, it
could keep a running fitness average for rules that survive. This differs from the present
method which discards fitness information from previous generations, determining the elite
rules only from the fitnesses calculated on the given generation. More experiments need
to be performed to determine what level of fitness resolution is needed to obtain improved
performance.

Structure of IC sample

A fifth impediment is presented by the structure of the IC sample chosen at each generation.
Our current method is to choose a sample uniformly distributed over ρ0 ∈ [0.0, 1.0], with
exactly half the sample having ρ0 < ρc and exactly half having ρ0 > ρc. This distribution
was meant to present some “easy-to-classify” extreme-ρ0 ICs to the evolving rules in order
to allow evolution to get off the ground. However, aside from the above-mentioned pres-
sure towards very early symmetry breaking arising from this distribution, there is another
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Figure 17: Performance of an Epoch 4 rule (the same one whose
performance was plotted in Figure 9) plotted as a function of ρ0.
Performance plots are given for three lattice sizes: 149, 599, and 999.
This rule has λ ≈ 0.59.

impediment. After a small number of generations, this IC distribution does not present a
sufficient challenge to the evolving rules. For example, all Epoch 2 rules correctly classify
half the distribution in addition to the extreme-ρ0 cases of the other half. This means that
the fitness differences among Epoch 2 rules are being judged on the basis of the remaining
ICs—less than half of the original 100—which exacerbates the fitness-resolution problems
discussed above. That is, the reduction in the fraction of informative test ICs reduces the
number of useful fitness evaluations and so increases the variance in the mean fitness. Epoch
4 rules, for example, routinely achieve 100% correct classification on some set of ICs during
a run of the GA, whereas under F104 , they never reach fitnesses above ≈ 0.95. One possi-
ble solution to this problem is to co-evolve a population of IC samples with the population
of CA rules, with the fitness of an IC sample being inversely related to the classification
performance of the current CA population on this sample. In principle, such co-evolution—
analogous to biological “arms races” seen in nature—should produce sets of ICs that are
tuned expressly to present challenges to rules in the current population. In this situation,
the absolute meaning of the fitness function F100 would change over the generations. This
approach should help alleviate the problem of fitness accuracy without requiring computa-
tionally intractable sample sizes. Such a co-evolutionary approach has been studied in the
context of using GAs to discover efficient sorting networks [40]. Another alternative would
be to use modern statistical evaluation methods that make more efficient use of the available
fitness evaluations.
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Fixed lattice size

A sixth impediment, due to our particular method, is the restriction of fitness evaluation to
a fixed lattice size—here, N = 149. As was shown in Figure 2, the GKL rule’s classification
performance improves slightly as lattice size increases. The opposite is true of the fittest
evolved rules in our experiments. The performance of one Epoch 4 rule as a function of ρ0 is
plotted in Figure 17 for lattice sizes of N = 149, 599, and 999. (This is the same rule whose
performance was plotted in Figure 9.) This rule has λ ≈ 0.59; it increases sufficiently large
blocks of adjacent or nearly adjacent 0s. We used the same procedure to make these plots as
was described for Figure 2. As can be seen, the performance according to this measure is not
only significantly worse than that of the GKL rule on N = 149 lattices, but also decreases
dramatically for larger N . The worst performances for N = 599 and N = 999 are centered
slightly above ρ0 = ρc. (Since we used only odd N , the actual ρ0s plotted at 0.5 are slightly
above 0.5.) With ρ0 > ρc, the CA should relax to a fixed point of all 1s. Detailed inspection,
however, revealed that on almost every IC with ρ0 slightly above ρc, the CA is relaxing to a
fixed point of all 0s. This is a result of this rule’s strategy of expanding “sufficiently large”
blocks of 0s. The appropriate block size b to expand was evolved to be a good predictor
of ρ0 for N = 149. With larger lattices the probability of b-length 0-blocks in ICs with
ρ0 > ρc increases. And so the closer high ρ0s are to ρc, the more likely such blocks are to
occur. In the CA we tested with N = 599 and N = 999, such blocks occurred in most ICs
with ρ0 slightly above ρc, always leading to incorrect classifications. This shows that keeping
the lattice size fixed during GA evolution can lead to overfitting for the particular lattice
size. We plan to experiment with varying the lattice size during evolution in an attempt to
prevent such overfitting. We predict that the block-expanding strategy will not arise on runs
performed with significantly larger lattices; for small-radius CA the strategy of expanding
blocks can work well only on relatively small lattices since the maximum-length block that
can be expanded by a CA is a function of (though not strictly equal to) its neighborhood
size.

Representation

A seventh impediment is the lexicographically ordered bit-string representation used for the
CA rules. This ordering has the initially beneficial effect of grouping together most of the
ρs(η) ≥ 6/7 neighborhoods, with s = 0 neighborhoods at the “left” extreme and s = 1
neighborhoods at the “right” extreme. As pointed out above, this ordering enables crossover
to quickly produce Epoch 2 rules—low-ρ0 specialists with A1(6/7) = 1 or high-ρ0 specialists
with A0(6/7) = 0. However, the lexicographic ordering of output bits may hinder the GA’s
progress in later generations, since to produce the kinds of coordinated signals used in the
GKL rule, a number of neighborhood output bits must work in concert. These co-active
neighborhoods are unlikely to be adjacent in a lexicographic ordering, and thus cannot be
moved together from a parent to an offspring via simple crossover. More disruptive crossover
operators such as uniform crossover [84] run the risk of destroying the necessary structures.
The problem of designing a representation that will work well with genetic operators is a
general one for GAs. One solution that has been explored is adapting the representation
to suit the operators (e.g., see [32]). Phenomena in natural genetics such as inversion and
jumping genes may be a form of representation adaptation. These have inspired some work
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in GAs along these lines (e.g., see [31, 42]).

Loss of diversity

Finally, an eighth impediment is the loss of diversity over time in the population. When a
new strategy is discovered, it sweeps through the population and quickly all the elite rules
are representatives of that strategy. This convergence aids the rapid moves from Epoch 2
to Epoch 3 to Epoch 4. However, convergence, like drift, limits the region of chromosome
space that the GA is searching. Controlling convergence in GAs has been the subject of
much research. (See [31] for a review of work in this area.) In our experiments with E = 20,
diversity (measured as the mean pairwise Hamming distance in the elite) falls quickly—more
rapidly, in fact, than it did in previous experiments with E = 50. However, the smaller E
also sped up the onsets of the different epochs, since the newly discovered strategies were able
to invade the population more quickly. We also performed experiments in which a minimum
level of diversity was explicitly maintained. This scheme did not yield improved performance
[61]. But in spite of these results, it may be the case that the rapid decrease in diversity
is an impediment for moving beyond Epoch 4 strategies. The need to balance the level of
population diversity with the need to quickly propagate newly discovered innovations to the
rest of the population is discussed in several places in GA literature (e.g., see [60]).

As was noted above, most of these impediments are also forces that help the GA in the
initial stages of its search. None are specific to the ρc = 1/2 task or even to the problem of
evolving CAs. Rather, they are general issues in any GA application, and some of them are
relevant to any machine-learning method. In this work our analysis tools have enabled us
to observe some of these forces (e.g., symmetry breaking) quite clearly, and to study them
carefully. Going beyond this to develop a predictive theory of the tradeoffs these forces
produce in GA efficiency is one of our long-term objectives.

13. Conclusion

As was said in the introduction, the goals of our research are (i) to better understand
the ways in which CAs can perform computations; (ii) to learn how to best use GAs to
evolve computationally useful CAs and (iii) to understand the mechanisms by which GAs
can produce complex and innovative behavior in systems with simple components and local
interactions.

This paper has reported progress on these goals obtained by analyzing in detail a GA’s
behavior on evolving CAs to perform a particular computation: ρc = 1/2 density classifi-
cation. We analyzed the strategy of the GKL rule for performing this task, and used it as
a benchmark with which to compare the rules evolved by the GA. We have described the
epochs of innovation in most runs of the GA and the strategies corresponding to these epochs,
and have understood in detail how these strategies are implemented and how these epochs
manifest themselves in large-scale population structures. We then explained the respective
roles of crossover and mutation in the discovery of new strategies and identified several im-
pediments for the GA in achieving higher computational capability in CAs. Primary among
the impediments is the GA’s breaking of task symmetries in the pursuit of short-term gains
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in fitness. We believe that this type of detailed analysis is essential in order to understand
and improve the GA’s behavior and to develop predictive theories of the tradeoffs among dif-
ferent evolutionary forces. The results are relevant to the application of GAs in general, and
they point the way to a more general analysis of the evolutionary forces we have identified.
This work is also a first step in developing methods for automatic programming of CAs and
other spatially-distributed parallel computers. Success in this area should have significance
for the field of parallel computation and for nonlinear spatial modeling.
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