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Abstract— We investigate the role of learned shape-prototypes
in an influential family of hierarchical neural-network models
of vision. Central to these networks’ design is a dictionary of
learned shapes, which are meant to respond to discriminative
visual patterns in the input. While higher-level features based
on such learned prototypes have been cited as key for viewpoint-
invariant object-recognition in these models [1], [2], we show
that high performance on invariant object-recognition tasks can
be obtained by using a simple set of unlearned, “shape-free”
features. This behavior is robust to the size of the network.
These results call into question the roles of learning and shape-
specificity in the success of such models on difficult vision tasks,
and suggest that randomly constructed prototypes may provide
a useful “universal” dictionary.

I. INTRODUCTION

IN this paper we examine the role of shape prototypes in
one well-known family of hierarchical object-recognition

architectures—those with multiple layers that alternate be-
tween prototype matching and activation pooling. In the
literature, this architecture has been argued to allow a trade-
off between selectivity to specific patterns (encoded by
learned prototypes) and invariance to irrelevant variations
in object pose (via activation pooling) [1]. Here we term
these as alternating multilayer architectures. Recent models
in this family have been reported to achieve state-of-the-art
performance on a variety of object-recognition tasks [3], [4],
[5], and have been shown to out-perform many alternative
approaches on image classification tasks that specifically em-
phasize viewpoint invariance [2]. In this work, we conducted
a series of detailed experiments to investigate how a set of
learned shape prototypes in alternating multilayer models
mediate improved classification performance. Surprisingly,
we found that the classification performance of networks
using randomly generated prototypes—with no apparent spa-
tial structure—perform nearly identically to networks using
prototypes learned from natural images in a way so as to
capture “useful” shape components.

In the next section we describe the general architecture of
the hierarchical networks we are studying. In Section III we
outline the experiments we performed to investigate the role
of multiple layers and, in particular, of shape prototypes. In
Section IV, we give the results of our experiments on several
well-known image datasets. In Section V we discuss these
results. Finally, in Section VI we give our conclusions and
sketch plans for future work.
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Fig. 1: Sketch of an alternating multilayer architecture, simi-
lar to the model described in [1]. Shaded regions correspond
to the input of a single unit at the layer above. See text for
explanation.

II. HIERARCHICAL MODELS OF VISION

This work considers an important family of hierarchical
neural networks, which are used to classify an image based
on its contents. These networks combine multiple layers
of prototype matching, as shown in Figure 1, in which a
visual pattern is matched to a local image neighborhood.
These layers are interleaved with pooling operations that
provide invariance to certain deformations of the prototype,
such as scaling or translation. In these networks, prototype
matching is achieved by a (dis)similarity measure, such as
dot product or radial basis function, while invariance is
achieved via summarization of input neighborhoods by their
average or maximum value. At the top of the network, the
activity of the nodes is fed to a classification algorithm, with
logistic regression or support vector machine (SVM) being
a common choice.

Examples of this approach include the early Neocogni-
tron [6], the HMAX models [7], [1], Convolutional Neural
Networks [5], and Sparse Localized Features [3]. Many of
these approaches achieved state-of-the-art performance, and
have garnered significant interest within the computer vision
community.

Using a linear-kernel SVM as classifier, for example,
the architecture described above has been reported to
achieve state-of-the-art performance on a variety of object-
recognition tasks [2], [4]. According to some [8], a key to
the performance of this model is the inclusion of a second
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Fig. 2: Example images from the dataset of [2].

layer of learned prototypes that match specific discriminative
visual patterns. However, to our knowledge, the role of the
second-layer shape prototypes in the performance of such
networks has never been carefully tested. The purpose of
this paper is to investigate this claim.

III. METHODS

In this work, we test the “shape dictionary” hypothesis
discussed above, which suggests that using imprinted (or
otherwise learned) prototypes succeeds by constructing rep-
resentations that capture “shape-based” features of objects.
To investigate this, we make use of unlearned, ”shape-free”
prototypes. These representations are constructed randomly,
where each prototype component is drawn independently
from a uniform distribution over activation values in the
range [0, 1]. (This approach should not be confused with
imprinting, in which randomness is used to choose the
location of training patches.) As such, these prototypes lack
the spatial structure expected of a “shape” prototype. Recent
evidence suggests that various kinds of random features can
be surprisingly useful in hierarchical networks [9], [10], [11],
though the reasons for this behavior are still unclear.

A. Glimpse

We have developed a novel system for experimentation
on hierarchical visual models, which hides low-level imple-
mentation details without sacrificing run-time efficiency. The
system provides a simple interface for running experiments,
is designed using only free and open-source components, and
provides native support for parallel compute resources [12].
This system can be used to build networks with a range of
different parameters, layer operations, and connectivity with
a minimum of coding effort. We used this system to create
Glimpse, our implementation of an alternating multilayer
visual network.

B. Datasets

Recently, a number of authors have raised concerns that
many common object recognition datasets contain significant
confounds [13], [14]. To address these concerns, we consider
two artificial tasks introduced previously by Pinto et al. [2].
These tasks were designed to probe a system’s ability to
demonstrate view-point invariant object recognition, without
using visual cues from the surrounding environment. The
dataset is constructed by rendering a 3D object model from
various points of view, and then composing the object with
a randomly-chosen natural image background. The difficulty
of each task depends on the range of view-points from which
an object is rendered. Following Pinto et al., the task is quan-
tized into seven “variation levels”, with difficulty increasing
with each level. (See [2] for details.) The first dataset contains
rendered examples of cars and airplanes (Car v. Plane), and
measures category-level discrimination. The second dataset
contains rendered examples of two different faces (Face1
v. Face2), and measures subordinate-level discrimination.
Figure 2 gives a sample of the images for these two tasks.

IV. RESULTS

Figure 3 compares performance given as the mean Area
Under the ROC Curve (AUC) over five independent train-
ing/testing splits using two different image representations:
features based on 4,075 imprinted prototypes, and features
based on 4,075 random prototypes. Figure 3a shows this
comparison for the Car v. Plane task, and Figure 3b shows
the same comparison for the Face1 v. Face2 task. The data
provided by Pinto et al. [2], [15] is split into seven different
variation levels, i.e., levels of variation in rotation, position,
and scale of the objects of interest. Each level of variation
defines a separate object-recognition task. Following [2], we
plot performance (mean AUC, with error bars giving standard
error) as the variation level is increased. We found that
results were similar to [2], but that this did not depend on
the technique for choosing prototypes; behavior for random
and imprinted prototypes was nearly identical. This result
seems to contradict the “shape dictionary” hypothesis. Here
we consider a number of possible explanations.

We first consider the possibility that a sufficiently large
network is simply robust to a bad choice of prototypes. That
is, perhaps any sufficiently large set of prototypes would
lead to the behavior seen in Figure 3. To investigate this,
we compare the performance of these representations using
different numbers of prototypes. Figure 4 shows that the per-
formance of Glimpse using imprinted and random prototypes
is quite similar even when using as few as 10 prototypes.
Regardless of the size of the network, we were unable to
find a significant difference in performance between the two
representations.

Alternatively, we considered the possibility that random
prototypes provide a kind of “weak” feature that, when
used alone, is non-discriminative, but in combination with
others provides a “strong ensemble”. In contrast, we expect
imprinting to generate at least some prototypes that provide
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Fig. 3: Comparison of Glimpse’s performance on two tasks,
using (1) 4,075 imprinted prototypes; and (2) 4,075 random
prototypes. The horizontal axis shows the variation level
(over rotation, position, and scale) of the object of interest,
and the vertical axis shows the mean AUC over five inde-
pendent training/testing splits at each variation level. Error
bars show the standard error.

highly-discriminative representations, even when considered
in isolation. To investigate this, we measured performance
based on individual features. For each prototype-generation
method (imprinting or random), we generated 4,075 proto-
types as before, except here we used them one at a time to
create a single value to represent each image in order to train
and test the SVM. As before, we performed five independent
training/testing splits using each prototype. Figure 5a shows
the performance (mean AUC) for single imprinted prototypes
(solid blue curve) and single random prototypes (solid red
curve) on the Car v. Plane task, where the prototypes are
ranked by performance. The shaded areas give the range
of performance for each case. Figure 5b shows the same
values for the Face1 v. Face2 task. We found no significant
difference between the two representations in terms of the

(a) Car v. Plane

(b) Face1 v. Face2

Fig. 4: Comparison of Glimpse’s performance on (a) the Car
v. Plane task and (b) the Face1 v. Face2 task, for variation
level 3 in each case. The curves give the performance (mean
AUC over five independent training/testing splits) of the
imprinted (solid blue) and random (dashed red) prototypes.
Error bars give standard error.

occurrence of individually discriminative features. In fact,
it is striking how well the best random features perform
when operating in isolation. In short, it appears that random
prototypes are not limited to operating in ensembles.

A. Best matches between prototypes and image crops

Finally, we investigated the hypothesis that the imprinted
and random prototype representations behave similarly be-
cause they code for similar visual features. It is possible,
in theory, that our process of random prototype generation
occasionally creates the kind of useful shape selectivity
that we expect under imprinting. In this case, we would
expect these “lucky” random features to be among the most
discriminative when used in isolation.

Due to the nature of these networks, it is difficult to
directly interpret the contents of a prototype. (For example,
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Fig. 5: Performance (mean AUC and range) using individual
features from either imprinted (solid blue) or random (dashed
red) prototypes for (a) the Car v. Plane task, and (b) the
Face1 v. Face2 task. In both cases, the tasks use variation
level 3.

the invariance stage may cause the same feature values to
be produced for multiple images.) Instead, we attempt to
characterize a given prototype by examining those input
patches that provide the best match. Figure 6 shows this data
for the most discriminative prototypes on the Face1 v. Face2
task (variation level 3). Each row in the figure corresponds to
one of the five most discriminative prototypes (those ranked
1–5 in Figure 5b for (a) imprinted prototypes and (b) random
prototypes. Each row gives the image 10 patches in the
Face1 v. Face2 dataset to which the corresponding prototype
matched most closely, where each image is allowed at most
one match. Although it may appear that patches in, say, the
top row of Figure 6a are from slightly different positions
of the same image, these patches are all from different
images. As expected, it appears that the five imprinted
prototypes are responding preferentially to specific “shape-
based” patterns relevant to faces, and are relatively robust to

(a) Imprinted prototypes

(b) Random prototypes

Fig. 6: Characterization of best-performing prototypes for
the Face1 v. Face2 task (cf. Figure 5b) based on the input
patches to which they respond most strongly. (a): Each row
corresponds to one of the top five imprinted prototypes (those
ranked 1–5 in the imprinted set in Figure 5b). The 10 images
in each row are the 10 image patches in the Face1 v. Face2
dataset to which the prototype matched most closely. All
patches in a row are drawn from different images. (b): Same
as part (a), but here the five top prototypes are those ranked
1–5 in the random-prototype set in Figure 5b. In contrast to
part (a), there is no obvious preferred “shape” along each
row.

rotation and translation of those patterns. However, the five
random prototypes display no obvious “shape” preference or
relevance to faces along each row.

These results show that, while imprinted features are
highly selective to shape and somewhat invariant to back-
ground clutter, random prototypes are not easily interpretable
as shape templates. Although the patches in Figure 6 came
from one particular set of imprinted and random prototypes,
we found that this behavior was qualitatively similar for
other, independently generated, sets of imprinted and random
prototypes.

V. DISCUSSION

In this work, we investigated the hypothesis that shape-
based prototypes are central to the ability of alternating
multilayer networks to perform invariant object-recognition.
To summarize our results:
• We applied our network to a pair of challenging bench-

marks for invariant object recognition, and find that
learned “shape” prototypes are not necessary to achieve



the performance seen in the literature. These bench-
marks specifically emphasize viewpoint-invariance by
carefully controlling for confounding factors. As such,
our “shape-free” features seem to provide an unlearned,
unbiased (i.e., universal) dictionary.

• Upon analysis, we find evidence that (1) our randomly-
generated prototypes support performance that is on par
with a learned shape dictionary (Figure 3), even in small
networks (Figures 4 and 5). Critically, we also find
evidence that (2) those prototypes lack shape specificity
(Figure 6), a characteristic thought to be central to the
success of these networks.

Taken together, these results argue that our understanding of
successful hierarchical visual models is far from complete,
and that further analysis is warranted. Furthermore, our
work suggests that—when used properly—random projec-
tions may have an important role to play in these hierarchical
networks.

We are left with several questions, yet to be answered.
Chief among them are: (1) In what types of object-
recognition tasks would a set of learned shape-based pro-
totypes provide an advantage over randomly generated pro-
totypes? Equivalently, for what sorts of tasks can we simply
rely on random prototypes and thus avoid the costs of learn-
ing? (2) What are the mechanisms underlying the success of
random prototypes in our experiments? For example, can this
success be explained by mechanisms related to the methods
of random projections or compressive sensing [16], [17]?
These are questions our group hopes to address in future
work.

VI. CONCLUSIONS

The family of alternating multilayer network models has
been described as a state-of-the-art solution to the task of
image classification, and has been shown to be superior to
a variety of alternative approaches on tasks that specifically
emphasize viewpoint invariant object detection. Central to
the success of this model is claimed to be the unsuper-
vised learning of discriminative “shape dictionaries”. We
performed a systematic evaluation of this claim, and showed
that qualitatively identical behavior can be produced using
only a simple, randomly constructed dictionary that displays
little shape selectivity. This directly challenges the existing
hypothesis, and suggests that a new explanation is required
to understand the qualitative behavior of this important class
of models. Our future work will include the search for this
explanation.
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VII. APPENDIX

In the following, we first give the detailed parameters and
operations used in our visual network. We then verify that our
model captures the qualitative behavior of other published
implementations.

The input to Glimpse is a grayscale image, which is
rescaled to have a shorter side of 220 pixels. A scale
pyramid with nine bands is then generated from the image,
with a constant ratio of 21/4 between bands. Next, the first
prototype-matching layer applies a battery of Gabor filters of
size 11x11 pixels to each band of the scale pyramid. Given
an input patch x, the activation of each unit is calculated as

act1 (x,g) =
|(x,g)|
‖x‖ ‖g‖

.

where (·) denotes the inner product, | · | the absolute value,
and ‖·‖ the Euclidean norm. The filter g is given by the
Gabor function

g = exp

(
−
(
x20 + γ2y20

)
2σ2

)
× sin

(
2πx0
λ

+ φ

)
x0

= x cos θ + y sin θy0

= −x sin θ + y cos θ ,

where x and y range over [−w/2, w/2] for a unit with
receptive field width of w. In our experiments, we used
orientations of θ = (0◦, 45◦, 90◦, 135◦), an aspect ratio of
γ = 0.6, a wavelength of λ = 2.75, a scale of σ = λ/2,
a phase of φ = 0, and a receptive field width of w = 11
pixels.

Each unit in the first invariance layer then applies
maximum-value pooling over a local 10x10 neighborhood of
outputs from the layer below, and the result is sub-sampled
by a factor of two. The next prototype-matching layer then
applies a set of stored prototypes, which receive input from
a 7x7 spatial neighborhood of inputs. Given a patch x of
inputs, the response of a prototype-matching unit at the
second layer is given by

act2 (x,p) = exp
(
−β ‖x− p‖2

)
(1)

where p is the unit’s prototype. In our experiments, we use
a value of β = 5.0. Finally, the last invariance layer applies
maximum-value pooling for each prototype, giving the best
response over all scales and locations. The results are used
as input to a linear kernel SVM.

In our work, we use random prototypes that are sparse
and gain-invariant. Random prototypes use sparse input, in
which high activation for one orientation suppresses activa-
tion at other orientations. We implement this by scaling the
activation of each input unit xi at location ` as x′i =

xi

a`
. The

total activation a` at location ` is measured as a` =
√∑

x2j ,
where the sum ranges over the set of inputs at location `.
Furthermore, gain invariance is achieved by constraining the
input and prototype vectors to have fixed norm, where we
compute activation as act2

(
x′

‖x′‖ ,
p′

‖p′‖

)
. (See Equation 1.)



Fig. 7: Comparison of Glimpse with reference system of [1],
given as mean AUC with standard errors shown.

Although very similar to the models described in [1], [3],
Glimpse differs by using a larger input image (220 instead of
140 pixels), fixed-size first-layer prototypes (a scale pyramid
of the image is used instead), fewer scales (9 instead of
16), and a single size for second-layer prototypes (instead of
four sizes). These parameter choices allowed for increased
computation speed without sacrificing performance, and are
similar to those used in the SLF model [3].

For completeness, we compare our network against the
reference systemof Serre et al. [18] for a range of benchmark
datasets. (We obtained very similar results using the SLF
model of Mutch and Lowe [3].) Figure 7 shows the results
of this comparison, using 4,075 imprinted prototypes for
each system. Performance is reported as mean AUC over
five independent trials, where error bars give standard error.
The datasets used here include subsets of the Caltech101
dataset [19], the AnimalDB benchmark of Serre et al. [4], and
the synthetic tasks discussed in Section III. The Caltech101
subsets (Airplanes, Faces, Faces (easy), Motorcycles, and
Watch) used all available examples of the given foreground
class, and an equal number of examples from the background
class. For all experiments, half of the available data was used
for training, and the other half for testing.

In all cases, the variation among trials is low and perfor-
mance is quite similar between the two systems. We note
somewhat inferior performance for the Glimpse network on
the AnimalDB dataset. We suspect that this is the result of a

difference in parameters rather than reflecting a qualitative
difference in network behavior.
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