Cﬁépﬁar 5, from Douglas Hofstadter & the Fluid Analogies Research Group, Fluid
Coneepis and Creative Analogies, Basic Books, 1995,

Eé.fﬂrating i
i them, My
ese kinds of
L at Indiang
shatical, and
Pz technical
opycatwork,
L was H}V V‘f&?
izl halos and
in a natural
o
anatural fit,
was siarting
dyears down
[$3 5134 :;_”}{‘.'[‘SOH.
nie Mitchell
terest in the
tle o go on,
, Prentatively

vE.

:ly, codelets,

Chapter 5

e Copycat Project:
A Model of Mental Fluidity
d Analogy-m

DOUGLAS HOFSTADTER and MELANIE MYTCHELL

Copycat and Mental Fluidity

Copyeat is a computer program designed to be able to discover insightful
analogies, and to do 50 in a psychologically realistic way, Copycat’s architecture
is neither symbolic nor connectionist, nor was it intended to be a hybrid of the
two (although some might see it that way); rather, the program has a novel type
of architecture situated somewhere in between these extremes. It s an emergent
architecture, in the sense that the program’s top-level behavior emerges as a
statistical consequence pf myriad small computational actions, and the concepts
that it uses in creating analogies can be considered 1o be a realiration of
“statistically emergent active symbols” (Chapter 26 of Hofstadter, 1985). The
use of parallel, stochastic processing mechanisms and the implementation of
concepts as distributed and probabilistic entities in a network make Copyeat
somewhat similar in spirit to certain connectionist systems. However, as will be
seen, there are important differences, and we claim that the middle ground in
cognitive modeling occupied by Copycat is at present the most useful level at
which to attempt to understand the fluidity of concepts and perception that is
so clearly apparent in human analogy-making,

Analogy problems in the Copyeat dewain

The domain in which Copycat discovers analogies is very small but surpris-
ingly subtle. Not to beat around the bush for a moment, here is an example of
a typical, rather simple analogy problem in the domain:

206 Donglas Hefstadter & Melanie Mitchell

L. Suppose the letterstring abe were changed o abd; how would

ot

‘ou change the fetterstring ik in “the same way’?

Mote that the challenge is essentially “Be a copycat” «— that is, “Do the same
thing as I did”, where “same” of course is the slippery term. Almost €Veryone
ANSWErS g;Z} It is not hard to see why; mast people feel that the natural way to
describe what happened o abe is 1o say that the rightmost letter was replaced by g
alphabetic successor; that operation can then be painiessly and naturally “e
ported” from the abeframework (o the other framework, namely 7%, to yield the
answer iff. Of course thisisnot the ozﬂy possible answer, For instance, itig a]w;g _
possible to be a "smart aleck” and to answer 14 (rigidly choosing 1o replace the:
rightmost letier by o) or gk (rigidly replacing ail ¢’s by d’s) or even abd
{replacing the whole structure blindiy by abd}, but such “smart-alecky” answers
are suggested rather infrequently, and when they are suggested, they seem less.
compelling to virtually everybody, even to the people who suggested them. Thys
lisa fairly uncontroversial winner amon g the range of answers to this problem. |

There is much more subtlety to the domain than that probiem would:
suggest, however. Let us consider the following closely related but considerably
more intercsting analogy problem:

2. Buppose the letterstring aabe were changed to aghd; how would
vou change the letterstring #kk in “the same way’?

Here as in Problem 1, most pecple look upon the change in the first framework
as the rightmost letler was replaced by its alphabetic successor. Now comes the tricky part;
should this rule simply be transported rigidly to the other framework, yielding
RI? Although rigid exportation of the rule worked in Problem 1, here it seems
rather crude to most people, because it ignores the obvious fact that the kis
doubled. The two ¥'s together seem to form a natural unit, and so it is tempting
to change both of them, yielding the answer 11, Using the old rule literally will
sirply not give this answer; instead, under pressure, one “flexes” the old rule into
avery closely refated one, nawnely replace the rightmost group by its alphabetic successor,
Here, the concept ltter has “slipped”, under pressure, into the relared concept
groug of letiers. Coming up with such a rule and corresponding answer is a good
example of human mental “fluidity” (as contrasted with the mental rigidity that
gives rise to k). There is more to the stery of Problem 2, however,

Many people are perfecdy satisfied with this way of exporting the rule {and
the answer it furnishes), but some feel dissatisfied by the fact that the doubled
ain asbe has been ignored. Onee one focuses in on this consciously, it jumps to
1. ﬂ”ﬁ_'h::n.zgh the pepularity of this answer can casily be predicted by one’s inwition, we have carried

sulmany surveys, both formal and informal, of people’s answers to this and other problems. The
results of the formal SUIVEYs ave given in Mitchell, 1098,

The Copyeat Project 207

OW woukd d easily that the aa and the k& play similar roles in their respective frame-

rks. From there it is but a stone’s throw to “eguating” them (as opposed (o
N ﬁatmg the ?W.@fglmﬁ}, which leads to ig'-l»’if {guestioﬂf "“W’n'at then is .the
n08t everyoy, € unterpart of the &7 Given the already-established mapping of lefimost ohject

T¥One
tatural way ©
§ #epiaced by iy
naturally “ey
%, 10 yield the

Ce, it

ey onto rightmost obiect (Ek), it is but a small leap 1o map rightmost cbiect (¢)

to lefimost object {i). At this peint, we could simply take the successor of the
- yielding the answer jiké.

However, few people who arrive ar this point actually do this; given that
the two crosswise mappings (aa & &k ¢ ¢) are an invitation to read ik in

!"S alv‘?a . A 5 . . M
o Y8 everse, which reverses the alphabetical flow in that string, most people tend to
B B

> replace the
OF even ghg
<ky” answers
Y seem legs
tthern, Thus .
18 problem
em wouid
onsiderab]’y :

cel that the concepiual role of alphabetical successorship in aabe is now being
played by that of predecessorship in dfkk. In that case, the proper modification of
the iwould not be to replace it by its successor, but by its alphabetical predecesson
ielding the answer kjkk. And indeed, this is the answer most often reached by
those people who consciously try to take into account both of the doubled letters.
Such people, under pressure, have flexed the original rule into this variant of
seff. replace the leftmost letter by its alphabetic predecessor. Another way of saying
this is that a very Hluid transport of the original rule from its home framework

slipped”,

1

to the new one has taken place; during this transport, two concepts

vould under pressure, into neighboring concepts: rightmost into leftmost, and successor
into pradecessor. Thus, being a copycat — that is, “doing the same thing” — has
P proven to be a very slippery notion, indeed.
amework
tricky part:

 Mental Jluidity: Shppages induced by pressures

k, fv’iszding it .
Hopefully, the pathways leading to these two answers to Problem 2 — ¢#f

€ I Seems
it the &g
tempting
erally wilf

- and Afkk -— convey a good feeling for the term “mental fluidisy”. There is,
however, a related notion used above that still needs some clarification, and that
“1s the phrase “under pressure”. What does it mean o say “concept A slips into
concept B under pressure” It might help to s“pcli out the intended imagery

‘rule inte . ,

. behind these terms. An earthquake takes place when subterranean structures
teccessor. . : o

c are under sufficient pressure that something suddenly slips. Without the pres-
aneent . . ’ .

¢ a Z sure, obviously, there would be no slippage. An analogous statement holds for
4 £00

dity 11 pressures bringing about conceptual slippage: only under specific pressures will
ity thar o S ’ : i,
! concepts slip inte related ones. For instance, in Problem 2, pressure results from

e (and the doubling of the a and the k; one could look upon the doubling as an
i (and N . X) . . . : L
emphasis” device, making the left end of the first string and the right end of

)
i:;i{fj the second one stand out and in some sense “attract” each other. In Problem 1,
; on the other hand, there is nothing to suggest mapping the a onto the & — no
- cartid pressure. In the absence of such pressure, it would make no sense atall to slip
5. The lefimostinto rightmost and then to read 4k in reverse, which would in turn suggest

& siippage of successor into predecessor; all of which wonld finally lead o the

208 Douglas Hofstadter & Melanie Mitchell

downright bizarre answer kg That would be unmotivated fluidity, which ig n6

characteristic of human thought (except in humor, where higher-level {lUiismI

eraions often do motivate all sorts of nermallpunmotivated slippages).
Caopycatisa thoroughgoing exploration of the nature of mental pressure

the nature of comcepts, and their deep interr clationships, focusing partzcuidrl},
on how pressures can engender slippages of concepts into nezghbonng

concepts. When one ponders these issues, many questions arise, such as th
tollowing ones: Whait is meant by "neighboring concepts™ How much pressure.
is required to make 2 given conceptual slippage likely? Just how big a slippag

can be made —— that is, how far apart can two concepts be and still be potentially
able 1o slip into each other? How can one conceptual slippage create a new
pressure leading to another concepiual slippage, and then anothey, and so on;
ina cascade? Do some concepts resist slippage more than others? Can particular
pressures nenetheless bring about a slippage of such a concept while another.
concept, usually wore “willing” te slip, remains untouched? Such are the
questions ai the very heart of the Copycat project,

The intended universality of Copycat’s microdomain

This project, which sprang out of two predecessors, Seek-Whenee
{(Meredith, 1986) and Jumbo (Hofstadter, 1983a), has been under dev elopment
since 1983, A casual glance at the project might give the impression that since
it was specifically designed to bandle analogies in a pardenlar tiny domain, its
mechanisms are not general. However, this would be a serious misconception.
All the features of the Gopycat architecture were in fact designed with an eve to
great generality. A major purpose of this article is to demonstrate this generality
by describing the features of Copycatin very broad terims, and to show how they
transcend not just the specific microdomain, but even the very task of analogy-
making itself. That is, the Copycat project is not about simulating analogy-
making per se, but about simulating the very crux of human cognition: fluid
concepts. The reason the project focuses upon analogy-making is that analogy-
making is perhaps the quintessential mental activity where Auidity of concepts
is called for, and the reason the project restricts its modeling of analogy-making
to a specific and very small domain is that doing so allows the general issues to
be brought out in a very clear way - far more clearly than in a “realworld”
domain, despite what one might think at first,

Copycat’s microdomain was designed to bring out very general issues —
issues that transcend any specific conceptual domain. In that sense, the micro-
domain was designed to “stand for” other domains. Thus one is intended to
conceive of, say, the successor (or predecessor) relation as an idealized version of
any nop-identity relationship in a realworld domain, such as © parent of”,

n

“neighbor of ™, “friend of 7, “emploved by”, “close to”, ete. A SUCCESSOT TroTp (e.g,

The Copyeat Project U

aﬁ:&} then plays the role of any conceptual chink based on such a relationship,
oh as “Carnily”, “rstéighhorhoed”, “community’, “workpbce”, “region’, eic. Of
e, inclusion of the notion of sameness needs no defense; sameness 1§
pviously a universal concept, much us 18 opposite. Although any realworld
omain clearly contains many mote than two basic types of relationship, two
'Pes {sameness phus one other one) alveady suftice to make an inexhaustible
Aricty of structures of arbitrary complexiiy.

Aside from the idealized repertoire of concepls in the domaln, there are
Iso the SIrughitTes, such as ik, out of which problems are made. In particula.x;
flowed structures are iinear strings made from any pumber — usually a small
qumber — of instances of fetters of the atphabet. Thus one immediately runs
on ato the fype/token distinclion, a key issue m understanding cognition. The
_iphab@t can be thought of as a very simple “Platonic heaven” in which exacily
96 letter ypes permanently float i a fized order; in contrast to this, there is a
ery rudimentary “physical world” in which any number of letter tokens can
temporarily coexist in an arbirrary one-dimensional juxtaposition. In this ex-
tremely simple model of physical space, there are such physical relationships
aivd entities as left-neighbor leftmost edge, group of adjacent leiters, and so on {(as
: contrasted with such relationships and entities in the Platonic alphabet as
1ent predecessorn alphabelic starting-poind, alphabetic segment, ete.). Both the Platonic
yeaven and the physical world of Copycat are very simple on their own; however,

FiF

nce

L, 1ts the psychological processes of perception and ahstraction bring them into
ion intimate interacton, At can Cause extremely complex and subtle mental
e 10 representations of situations to come about,

ality ' Copycat's alphabetic microworld is meant o be a tool for exploring
they ‘general lssues of cognition rather than issues specific to the domain of letters
ogy- and strings, or domains restricted to linear structures with precise distances in
ogy- ‘them. Thus certain aspects specific to people’s knowledge of letters and letter-
Tuid strings —— such as shapes, sounds, or cultural connotations of specific letters, oF
ogy- words that strings of letters might happen to form — have not been included
epts in this microworld. Moreover, problems should not depend on arithmetical
king Facts about letters, such as the fact that £ comes exactly eleven letters after 4, or
esto that # and n flank the midpoint of the alphabet. Arithmetical facts, while they

wid” are universal fruths, are not common enough in analogy-making to be worth-
while modeling. This may seem to climinate almost everything about the
alphabet, hut as Problems 1 and 9 show {and further pmblems will show even
icro- hetter), there is still plenty left to play with. Reference to the alphabet’s local
d structure is fine; for exanple, it is per{ectly legitimate o exploit the fact that u
m of comes immediately after £ It is also legitimate 10 exploit the fact that the
of”, : Platonic ziphabethas two distinguished members — namely, g and z, its starting
{e.g. and ending points. Likewise, inside a string such as hagizk, tocal relationships,

£10 Diouglas Hofstadter & Melanie Mitchell

such as “the gis the rightneighbor of the #”, can be noticed, but long-distanc

chservations, such as “the a iz four letters to the left of the &7, are considered
out of bounds.

Although arithmetical operations such as addition and multiplication play
no role in the Copycat domain, numbers themselves — small whole numbers
that is — are included in the domain. Thus, Copycat is capable of recognizin
not only that the soructure fgh is a “successor group”, but also that it consisis ¢
three letiers. Just as the program knows the immediate neighbors of every lette
in the alphabet, it also knows the successors and predecessors of small integers.

Under the appropriate pressures, Copycat can even ireat smail integers as i
does letters — it can notice relationships between numbers, can group number,
together, map them onto each other, and so on. However, generally speaking
Copycat tends fo resist bringing numbers into the picture, uniess there seems .

to be some compelling reason to do so — and large v umbers, such as 5, are

resisted even more strongly. The idea behind this is to reflect the relative eas
humans have of recognizing pairs and perhaps trios of obiects, but the relative ':
insensitivity to such things as quintuples, let alone septuples and so on.
Finally, while humans tend to scan swrings of roman letters from left to
right, are much better at récogniz}'ng forwards alphabetical order than back-
wards alphabetical order, and have somewhat greater familiarity with the begin-
ning of the alphabet than its middle or end, the Copyeat program is completely
free of these biages. This should not be regarded as a defect of the program, but
a sirength, because it keeps the project’s focus away from domain-specific and

nongeneralizable details.

A perceptionbased, emergent architecture for mental fluidity
When one describes the Copycat architecture in very abstract terms, the

s is ot enly on how it discovers mappings hetween situations, but also on
ow it perceives and makes sense of the miniature and idealized situations it is
presented with. The present characterization will therefore read very much like
a description of a computer model of perception. This is not a comncidence; one
of the main ideas of the project is that even the most abstract and sophisticated
mental acts deeply resemble perception. In fact, the inspiration for the archi-
tecture comes in part from a computer model of low-level and high-level
auditory perception: the Hearsay I speech-understanding project (Erman ¢
al., 1980; Reddy ef af., 1876).

The essence of perception is the awakening from dormancy of a relatively
small number of prior concepts — precisely the relevant ones. The essence of
understanding a situation is verv similar; it is the awakening from dormancy of
a relatively small number of prior concepts — again, precisely the relevant ones
— and applying them judicicusly so as to identify the key entities, roles, and

The Copyeat Project 211

sig-tistance

&

relationships 1 the sitvation. Creative human thinkers manifest an exqguisite
considereq, lectivity of this sort —when they are faced with a novel sttuation, what bubbles
' up from their unconscious and pops to mind is typically 2 sinall set of concepts

Haton play at “fitiike a glove”, without a host of extrancous and irrelevant concepis being

¢ fumbers consciously activated or considered. To get a computer model of thought to

"3{3‘}@3252@ whibit this kind of behavior is a great challenge,
CONsists o Following this introductory section, there are six further main sections in
very lettey his article. The second section is a description of the three main cormponents
Tin tegerg of the architecture and their interactions. The third section deals with the
potion of conceptual fluidity and shows how this architecture implements a

model, albeit rudimentary, thereof, The fourth section rackles the seeming

LEErs as iy
o numberg
speaking,

O seemg s

aradox of randomness as an essential ingredient of mental fluidity and intel
ligence. The {ifth section views the Copycat program ata distance, summarizing
Eas 5, are thousands of runs on a few key problems in the letterstring microworld. The
sixth section alfords a close-up view of Copycat’s workings, describing in detail
he pathways followed by Copycat as it comes up with subtle answers to two
particutarly challenging analogy problems. The seventh section concludes the

#ive ease |
1€ relative |
e article with a discussion of the generality of Copyeat’s mechanisms.
31 back- |

1e begin.
mplerely
raw, but
Zific and

The Three Major Components of the Copycat Architecture

There are three major components to the architecture: the Slipnet, the
- Workspace, and the Coderack. In very quick strokes, they can be described as
foliows. (1) The Slipnet is the site of all permanent Platonie concepts. It can be
‘thought of, roughly, as Copyeat’s long-term memory. As such, it contains only
concept #ypes, and 1o instances of them. The distances between concepts in the
Slipnet can change over the course of a run, and it is these distances that

‘s, the
aiso on determine, at any given moment, what slippages are tikely and uniikely. {2) The
Workspace is the locus of perceptual activity. As such, it contains instances of
various concepts from the Slipnet, combined into lemporary perceptual structures
(e.g., raw letters, descriptions, bonds, groups, and bridges). It can be thought
of, roughly, as Copyeat’s shore-term memaory or working memory, and resembles
- the global “hlackboard” data-structure of Hearsay [L. (3) Finally, the Coderack
- can be thought of as a “stochastic waiting room”, in which small agents that
- wish to carry out tasks in the Workspace wait to be called. It has no close

ons i is
ich fike
ce; one
ticated
*archi-
fevel
man #
Sounterpart in other architectures, but one can liken it somewhat (o an agenda

atively (a gqueue containing tasks (o be executed in a specific order). The critical

1ce of - differenice is that agents are selected stochastically from the Coderack, rather
than in a determinate order. The reasons for this initially puzzling feature will
be spelled oue and analyzed in detail below, They turn out to be at the crux of

mental fuidity.

noy of
Lones

, and

]
i
]

Pougles Hofstadter & Melanie Mitchell

We now shall go through each of the three components once again, thiz
time in more dewil. (The finest level of detail — complete lists of algebraie
tormulas, numerical parameters, and their exact values — is not given here, byt
can be found in Mitchell, 18933

The Shipnet - Copyeat’s network of Platonic concepis

The basic image for the Slipnet is that of a network of interrelated
concepts, each concept being represented by a rode (cavear: what a concept is;
in this model, is actually a bit subtler than just a pointike node, as will he
explained shortly), and each conceptual relationship by a fink having a numeri-
cal length, representing the “conceptual distance” between the two nodes
involved. The shorter the distance hetween two concepts is, the more casily
pressures can indude a slippage between them.

Some of the main concepts in Copycat’s Slipnet are: &, b, ¢, ..., 7, letter
successor, predecessoy, alphabetic-first, alphabetic-lost, alphabetic postiion, lefl, vight,
direction, leftmost, vightmost, middle, SEING pOsSiion, SYoup, Sameness group, SUCCesso

group, predecessor group, group length, 1, 2, 3, sameness, and epposite. In all, there :
are reughly 60 concepts.

The Slipnet is not static; it dvnamically responds to the siruation at hand -
as follows: Nodes aequire varying levels of activation {which can be thought of *
as a measure of relevance to the situation at hand), spread varying amounts of
activation to neighbors, and over time lose activation hy decay, Activation is not -
an on-and-off atfair, but varies continuously. However, when a node’s activation
crosses a certain critical threshold, the node has a probability of jumping
discontinuously into a state of full activation, from which it proceeds to decay.
In sum, the activation — the perceived relevance — of each concept is a
sensitive, time-varving function of the way the program currently understands
the situation it is facing. '

Conceptual links in the Slipnet adjust their lengths dynarnically. Thus,
conceptual distances gradually change under the influence of the evolving
perception {or conception) of the situation at hand, which of course means that -
the current perception of the situation enhances the chance of certain slippages
taking place, while rendering that of others more remote.

Conceptual depth

Each node in the Slipnet has one very important static feature called its
conceptial depth. This is a number intended to capture the generality and
abstractness of the concept. For example, the concept opposite is deeper than ;
the concept successor; which is in turn deeper than the concept a. 1t could be
said roughly that the depth of a concept is how far that concept is from being
directly perceivable in situations. For example, in Problem 2, the presence of

gain, thig
.

algebraic
here, but

errelated
Incept is,
15 will he
inumeri-
vo nodes
e easily

. %, fetter
.
left, righ,
, Succassor
all, there

y at hand
sought of
sounts of
01 18 ot
iwctivation
Jumping
to decay.
cept is a
ferstands
ly. Thus,
evolving
eans that
stippages

per than
could be
W heing

sence of

The Copyeat Project 213

instances of eis trivially perceived; recognizing the presence of successorship takes
a little bit of work; and recognition of the presence of the notion oppesite is a
subtle act of abstract perception. The further away a given aspect of a situation
is from direct perception, the more likely it is to be involved in what people
consider to be the essence of the situation. Therefore, once aspects of greater
depth are perceived, they should have more influence on the ongoing percep-
tion of the situation than aspects of lesser depth.

Assignment of conceptual depths amounts to an a priori ranking of “best-
bet” concepts. The idea is thar a deep concept (such as opposite) is normaily
relatively hidden from the surface and cannot easily be brought into the
perception of a situation, but that once it is perceived, it should be regarded as
highly significant. There is of course no guarantee that deep concepts will be
relevant in any particular situation, but such concepts were assigned high
depth-values precisely because we saw that they tend to crop up over and over
again across many different types of situations, and because we noticed that the
best insights in many problems come when deep concepts “fit” naturallv. We
therefore built into the architecture a strong drive, if a deep aspect of asituation
is perceived, to use it and to try to let it influence further perception of the
situarion,

Note that the hierarchy defined by different conceptual-depth values is
quite distinct from abstraction hierarchies such as

fovdle = dog =5 mammal = animal =5 living thing => ihing.

These terms are all potential descriptions of a particular object at different levels
of abstraction. By contrast, the terms e, successor, and ofiposite are not descrip-
tions of one particular objectin Froblemn 2, but of various aspects of the situation,
at different levels of abstraction.

Likewise, conceptual depth is not the same as Gentner’s notion of “ab-
stractness” (Gentner, 1983%). In Gentner’s theory, attributes (e.g.; “the lefimost
letter has value @”) are invariably less abstract than relations (e g, "the next-to-
leftmost letter is the successor of the leftmost letter™}, which are in turn
invariably less abstract than relations between relations {e.g., “successoris the
opposite of predecessor”). This heuristic, based on syntactic structure, often
agrees with our conceptual-depth hierarchy, but in Copyeat certain “attributes”
are considered to be conceptually deeper than certain “relations” — for exam-
ple, alphabetic-first has a greater depth than successor because we consider the
former to be less directly perceivabie than the latier. (In the following chapter,
we go into considerably more detail in conirasting Gentner’s work with ours.)

Conceptual depth has a second important aspect — namely, the deepera
conceptis, the more resistant it is (all other things being equal) to slipping into
another concept. In other words, there is a builtin propensity in the program

214 Douglas Holstadter & Melante Mitchell

to prefer shipping shallow concepis rather than deep concepts, when stippages
bave to be made. The idea of course is that mnsightful analegies tend 1o link
sitinations that share a deep essence, allowing shallower features to sip if nece
sary. this basic idea can be summarized in a motto: Degp stuff doesnt st in go
analogies. There are, however, interesting situations in which specific constel)
tions of pressures arise that cause this basic tendency te be overridden.

Activaiion flow and variable ink-lengths

Some details about the flow of activation: (1) each node spreads activationg
to its neighbors according to their distance from it, with near neighhors getting
more, distant neighbors less; (2) each node’s conceptual-depth value sets jrg
decay raie, in such a way that deep concepts always decay slowly and shailow
concepts decay quickly. This means that, once a concept has been perceived ag
relevant, then, the deeper itis, the longer it will remain relevant, and thus the
more profound an influcnce itwill exert on the system’s developing view of the
situation — as indeed befits an abstract and general concept likely to be close
to the essence of the situation,

Some derils about the Slipnet’s dvnamical properties: (1) there ave a
variety of link iypes, and for each given type, all links of that type share the same
label; (2) each lahel is itself a concept in the network; (3) every link constantly
adjusts its length according to the activation level of its label, with hi gh activation
giving rise to short links, low activation to long ones. Stated another way: If
concepts A and 8 have a link of type L between them, then as concept L's
relevance goes up (or down), concepts A and B become conceptually closer (or
further apart}. Since this is happening all the time all throughout the network,
the Slipnet is constantly altering its “shape” in attempting o mold itself increas-
ingly accurazely to fit the situation at hand. An example of a label is the node
ofposite, which labels the link between nodes right and left, the Hnk between
nodes suceessor and predecessoy and several other links. If the node afifrosite gets
activated, all these links will shrink in concert, renderi ng the potential slippages
they represent more probable.

The length of a link between two nodes represents the canceptual prox-
imity or degree of association between the nodes: the shorter the link, the
greater the degree of association, and thus the easier it is 1o effect a slippage
between them. There is a probabilistic “cloud” surrounding any node, repre-
senting the likelihood of slippage to other nodes; the cloud’s density is highest
for nearneighbor nodes and rapidly tapers off for distant nodes. {This 1s
reminiscent of the quantum-mechanical “electron cloud” in an atorm, whose
probability density falls off with increasing distance from the nucleus.) Neigh-
bering nodes can be seen as being included it a given concept probabilistically,

as a function of their proximity to the central node of the concept.

[

i ;E}?}ﬁgeg:
s tend o Emk'.

2 slip if neces.
s’ sl in good
sfic constelias
ideder.

acks notivation
thbors getting
value sets it
¢ and shallow
1 parceived as
, and thus the
ng view of the
:ly to be close

there are a
sare the same
nk constantly
igh activation
wiher way: f

the network,

itself increas-
2l is the node
fink between
e opposite gets
siial sHppages

ceptual prox-

L

sity is highest

des. {This is
atom, whose
lews.y Meigh-
babilistically,
1.

The Copyeat Project 218

Coneepts as diffuse, overlapping clouds

: This brings us back to the caveat mentioned above: Althoughitis templing
(o equate a concept with a peintlike node, a concept is better identified with

this probabilistic “cloud” or halo cenfered on a node and extending cutwards

vom it with increasing diffusencss. As links shrink and grow, nodes move into

and out of each other’s halos (to the extent that one can speak of a node as
heing “Maside” or “outside” a blurry halo}. This image suggests conceiving of
¢he Shpnet not so much as 2 hard-edged network of points and lines, but rather
a8 a space in which many diffuse clouds overlap each other in an infricate,

HMEe-VAI VING way.

Conceptual proximity in the Shipnetis thus context-dependent, For exam-

ple,inFroblem I, no pressures arise that bring the nodes succassor and predecessor

into close proximity, so a slippage from one to the other is highly unlikely; by
contrast, in Problem 2, there is a good chance that pressures will activate the
concepl opposite, which will then cause the link between suceessor and predecessor
tc shrink, bringing cach cne more into the other’s halo, and enhancing the
probability of a slippage between themn. Because of this type of context
dependence, concepts in the SHpnet are emergen, rather than explicitly defined.

The existence of an explicit core to each concept is a crucial element of
the architecture. Specificaily, slippability depends critically on the discrete jump
from one core to ancther, Ditfuse regions having no cores would not perniit
such discrete jumps, as there would be no specific starting or ending point. Even
an explicit name attached to a coreless diffuse region could serve as a substitute
for a core — it would permit a discrete jump. In any case, however, slippage
requires each concept o be attached to some identifiable “place” or entity. One
might Hiken the core of a concept to the official city limits of a large city, and
the hale to the much vaguer metropelitan region surrounding the city proper,
stretching out in all directions, and clearly far more subjective and context-
dependent than the core. :

It may be useful to briefly compare Copycat’s Slipnet with conneciionist
networks. In localist networks, a concept is equated with a node rather than with a
diffuse region centered on a node. In other words, concepts in localist networks
lack hales. This lack of halos implies that there is no counterpart to slippability in
Incalist networks. In distribuied systems, on the other hand, there would seem (o
be halos, since a concept is equated with a diffuse region, but this is somewhat
misleading. The diffuse region representing a concept is not explicitly centered on
any node, so there is no explicit core 1o a concept, and m that sense no halo. But
since slippability depends on the existence of discrete coves, there isno counterpart
to slippability even in distributed connectionist models.

The lack of any explicit center o a concept would probably be found to
be quite accurate if one could examine concepts on the neural level. However,

216 Donglas Hofstadter & Melanic Mitchell

Copyeat was not designed to be a neural model; i aims at modeling cognitive:
s at a subcognitive but superneural level,

level hehavior by simulating process
We believe that there is a suboognitive, superncural level at which it is vealistic
to conceive of a concept as having an explicit core surrounded by an implicit, .
emergent halo, ‘

Another temptation might be o liken Copycat’s context-dependent Hnk-
lengths to the changing of internode weights as a connectionist net adapis to
training stimuli. One might even liken the sffect of a label node in Copyear to
a multiplicative connection (where some node’s activation is used as a multipli-
cative factor in calculating the new weight of a link). To be sure, there is a
mathematical analogy here, but conceptually there is a significant difference.
As connectionist networks adapt and “learn” by changing their weights, there
is no sense of departing from a norm and no tendency o Tetarn 1o an earlier
state. By contrast, in Copycat, any changing of link-lengths takes place in
response Lo a temporary context, and when that context is removed, the Slipnet
tends to revert o its “normal” state. The Slipnet is thus “rubbery” or “elastic”
in this sense; it responds to context but has a builtin tendency to “snpap back”
to its eriginal state, We know of no corresponding tendency in connectionist
networks.

Note that whereas the Slipnet changes over the course of a single run of
Copycat, it does not retain changes from run to run, or create new permanent
concepts. The program starts out in the same initial state on every run. Thus
Copycat does not model learning in the usual sense, However, this project does
concern learning, if that term is taken to include the notion of adaptation of
one’s concepts o novel contexts.

Although the Slipnet responds sensitively to events it the Workspace
{described in a moment) by constanty changing both s “shape” and the
activations of its nodes, its fundamental topology remains invariant. Thatis, no
new structure is ever built, or old structure destroyed, in the Slipnet. The next
subsection discusses a component of the architecture that provides a strong
contrast to this type of opelogical invariance.

The Workspace — Copyeat’s locus of percepinel activity

The basic image for the Workspace is that of a busy construction site in
which structures of many sizes and at many locations are being worked on
simuitaneously by independent crews, some cccasionally being torn down to
make way for new, hopefully better ones. (This image comes essenitially from
the biological cell; the Workspace corresponds roughly to the cytoplasm of a
cell, in which enzymes carrying out diverse tasks all throughout the cell’s
cytoplasm are the construction crews, and the structures built up are all sorts

of hierarchicallystructured biomolecules.)

The Copsyeat Praject 21

Ang cognitive Atthe start of a run, the Workspace is a collection of unconnected raw daa

wnevural level

: gfgpresemmg the situation with which the program is faced. Fach itemn in the
b it s realistic Workspace initially carries only bare-boues information — that is, for each letter
oy an impliciy, token, just its alphabetic type is provided, as well as — [or those letiers at the
' very edges of their strings — the descriptor leftmost or rightmost. Other than that,
pendent fink- all objects are absolutely barren. Over time, through the actions of many small
‘net adapts to agents “scouting” for features of various sorts {these agents, called “codelets”,
i Copyeat to .are described in the nextsubsection), items in the Workspace gradually acquire

1 as a muldiph-

“various descriptions, and are linked together by various percepiual structures, all of

we, there is a ahich are built entively from concepts in the Slipnet.

mi difference. _
weights, there The constant fight for probabilistic attention
n to an earler Objects in the Workspace do not by any means all receive equal amoeunts
akes place in ‘of attention from codelets: rather, the probability that an object will attract a
ed, the Slipnet :'prospﬁcti*\-’e codelet’s attention is determined by the object’s salience, which is a
¥ or “elastc”
to “snap back”

CONNEectionist

funcien of both the objects importance and its unhappiness. Though it might
Lgeemn crass, the architecture honors the old motto “The squeaky wheel gets the
- 0il”, even if only probabilistically so. Specifically, the more descriprions an ohject
has and the more highly actvated the nedes involved therein, the more
1 single run of important the object is. Modulating this tendency is the object’s level of
ew permanent unhappiness, which is a measure of how integrated the object is with other
ery ran. Thus objects. An unhappy object is one that has few o7 no connections to the rest of
is project does the objects in the Workspace, and that thus seems to cry out for more attention,
S adaptation of Salience s a dynamic number that takes into account both of these factors, and
this number determines how atractive the object in question will appear
he Workspace - codelets. Note that salience depends intimately on both the state of the Work-
nape” and the space and the state of the Slipnet
ant. That 1s, no A constant feature of the processing is that pairs of neighboring objects
nnet. The next (inside a single framework — ie, letterstring) are probabilistically selected
wides a strong (with a bias favoring pairs that include salient obiects) and scanned for similari-
ties or relationships, of which the most promising ave likely to get “reified” (i.e,
realized in the Workspace) as inter-object bonds. For instance, the two &s in ik
in Problem £ are likely to get bonded 1o each other rather quickly by a sameness
fruction site in bond. Similarly, the { and the j are likely 1o get bonded to each other, although
ng worked on not as fast, by a successorship bond or a predecessorship bond.
f torn down o The existence of differential rates of speed of bondanaking is meant to
ssentially from reflect realities of human perception. In particulay, people are clearly quicker
cytoplasm of a to recognize wo neighboring objects as identeal than as being related in some
bout the cells abstract way. Thus the architecture has an intrinsic speed-bias in favor of
up are all sors sameness bonds: it tends to spot them and o consiruct them more quickly than

it spots and constructs bonds representing other kinds of refationships. (How

218 Douglas Hofstadter & Melanie dMitche

the speeds of rival processes are dynamically controlled will be dealt with i

more defail in the next subsection.)

Slinnet {in the case of &k, the concept sameness, and in the case of ¥, cithey
3 it : T
successor or predecessor) but also the prevalence of similar bonds in its immediate
neighborhood. The idea of bonds is of course to start weaving unattached

objects tegether into a coherent mental structure,

The parailel emergence of multi-level percepiual struchures

A set of objects in the Workspace bonded together by & uniform “fabric’
(i.e., bond type) isa candidate to be “chunked” into a higherdevel kind of object
called a growp. A simple example of a swmeness group is kk, as in Problem 2

Anocther simple group is abe, as in Problem 1. This one, however, is a lirde

ambiguous; depending on which direction its bonds are considered to go in
either it is perceived as having a left-to-right successorship fabric and is thus seen
as a lefeto-right successor group, or it is perceived as having a rightto-left
predecessorship Labric and is thus seen as 2 right-to-left predecessor group. (It cannot '
be seen as both at once, although the program can swirch from one vision (o
the other relatively easily.) The more salient a potential group’s component
objects and the stronger its fabric, the more likely it is to be reified.

Groups, just like more basic types of objects, acquire thely own descriptions,
salience values, and strengths, and are themselves candidates for similarity-
scanning, bonding to other objects, and possibly becoming parts of yet higher-
level groups. As a conseqitence, hierarchical perceptual structures get built up
over time, under the guidance of biases emanating from the Slipnet. A simple
example would be the successor (or predecessor) group ikkin Problem 2, made
up of three elements: the ¢ the f, and the short sameness group kk.

Another constant feature of the processing is that pairs of objects in
differentframeworks (i.e., strings) are probabilistically selected (again with a bias
favoring salient objects) and scanned for similarities, of which the most prom-
ising are lkely to get reified as bridges (or correspondences) in the Workspace.
Fifectively, a bridge establishes that its two end-objects are considered each
other’s counterparts — meaning either that they are intrinsically similar objects
or that they play similar rolesin their respective frameworks (or hopefully both).

Consider, for instance, the aa and k& in Problem 2. What makes one
tempted to equate them? One factor iy their intrnsic similarity - both are
doubled letters (sameness groups of length 2. Another factor is that they fill
similar roles, since one sits at the left end of its string, the other at the vight end
of its string. If and when a bridge gets built between them, concretely reilying
this mental correspondence, it will be explicitly based on both these facts. The

The Copveat Project 219

s that @ and Zare inrelated letters of the alphabet is simply ignered by most
Jeople. Copycat ie constructed o behave stmilarly. Thus, the fact that eo and

rn are DoUD SATIENESS Eroups will be embodied i an ideniily mopping (here,
Smmeness & sameness); the fact that one is lefimaost while the other is vightmost
Jill be emnbodied in 2 conceptual slippage (nere, leftmast & rightinost}; the fact that
des ¢ and B are far apart in the Slipnet is simply ignored.

Whereas identily mappings are always welcome in a bridge, conceptual

0

sippages always have {0 Overcome a certain degree of resistance, the precise
smount of which depends on the proposed slippage itself and on the clroum-
wances. The most favored slippages are those whose component concepis not
1 “fabric 531}.’ are shallow but also have a high degree of overlap (i.e., are very close in
~of object the Stipret). Shippages between highly overlapping degh concepts are more
: - difficult to build, but pressures can certainly bring thermn about.

Once any bridge is built, it has a sivength, reflecting the ease of the slippages

‘oblem 2,
is a litde :
to goin, ‘it entailed, the number of identity mappings helping to underpin i, and its
thus seen | resemblance to othey bridges already built. The idea of bridges is of course 1o
ght-to-teft

{Itcannot

wild up a coherent mapping between the two frameworks.

To form a clear image of all this hubhub, itis crucial to keep in mind that
- all the aforemen tioned types of perceptual actions — scanning, bond-making,
- group-making, bridge-building, and so forth (as well as all the spreading and
~ decaying of activation and so on in the Slipnet) — take place in paraltel, so that

> yigion to

ymponent

scripions, independent perceptual structures of all sorts, spread about the Workspace,
sbmilarify- gradually emerge at the same time, and all the biases conirolling the likelihood
cet higher- of this concept or that one being brought 1o bear are constantly fluctuating in
et builtup light of what has already been ohserved in the Workspace.

. Astimple

-

=i 2, made The drive towards global coherence and towards deefy concepls

i

As the Workspace evolves in complexity, there is increasing pressure on
objects in few structures 1o be consisient, i 2 CETtain Sense, with pre-existent structures,
with a bias especially with onesin the same framework. For two structures to be consistent
nost prom- sometimes means that they are instances of the very same Slipnet concept,
Workspace. sometimes that they are instances of very clase Slipnet concepts, and some-
tered cach times it is a little more complex. In any case, the Workspace is not just a
ilar objects hodgepodge of diverse structures that happen to have been built up by totally
fully both). independent codelets; rather, it represents a coherent vision built up piece
by piece by many agenis all indirectly influencing each other. Such a vision

- ot are will henceforth be called 2 viewpoint. & useful image is that of highly coherent

hat they fill

e vight end

macroscopic structures (e.g, physical bridges) builtby 4 colony of thousands
of myopic ants or termites working semi-independently but nonetheless
cooperatively. (The “ants” of Copycat— namely, codelets — will be described

/

ely reifying

s, The in the next subsection.)

220 Diouglas Hofstadter & Melanie Mitchell

called ¢
and wh
determined by its strength, which bas two facets: a context-independent face

contributing factor would be, for instance, the depth of the conceptof whi(,'_ Th
is an instance) and a context-dependent facet (how well it fits in with the merely 1
of the structures in the Workspace, particularly the ones that would be: of effect
neighbors). Cut of the rough-and-tumble of many, many small decisions abg o fo
which new structures to build, which to leave intact, and which to destroy com {or dest
a particular giobal viewpoint. Even viewpoints, however, are valnerable; it tak Ty
a very powerful rival to topple an entire viewpoint, but this occastonally hay object ('
pens, Sometimes these “revolutions” are, in fact, the most creative decisions thy togethe:
the system as a whole can carry out group o
As was mentioned briefly above, the Slipnet respeonds to events in th manner
Workspace by selectively activating certain nodes. The way activation comnes abey being 1
1s that any discovery made in the Workspace — creation of a bond of some specifi, or bond
type, a group of some specific type, cte. —sends a substantal jolt of activation & Re
the corresponding concept in the Slipnet; the amount of time the effect of suc “promise
ajolt will last depends on the concept’s decay rate, which depends in tum on i mightn
depth. Thus, a deep discovery in the Workspace will have long-lasting effects o propose
the activation pattern and “shape” of the Slipnet; a shallow discovery will have bug how wel
transient effects. In Problem 2, for example, if a bridge is built between the groups’ *codelet
aaq and Bk, it will very likely involve an oppuosite slippage (leftmost < rightmost). This, “might tt
discovery will reveal the hitherto unsuspected relevance of the very deep concept group, ¢
opposite, which is a key insight into the problem. Because oppositeis a deep concept; sroup
once if is activated, it will remain active for a long time and therefore exert Ea
powerful effects on subsequent processing. codelets
It is clear from all this that the Workspace affects the Slipnet no less than s determi
the Slipnet affects the Workspace; indeed, their influences are so reciprocal and o run.
tangled that it is hard to tell the chicken from the egg. ‘potentia
Metaphorically, one could say that deep concepts and structural cohereney act “of the 8]
like strong magnets pulling the entire system, The pervasive biases favoring the is o see
realization of these abstract qualities in the Workspace imbues Copycat with an low urge
overall goal-oriented quality that a prieri might seem surprising, given that the created,
system is highly decentralized, parallel, and probabilistic, thus far more ke a swarm that is 1
of ants than like a rigid military hierarchy, the latter of which has more standardly chance «
served as a model for how to realize goalorientedness in compiter programs, We I
now turn 1o the description of Copyeat's “ants” and how they are biased. Rottom-
“to what
The Cederack — source of emergent pressurves in Copycnt for a pa
Al acts of describing, scanning, bonding, grouping, bridge-building, de- groups
struction, and se forth in the Workspace are carried out by small, siimple agents Botiom-

The Copyeat Project 221

catled eodeles. The action of a single codelet is always but a tiny part of a run,
“und whether any particalar codelet runs or not is not of much consequence,
“what matters is the collective effect of many codelets.

There are two types of codelets: scout codelels and effector codelets. A scout

entfacet {a
Tofwhich ¢
1th the r€st:'
ould be i
sions ghont

" merely looks at 2 potential aciion and tries to estimate its promise; the only kind

“of effect it can have is to create one or more codelets — either scouts or effectors

. to follow up on its findings. By contrast, an effector codelet actually creates

~(or destroys) some structure in the Workspace.
' Typical ¢ffecior codelets do such things as! attaching a description @ an

stroy cormes

ile; It takes _
wonally hap- :.'Objeci_ (e.g.. attaching the descriptor middleto the b in ebe); bonding two objects
:cisions that rogether {eg, inserting a successor bond hetween the b and ¢in abe); making a
: .g; oup out of two or more adjacent objects thatare bonded togetherina uniform
snanner; making a bridge that joins similar objects in distinct strings {similarity

being measured by proximity of descriptors in the Slipnet); destroying groups

ents in the

-omes about

ome specific or bonds, and so on.
Before any such action can take place, preliminary checkmqout of its

- promise has to be carried out by seout codelets. For example, one scout codelet

activalion o
ffect of such
o on s " might notice that the adjacent »’s in mywjjj are instances of the same letter, and
1g effects on : prOPOsE a SAMENeSs hond between them; another scout codelet might estimate
how well that proposed bond fits in with already-existing bonds: then an effector

“codelet might actually suild the bond. Once such a bond exists, scout codelets

wiil have but
1 the groups
htmosi). This might then check out the idea of subsuming the two bonded #'s infe a sameness
group, after which an effector codelet could go ahead and actually build the
group.
' Each codelet, when created, is placed in the Coderack, which is a pool of
“codelets waiting to run, and is assigned an wgeney value — a number that
determines its probability of being selected from that pool as the pext codelet

eep CoOnoept,
pefore exert

ne less than

to run. The urgency is a function of the estimated importance of that codelet’s
sotential action, which in turn reflects the hiases embodied in the current state
of the Stipner and the Workspace. Thus, for example, a codelet whose purpose
is to seek instances of some Hghtly activated Slipnet concept will be assigned a
low urgency and will therefore probably have to wait a long time, after being
created, to getrun, By conirast, a codelet likely to further a Workspace viewpoint
that is currently strong will be assigned a high urgency and will thus have a good

ciprocal and

Aavoring the
pvcas with an
iven that the
e like aswarm
HE Sﬁiii'ld?i-i"di‘r" chance of getting run soon alter being created,

Tt is useful to draw a distinction between botfom-up and fop-down codelets.

Bottom-up codelets {or “noticers”) lock around in an unfocused manner, open

3F f;ffi“mh‘% W

wod,
to what thev find, whereas top-down codelets {or “seekers”) are on the loockout
for a particular kind of phenomenon, such as successor relations or sameness
building, de- . groups. Codelets can be viewed as proxdes for the pressures in a given problem.

smple agents Bottom-up codelets represent pressures present in all situations (the desire to

make descrintions, to find relationships, to find correspondences, and so
on

2an Douglas Hofstadter & Melanie Mitchell

Top-down cedelets represent specific pressures evoked by the specific situation
at hand (eg, the desire, in Problems 1 and 2, © leck for more successg
relations, once some have already been discovered). Top-down codelety Caﬁ
infilirate the Coderack only when triggered from “on high” — thatis, from the
Slipnet. In particular, activated nodes are given the chance to “spawn” top-down
scout codelets, with a node’s degree of activation determining the codeler
urgency. The mission of such a codelet is to scan the Workspace in search of
instances of its spawning concept. "

Pressures deteymine the speeds of rival processes

It is very tmportant to noie that the caleulation of a codelet’s urgency
takes into account {directly or indirectly) numerous factors, which may inclade
the actdvations of several Slipnet nodes as well as the strength or salience of
one or more objects in the Workspace; it would thus be an oversimplification
to picture a top-down codelet as simply a proxy for the particular concept that
spawned it. More precisely, a top-down codelet is a prexy for one or more
pressures evoked by the situation. These include workspace pressuves, which
attempt to maintain and extend a coherent viewpoint in the Workspace, and
conceptual pressures, which attempt to realize instances of activated concepts. It
s critical to understand that pressures, while they are very real, are not
represented explicitly anywhere in the architecture; each pressure is spread out
among urgencies of codelets, activations aned link-lengths in the Slipnet, and
strengths and saliences of objects in the Workspace. Pressures, in short, are
implicit, emergent consequences of the deeply intertwined events in the
Slipnet, Workspace, and Coderack.

Any run siarts with a standard initial population of bottom-up codelets
(with preset urgencies) on the Coderack. At each time step, one codelet is
chosen to run and is removed from the current population on the Coderack.
As was said before, the choice is probabilistic, biased by relative urgenciesin the
current population, Copycat thus differs from an “agenda” system such as
Hearsay 11, which, at each step, executes the waiting action with the highest
estimated priority. The urgency of a cedelet should not be conceived of as
representing an estimated priovity; rather, it represents the estimated relative
speed at which the pressures represented by this codelet should be attended to.
If the highest-urgency codelet were always chosen to run, then lower-urgency
codelets would never be allowed to run, cven though the pressures they
represent have been judged to deserve some amount of atiention.

Since any single codelet plays buta small role in helping to further a given
nressure, it never makes a crucial difference that a particular codelet be
selected; what really matters is that each pressure move ahead at roughly the

A

A situation:

QYW

1 ton-dowr
rp-dowm

the codelers

i search of-

cmavinclude

7

1 salience of -

implification
concept that
ME OF more

wh

SEUYES,
rkspace, and
teoncepts. It
real, are not
is spread out
, an
t, are

the

rup codelets
ae codeler s
1e Onderack,
iencies in the
stem such as
i the highest
weived of as
wied relatve
attended to.
FWEIUN RNy

egsures thov

vther a given
r codelet be

roughly the

SUCCESSOr.

The Copvent Profect 223

; {-oper speed over time. Stochastic selection of codelets allows this w0 happen,

ven when judgments abowt the intensity of various pressures change over
Hime. Thus allocation of resources is an emergent statistical result rather than
g pre%pmgrammed deterministic one, The proper allocation of rescurces could
not be programmed ahead of time, since it depends on what pressures emerge
s a given situation is perceived.

The shifiing population of the Coderach

| The Cederack would obviously dwindle rapidly 10 zero if codelets, once
; m and removed from it, were not replaced. However, replenishment of the
Coderack takes place constantly, and this happensin three ways. Firstly, bottom-up
: céde%&ts are continually being added to the Coderack. Secondly, codelets that
yun can, among other things, add one or more followup codelets to the
Coderack before being removed. ‘Thirdly, active nodes in the Slipnet can add
' i@-dowﬁ codelets. Each new codelet’s urgency is assigned by its creator as a
function of the estimated promise of the task itis to work on. Thus the urgency
ofa follow-up codelet is a function of the amount of progress made by the
codelet that posted it, as ganged hy that codelet itself, while the urgency of a
i top-down codeletis a function of the activation of the node that posted it. The
urgency of bottom-up codelets is context-independent,

As a run proceeds, the population of the Coderack adjusts irself dynami-
' callyin response to the system’s needs, as judged by previouslyrun codelets and
by
structires in the Workspace, This means there is a feedback loop between percep-

activation patterns in the Slipnet, which themselves depend on the current

tual activity and conceptual activity, with observations in the Workspace serving
-to activate concepts, and activated concepts in return biasing the directions in
which perceptual processing tends to explore, There is no top-level executive
‘directing the system’s activity; all acts are carried out by antlike codelets.

‘The shifting population of codelets on the Coderack bears a close resem-
blance to the shifting enzyme population of a cell, which evolves in a sensitive
‘way in response to the everchanging makeup of the cell’s cytoplasm. Just as the
cytoplasmic products of certain enzyvimatic processes trigger the production of
new ypes of enzymes to act further on those products, structures built in the
Workspace by a given set of codelets cause new types of codelets to be brought
. in to work on them. And justas, at any moment, certain genes in the cefl’s DNA
genome are allowed to be expressed (atvarying rates) through enzyme proxies,
while other genes remain essentially repressed (dormant), certain Slipnet
nodes get “expressed” (at varving rates) through top-down codeles proxies,
- while other nodes remain essentially repressed. In a cell, the total effectis a
highly coherent metabolism that emerges without any explicit top-down con-
tol; in Copyeat, the effect is similar.

824 Dounglns Holstadter & Melanie Mitchell

Note that though Copycat runs on a serial computer and thus only one
codelet runs at a time, the system is roughly equivalent to one in which mans}
independent activities are taking place in parallel and at different speeds, sineé
codelets, like enzymes, work locally and to a large degree independently. The
speed at which an avenue is pursued is an e priori unpredictable statisties]
consequence of the urgencies of the many diverse cedelets pursuing thay
avenue.

The Emergence of Fluidity In the Copycat Architecture

Commingling pressures — ihe crux of fluidity _
 One of the central goals of the Copycat architecture is to allow many
pressures to simultaneously coexist, competing and cooperating with one an-
other to drive the system in cerrain directions. The way this is done is by
converting pressures into {locks of very small agents (i.e, codelets), each having
some small probability of getiing run. As was stated above, a codelet acts as a
proxy for several pressures, all to differing degrees. All these little proxies for
pressures are thrown inte the Coderack, where they wait to be chosen. When-
ever a codelet is given the chance to run, the various pressures for which itisa
proxy make themselves slightly felt. Over time, the various pressures thus “push”
the overall pattern of exploration different amounts, depending on the urgen-
cies assigned to their codelets. In other words, the “causes” associated with the
different pressures get advanced in parallel, but at different speeds.

There is a definite resemblance to classical time-sharing on a serial ma-
chine, in which any number of independent processes can be run concurrently
by letting each one run a little bit (i.¢, giving it a “time slice”, then suspending
it and passing control to ancther process, and so forth, so that bit by bit, each
process eventually runs to completion. Classical time-sharing, incidemally,
allows one to assign to each process a different speed, either by conwolling the
durations of its time slices or by controlling the frequeiicy with which its time slices
are allowed to run. The latter way of regulating speed is similar 10 the method
used in Copycat; however, Copycat’s method is probabilistic rather than deter-
ministic {comments on why this is so follow in brief order).

This analogy with classical time-sharing is helpful but can also mislead. The
principal danger is that one might get the impression that there are pre-aid-out
processes to which time slices are prebabilistically granted — more specifically,
that any codelet is essentially a time slice of some preordained process. This is
utterly wrong. In the Copycat architecture, the closest analogue to a classical
process is a pressure — but the analogy is certainly not close. A pressure is
nothing like a determinate sequence of actions; in very broad brushsirokes, a
conceptual pressure can be portrayed as 2 concept (or cluster of closely related

