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ABSTRACT 
 
A novel genetic algorithm (GA) is presented here that performs level set curve evolution 
using texture and shape information to automatically segment the prostate on pelvic 
images in computed tomography and magnetic resonance imaging modalities. Here, the 
segmenting contour is represented as a level set function. The contours in a typical level 
set evolution are deformed by minimizing an energy function using the gradient descent 
method. In these methods, the computational complexity of computing derivatives 
increases as the number of terms (needed for curve evolution) in the energy function 
increase. In contrast, a genetic algorithm optimizes the level-set function without the need 
to compute derivatives, thereby making the introduction of new curve evolution terms 
straightforward. The GA developed here uses the texture of the prostate gland and its 
shape derived from manual segmentations to perform curve evolution. Using these high-
level features makes automatic segmentation possible.   
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INTRODUCTION 
 
Target-volume and organ-at-risk delineation on medical images such as computed 
tomography (CT), magnetic resonance imaging (MRI), and ultrasound, is a time-
consuming process. In radiation therapy (RT) planning, the growth of conformal 
techniques, intensity-modulated RT with inverse planning, and adaptive four-dimensional 
RT has increased the difficulty of organ-delineation tasks. Uncertainty and variability in 
the definition of tumor margins can result in suboptimal treatment of some patients. The 
development of automated segmentation tools are, therefore, essential but remains a 
challenge for several reasons such as the variability of organ shapes and variability of 
tissue contrast on medical images. Despite the various techniques that have been 
investigated, most medical image segmentation algorithms are either semi-automatic or 
require some form of human intervention to perform satisfactorily (He et al., 2008; 
McInerney & Terzopoulos, 1996). This is mainly due to the fact that these algorithms do 
not encode the knowledge of the human anatomy that a physician uses to manually 
segment an image. Automatic segmentation can be accomplished if the knowledge of 
shapes, relative locations, and textures of organs is incorporated into a single algorithmic 
framework.  

 
Level set methods have become very popular in the field of medical image 

segmentation due to their ability to represent dynamic or ill-defined boundaries of objects 
(Sethian, 1999). In this method, a deformable segmenting curve is associated with an 
energy function. However the complexity of the energy function increases with the 
number of terms, and computing derivatives for determining the direction of curve 
evolution can become computationally intensive. A genetic algorithm simplifies the level 
set evolution process by eliminating the energy function. Instead, it uses a fitness 
function that implicitly encodes the energy function used for curve evolution. The genetic 
algorithm presented here uses the learned shape and textural properties of a known object 
to segment images. Each individual in the GA population is a vector of parameters of a 
level set function. The GA optimizes the parameters of the level set function to produce 
fit individuals or good segmentations of the given image using the information encoded 
in its fitness function.  

 
The rest of the chapter is organized as follows: At first a literature review is provided 

on the level set method of image segmentation specifically emphasizing algorithms 
applied to medical images. The new method combining level sets and genetic algorithms 
(LSGA) is then described in detail. A description of the dataset used and the results 
achieved from applying the GA to prostate segmentation are then discussed followed by a 
discussion on the significance of the research work. 

 
 

LITERATURE REVIEW 
 
Segmentation is the process of demarcating an object of interest on an image. Before 
segmentation can be performed properties of the object that set it apart from the rest of 
the image must be determined. These properties can be image pixel-based properties such 



as edges, texture, pixel intensity variation inside the object, or object-level properties 
such as shape, size, orientation, or location with respect to other objects. The pixel-based 
features are referred to as low-level features because they can be inferred using simple 
image processing routines on an image. For example, edges of an image can be derived 
using a gradient operator on the image pixel values. The object-level features on the other 
hand, are so-called high-level features because they involve an extra step of finding an 
appropriate concept to describe a particular feature. For example, “size” of an object can 
be determined using the distance between two pixels located in the opposite extremities 
of the object or by the diameter of a circle enclosing the object.  

 
Pixel based operations can be used on simple problems where the object has a 

prominent edge and markedly different pixel intensity values inside and outside the 
object. However such techniques alone are not suitable for medical image segmentation, 
and when used are usually performed semi-automatically with considerable manual 
intervention. Most medical images have significant amounts of noise and artifacts that 
appear during the image acquisition process. They also have low contrast and 
broken/diffuse edges around regions of interest. This makes segmentation on medical 
images a challenging problem. Therefore, object-based approaches or a combination of 
pixel and object-based techniques are often more suitable for medical image 
segmentation. Segmentation using object level-features involves quantifying object 
characteristics such as shape, pose, and relative position with respect to objects as well as 
region-based properties of the object. This quantification process transforms the object 
into a series of feature vectors (Costa & Caesar, 2001). Deriving these transformations 
and combining them is the main challenge of object-based segmentation. 

 
The shape of an object is an abstract concept since the same shape can be described 

differently by people based on their varied perceptions. Shapes are generally represented 
using contours, transforms, or regions. Contour-based methods represent the shape 
outline either using a set of points on the contour or approximate the curve using a 
function such as the level set function. Region-based methods may partition a shape into 
simpler forms (such as polygons), approximate the shape using a bounding region (such 
as a bounding rectangle or convex hull), or represent internal features of the shape (e.g., a 
skeleton). Transform-based representations decompose a shape into one-dimensional 
(1D) or two-dimensional (2D) signals (for example Fourier transform and wavelet 
transforms are linear transforms, while the Hough transform is a nonlinear transform).  
Transform-domain descriptors of shape can be transform coefficients or transform 
energy. Here, the shape of the prostate has been represented using a contour because it 
can be easily deformed to represent a flexible boundary.  

 
When an object is enlarged, rotated or moved it is still recognizable by a human. This 

property of an object is called pose invariance; that is, the object is identifiable from a 
different angle or position, or at a different scale. The pose of an object in an image can 
be changed using an affine transform (section 4). Pose is a relative concept and it is 
usually calculated with respect to the pose of another similar object on an image. It can 
be estimated by deriving the parameters of the affine transform needed to match the two 
shapes (Ünsalan, 2007).  



Level set method of segmentation 
 
Deformable contour models or active contour models are shape-based procedures in 
which a closed contour deforms by minimizing an energy function. This energy function 
incorporates low-level visual properties of an object such as edges or pixel intensity, 
and/or object-level features such as curvature of the object and size. In the level set 
method introduced by Sethian (1999) the evolving boundary (interface) is represented 
implicitly as the zero iso-contour of some function. For example, the zero iso-contour of 
φ(s) = x2+y

2-1, is given by the unit circle φ(s) = 0. In this framework, the equation of 
motion of the interface is defined using a simple convection equation such as (Osher & 
Fedkiw, 2002): 

0=∇⋅+ φ
φ

V
dt

d
.                                                (1)  

Here, V = (u, v, w) is the velocity field (u, v, w are components of the velocity field in 
the x, y and z directions respectively), and ∇ is the spatial gradient operator. This 
equation is referred to as the level set function. The level set function can be defined in 
terms of the signed distance function.  The signed distance function is an implicit 
function that takes any pixel in the image and returns as its output the Euclidean distance 
between the pixel and the closest point on the interface. Pixels outside the interface have 
positive distance while the pixels inside have negative distance values assigned to them. 
The zero level set is defined as the set of all points whose distance to the interface is zero. 
The level set update equation is derived by discretizing the level set equation using the 
forward Euler time discretization given by: 
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The spatial derivative terms in equation (1) can be expanded as: 
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The upwind differencing used for the spatial derivative terms along with the forward 
Euler time discretization makes the level set update stable. This guarantees that small 
approximation errors are not amplified with time. 
 

Level set methods have been used extensively for medical image segmentation. Some 
of the popular methods are by Leventon et al. (2000), Tsai et al. (2003), and Chan & 
Vese (2001). Leventon et al. (2000) introduced the principal component analysis (PCA) 
of shapes in the signed distance function domain. They used Bayesian techniques to 
generate maximum a posteriori estimates of pose and shape from the prior knowledge of 
shapes. Shape priors have also been used with active contour-based image segmentation 
by Etyngier et al. (2007). They used diffusion maps to model shapes as a finite-
dimensional manifold. Their segmentation results were accurate but the initial contour 



was placed manually in the images. Chan & Vese (2001) introduced a region-based 
energy function based on Mumford-Shah segmentation techniques to detect features with 
diffuse boundaries. However, their algorithm used intensity average values for detecting 
objects and they mention that textural features need to be incorporated into the level set 
framework to perform generalized Mumford-Shah segmentation. Tsai et al. (2003) 
derived a shape-based level set function as the sum of mean shape and shape variability. 
Tsai et al. also incorporated pose into their level set function. They optimized the 
parameters of this function to produce a good model of the object shape based on the 
knowledge of mean shape and shape deviations from the training data. The level set 
function derived by Tsai et al. has been adopted by the GA developed here. 
 
Optimization using a GA 
 
Genetic algorithms (Mitchell, 1996) simulate the process of biological evolution using 
selection, crossover, and mutation. GAs have been used for a variety of image processing 
applications, such as image segmentation (Poli & Cagnoni, 1997), feature extraction from 
remotely sensed images (Daida et al., 1996), and medical feature extraction (Harvey et al, 
2003). In contrast with traditional optimization methods, a GA uses a stochastic parallel 
search to reach the optimum solution and so is less likely to be stuck in a local maximum. 
Individuals of the GA are candidate solutions and are typically encoded as bit strings or 
vectors defined based on the application. The GA searches the space of candidate 
solution to identify the best solution for the problem at hand. Individuals of the GA are 
candidate solutions and are typically encoded as bit strings or vectors whose 
interpretation depends on the application. The GA searches the space of candidate 
solutions to identify the best (or at least an adequate solution) solution for the problem at 
hand. A fitness function is used to evaluate individuals and compare them based on a 
fitness score. This fitness score is used in the selection process to determine which 
individuals get to produce an offspring and propagate their “genes” (bits/vector elements) 
to future generations.  
 

Selection can be performed in a number of different ways. Some of the popular 
methods are rank selection, fitness proportionate selection, and tournament selection. In 
rank selection, candidate solutions are sorted according to their fitness score and higher 
ranked individuals are more likely to be chosen for crossover than lower ranked 
individuals. In fitness proportionate selection, the probability of an individual for being 
selected is given by the ratio of its fitness to the fitness of other members of the 
population. In tournament selection, two individuals are first chosen randomly from the 
current population. One of the two individuals is then selected probabilistically, based on 
fitness.  
 

Genetic algorithms often suffer from premature convergence. This occurs when some 
individuals in the population are much more fit than others and are the only ones selected 
for producing the future generations thereby resulting in the reduction of diversity of the 
population over successive generations of the GA. This can slow the performance of the 
GA. Selection procedures such as tournament selection and rank selection can be used 
instead of fitness proportionate selection to avoid premature convergence. After selecting 



two individuals from the current population, the crossover operator is applied to produce 
two new offsprings that are members of the next generation. Crossover is performed 
using a crossover mask which swaps same length segments of genes between two parents 
to produce the offspring. The mutation operator chooses a single gene at random and 
changes its value. The new population thus generated is evaluated using the fitness 
function and the process of selection, crossover, and mutation is repeated until an 
offspring with an acceptable fitness value is produced. 
  

Genetic algorithms have been used for segmenting medical images by Cagnoni et al. 
(1999). The GA developed by Cagnoni et al. optimized the parameters of an elastic 
contour model called “snakes” (Kass et al., 1988) and minimized an energy function for 
curve evolution. The “snakes” algorithm used an energy function based on low-level 
features like smoothness of the curve, curvature and image gradient. In contrast, the GA 
framework here allows the use of different kinds of features such as texture and shape for 
deriving the fitness of GA individuals. Another recent work using GAs for medical image 
segmentation is by Chabrier et al. (2008). They use a GA to find the optimal combination 
of information extracted from several different segmentation algorithms.  

 
 

PROBLEM DESCRIPTION: PROSTATE SEGMENTATION 
 
The prostate gland is a male reproductive organ located below the bladder and in front of 
the rectum and is about 3 cm in length along the height of the body. Prostate cancer is the 
most commonly diagnosed malignancy in men over the age of 50. When diagnosed at an 
early stage, the disease is curable, and even at later stages treatment can be effective. 
Nevertheless, treatment options vary depending on the extent of the cancer, and prognosis 
worsens when diagnosis occurs at an advanced stage. External beam radiotherapy is a 
well established standard treatment of prostate cancer. Intensity-modulated radiotherapy 
is used as a technique to improve tumor control and reduce radiotherapy-associated 
toxicity. Margin reduction around the clinical target volume (CTV) is essential to reduce 
the irradiated volumes of the organs at risk (bladder, rectum) and reduce toxicity. Image-
guided radiotherapy (IGRT) allows margin reduction due to prostate localization before 
each radiotherapy fraction. A key ingredient for optimal treatment of prostate cancer is 
target segmentation on medical images used for treatment planning. Traditionally images 
are manually segmented by a radiologist or radiation oncologist to localize the prostate 
gland within the pelvic anatomy prior to treatment planning. Nevertheless, manual 
segmentation has its limitations particularly due to inter-observer and intra-observer 
segmentation variability. Furthermore, with the rise in the implementation of adaptive 
radiotherapy, manual segmentation has become a tedious process, necessitating a reliable 
automated process for expediting prostate localization on CT and/or MRI images. The 
GA developed here aims at automating the segmentation process by incorporating shape 
and textural priors into a single framework. 
 

The almond-shaped prostate gland can be deformed by bladder and rectal filling. In 
addition to this, the size of prostate can vary considerably across patients making 
automatic segmentation a challenging problem. Figure 1 shows single slices of a pelvic 



CT scan and MRI of two patients. The contour in the center was marked by a radiologist 
as the prostate. The organ just below the prostate contour is the rectum. The large 
structures around the prostate (white on CT images shown in the top panels of figure 1) 
are the bones. One can see that the edges near the boundary of the prostate that was 
marked by the radiologist are not prominent. On CT images, the radiologist adjusts the 
contrast of the images before performing manual segmentation on them. The MRI images 
have better soft-tissue contrast therefore no contrast adjustment is needed on these 
images. These contours are stacked on top of one another to create the three dimensional 
(3D) shape of the prostate.  

 

                   
              

                                   

 

Figure 1. The 2D pelvic CT scan (upper left). The white contour (upper right) in the center is the 

prostate outlined by an expert. The black region just below the prostate is the rectum. The white 

structures surrounding the prostate are the bones. The 2D pelvic MRI scan (lower left) and 

manually segmented contour (upper right).  

 
 
SEGMENTATION USING THE GENETIC ALGORITHM  
 
The GA performs segmentation in two stages. In the first stage, termed training stage, the 
texture, mean position and shape variability of the prostate are derived from training 



images. The latter are obtained from manual segmentation of the dataset. In the second 
stage, termed segmentation, the GA generates candidate segmenting contours and 
evaluates their performance using the information derived in the training stage. Better 
solutions are allowed to propagate to future generations using selection, crossover and 
mutation to produce a new generation. The process is iterated until a stopping criterion is 
satisfied. The process of selection crossover and mutation is repeated to get the final 
segmentation result. The flowchart in figure 2 gives an overview of the algorithmic 
framework. 
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Figure 2. Flowchart depicting the sequence of operations of the GA. 

 
 
Deriving priors  
 
Shape representation using a level set function 
 
To derive information from the training data, the manually drawn contours/shapes are 
first aligned. Then the mean shape and shape variability is derived from this dataset to 
create a level set-based shape representation (adopted from Tsai et al., 2001) for 
representing segmenting contours. They are derived using principal component analysis 
(PCA) on the manually segmented images as follows. The manually drawn contours from 
the training data are first converted into signed distance functions, ψi (i = 1 to n, where n 
denotes the number of training contours). The level set function is a linear combination of 
the mean shape and weighted shape variances in the signed-distance domain. The mean 
shape is defined for n contours as: 
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     The mean offset functions are then derived by subtracting the mean from each of the 
training contours in signed-distance domain ( Φ−= ii ψψ~ ). The columns of the mean 

offset functions (size N = N1 x N2 same as the training images) are then serially stacked to 
form one column vector (βi) of size 1 x N. The shape variability matrix S (size N x n) is 
obtained from n such column vectors 

                ].,...,,[ 21 nβββ=S                                                  (5)   

The variance in shape is then computed by an eigen value decomposition on this shape 
variability matrix  

     .
1 TT

n
UUSS Σ=            (6)  

Here U is an N x n matrix whose columns represent n orthogonal modes of shape 
variation and Σ is an n x n diagonal matrix of eigen values. By rearranging the columns 
of U to form an N1 x N2 structure, the n different eigen shapes can be obtained {Φ1, Φ2,…, 
Φn}. The mean shape and shape variability derived from the training phase are used to 
define a level set function that implicitly represents the segmenting curve,  
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Pose is inserted into this function using an affine transform. The affine transform is the 
product of three matrices, the translation matrix, the scaling matrix and the rotation 
matrix respectively 
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Here, x and y are the pixel coordinates of the input image and x~ , y~  are the pixel 
coordinates of the affine transformed image. The new level set function is given by Φ[w, 
p] where p = [a, b, h, θ] are the x, y translation (a, b), scale (h) and rotation (θ) 
parameters respectively. The zero-level of this level set function gives the segmenting 
contour and its parameters [w, p] are evolved by the GA  
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Before deriving the mean shapes and shape variance from the training data, the images 
are aligned for pose. Gradient descent is used to minimize the difference between a pair 



of binary images with respect to their pose parameters. The transformed image based on 
pose is given by: 

     IpI *][
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where T[p] is the two-dimensional transformation matrix i.e., the product of the 
translation, scaling and rotation matrices of equation (8). The energy functional used to 
minimize the difference between two images is given by: 
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Here, Ω is the image domain. The area normalizing term in the denominator improves the 
cost function by preventing the images from shrinking. The gradient with respect to the 
pose parameters pi for any image i is given by: 
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∇ is the gradient of the transformed image taken with respect to the pose parameters: 
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where the matrix derivatives of T[p] are taken component-wise. The initial pose 
parameters of one of the shapes are kept fixed and the pose parameters of the second 
image are calculated to solve the problem. Note that homogeneous coordinate system is 
used here. The homogeneous coordinate system maps each point (x’, y’) in the Euclidean 
space to [x, y, w] (w≠0). The mapping is achieved by the relation x’=x/w and y’=y/w. 
Using homogeneous coordinate system allows the translation operation to be represented 
with a matrix multiplication. 
 
Deriving textures 
 
The textural priors are high-level feature vectors derived from the training image using 
Laws’ textural measures and Gabor wavelet transform-based features. The Laws’ texture 
measures are computed by convolving the training images with small integer coefficient 
masks. The basic one-dimensional convolution kernels (usually 5x5) derived by Laws 
stand for level (L), edge (E), spot (S), wave (W) and ripple (R) texture types respectively. 
Two-dimensional masks are generated from these vectors by convolving each vector with 
the transpose of another. To generate the texture energy planes, the training images are 
first convolved with the each of the 25 two-dimensional masks to obtain 25 grayscale 
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images. When an image is convolved with a mask, the pixel values in the image around 
5x5 windows are weighed by the mask parameters thereby enhancing certain features in 
the image. For example, edges in an image can be enhanced by convolving it with the 
mask E5 x E5T which enhances the value of each edge pixel by differently weighting its 
neighboring pixels in 5x5 windows. Thus pixel intensity differences in the image are 
amplified making the edges more prominent. A small (15x15) window is then operated 
on these grayscale images by summing the absolute values of the 225 neighborhood 
pixels to produce 25 different texture energy planes/maps. Fisher’s linear discriminant 
(FLD) is used to find the weights to linearly combine the 25 texture energy planes and 
threshold it to obtain a binary image with the desired classification (Figure 3). These 
weights are saved and used to derive the texture energy planes on test images. Fisher’s 
linear discriminant is a simple dimensionality reduction approach in which a multi-
dimensional data x is projected onto a one-dimensional space y such that  

 xvy T=                                                            (14) 
Although projecting multi-dimensional data along one dimension leads to a loss of 
information due to significant overlap, the class separation in one dimension can be 
maximized by adjusting the weight vector v. This weight vector is a function of the 
projected class means normalized by the within-class scatter along the direction of v. For, 
a two-class problem the Fisher criterion is:  
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where mk is the class mean and sk is the within class scatter. Maximizing the function J 
maximizes the class separation and minimizes the within-class scatter. The weight vector 
v is the derived texture prior. 
 
  
 

  

 

   

 

 

 

 

 

 

 

 

 

Figure 3. Flowchart depicting the steps in the segmentation process using Laws’ texture 

measures 

 



Gabor wavelets are based on the Gabor elementary function given by the modulation of 
the Gaussian with a complex exponential function (equation 16). 
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Gabor wavelets are derived by considering h(x, y) as the mother wavelet and a family of 
functions is obtained by translations and dilations of this mother wavelet. The method of 
Gabor wavelets assumes that local texture regions are spatially homogeneous and the 
mean and standard deviation of the transform coefficients are used to represent regions 
for classification. The Gabor wavelet is given by equation 17. Here, k is the number of 
orientations. 
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Given an image I(x, y), the Gabor wavelet transform is given by equation (18). 
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Here, h* is the complex conjugate of h. The mean and standard deviation of transform 
coefficients for each known region are the derived texture priors. 
 
 
Segmentation procedure 
 
An individual (I) of the GA population is defined as a vector of weight (±2σ variability of 
the mean shape) and pose parameters of the level set function 
 

                                              I = [w1, w2, a, b, h, θ]                                            (19) 
 

Several such individuals form the GA population. When the weights and pose parameters 
of each individual are substituted in the level set equation (9), a new shape combining the 
mean shape, the eigen shapes and a new pose is produced. This new shape is the 
segmenting contour. Thus, each GA individual is a segmenting contour. The fitness of an 



individual is measured by comparing the textural difference between the regions inside 
and outside the contour. The textural difference is computed as follows. At first a binary 
image is generated using texture segmentation on a test image. In this binary image, 
pixels labeled ‘1’ represent one texture type (regions texturally similar to the prostate) 
and pixels labeled ‘0’ represent all other texture types (regions not texturally similar to 
the prostate on pelvic CT/MR images). The number of ‘1’s and ‘0’s inside and outside 
the candidate segmenting contour are counted. The fitness (F) is defined as a function of 
this count and is given by 

       F = 500 x (A + (1-B)).                                        (20) 

Here, A denotes the detection rate: the fraction of pixels labeled ‘1’ (‘0’) that are inside 
(outside) the candidate contour. Thus, A is the sum of true positives and true negatives. 
Conversely, B is the sum of false positives and false negatives. B denotes the false alarm 
rate: the fraction of pixels labeled ‘1’ (‘0’) that are outside (inside) the candidate contour. 
A higher fitness score means that more pixels inside the contour belong to the desired 
texture type that was derived from the training data.  
 

Individuals with a higher fitness score are selected for crossover and mutation to 
propagate their genes to future generations. Crossover is performed by swapping 
segments of genes between two individuals. For example, let I1= [w1, w2, a, b, h,θ] and 
I2= [w'1, w'2, a', b', h', θ']. The following two offsprings are produced by crossover at 
midpoint between I1 and I2 : [w1, w2, a, b', h', θ'] and [w'1, w'2, a', b, h, θ]. Mutation is 
performed by randomly changing the value of a gene from a specified range of values 
(For example, the gene θ  can take on values between 0-360°). A crossover/mutation rate 
(usually specified as a percentage) determines the probability of crossover/mutation 
between two individuals. Selection, crossover and mutation are performed iteratively for 
successive generations until an individual with a specified fitness value is attained or the 
GA runs for a specified number of generations. 

 
 

Extension to three dimensions 
 
The GA is extended to three-dimensions by using 3D pose parameters; x, y, z translation 
(a, b, c), scale (h), yaw (α), pitch (β) and roll (θ).  
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Rx, Ry, and Rz are the rotation matrices about the x, y and z axes respectively: 
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The individuals of the 3D-GA population are based on the new pose parameters p = [a, b, 
c, h, α, β, θ]. The mean shape and shape variability are derived from the 3D images 
generated by stacking the slices of the CT/MR scans from the training data. The 3D 
segmenting contours generated by this GA segments all the slices of the test image at 
once.  
 
Performance Evaluation 
 
The performance of the algorithm has been evaluated using two measures taken from 
Udupa et al. (2006). These measures are precision and validity. Precision is defined as the 
repeatability of the segmentation algorithm. Validity is defined as the closeness of the 
segmentation outcome with the truth/manual segmentation. Pixel-based (texture feature 
finding) segmentation methods with which the LSGA has been compared are the Laws’ 
texture method and the Gabor wavelet method. The contour-based segmentation method 
of Chan & Vese (2001) has also been compared with the LSGA. The application domain 
for performing the evaluation is given by a pair of task and segmentation protocols, 〈T, P〉 
used to solve the task. Here, the possible values for T and P are: 
 

1. T: Segmenting the prostate on pelvic CT/MRI images. 
 2. P: LSGA/ Gabor Wavelets/ Law’s texture method/ Chan & Vese method 

 
The ground truth is derived from the manual segmentations. Manual segmentation is 

variable due to intra- and inter-operator variability. The ground truth is therefore obtained 
from manual delineations by averaging over multiple manual delineations. 
The precision (repeatability) of a given segmentation method is determined by applying 
the same algorithm twice on the same image and then comparing the binary outcomes. 
The (∩) operator signifies the region common to the two binary outcomes. The (∪) 
operator signifies the union of the two binary outcomes 
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The validity of the segmentation result is obtained by comparing the segmentation 
outcome with the ground truth. Four features are derived this way; True Positives (TP), 
True Negatives (TN), False Positives (FP), False Negatives (FN) as 

 

onsegmentati manual in the s'1'

onsegmentati manualin  s'1'  thematching outcomebinary  in the s'1'
(TP)  Positive True = (26) 

 

onsegmentati manual in the s'0'

onsegmentati manualin  s'0'  thematching outcomebinary  in the s'0'
(TN)  Negative True = (27) 

 

onsegmentati manual in the s'0'

onsegmentati manual in the s'0' matching outcomebinary  in the s'1'
(FP)  Positive alseF =   (28) 

 

onsegmentati manual in the s'1'

onsegmentati manual sin the1'  thematching outcomebinary  in the s'0'
(FN)  Negative False = (29) 

 
 
RESULTS AND DISCUSSION 
 
To perform this analysis, images were obtained from a database of 2700 pelvic CT and 
MRI scans, acquired through collaboration with Oregon Health & Science University 
(OHSU). CT and MRI images of 10 patients (for each modality) from this database were 
manually segmented by Dr. Arthur Hung and Dr. James Tanyi, (Dept. of Radiation 
Medicine, OHSU). Each scan for a patient contains 15-20 slices of 2D images. Some 
patients have multiple CT/MRI scans. The prostate is visible in about 10-12 of these 
slices; the rest display other organs in the pelvic region such as the bladder and the 
rectum. The number of slices on which the prostate is visible depends on the resolution of 
the scans which varies from one patient to another, and also dependent on the technique 
used for image acquisition. The prostate has been manually delineated twice on the same 
set of images by the experts. This provides a database for intra-operator variability. The 
manually segmented contours derived from the scans of five patients (~ 50x2 =100 
images) have been used as the training data for this analysis. The images from the other 
five patients (for which the ground truth was available) were used as test images. Note 
that the CT and MR images shown here are taken from two different sets of patients.   
 

For the same set of test images the segmentation outcomes using the four different 
methods were computed. At first the level set based segmentation algorithm of Chan & 
Vese (2001) was tried on the test images. The initial contour was placed in the center of 
each test image (left panels of figure 4). The optimization method used for curve 
evolution in this method is the gradient descent method. The upper right panel on figure 4 
shows the outcome of the algorithm for a CT image. The CT image was contrast-
stretched because the original image had very low contrast. Figure 4 (lower right panel) 



shows the result of the algorithm on a MRI image. In both the cases the algorithm found 
boundaries between the dark and light regions. The result that was obtained was expected 
because the algorithm is designed to find regions with markedly different pixel intensity 
values inside and outside the contour. The result obtained in this case is not a binary 
image. It is the original image superimposed by the evolved curve. Since, the original 
curve divides into many curves surrounding several regions, it is not possible to obtain a 
binary image from this outcome. Since the evaluation of the algorithm performance 
requires a binary image, the evaluation cannot be performed for the outcome of this 
algorithm. Therefore, NA or (Not Applicable) is mentioned in the evaluation results 
tables 2 and 3 for the corresponding values. 

 

    

      
Figure 4. (Upper left panel) Initial contour placed on top of a test CT image. (Upper right panel) 

Outcome of the level set algorithm of Chan & Vese. (Lower left panel) Initial contour placed on 

top of a test MR image. (Lower right panel) Outcome of the level set algorithm of Chan & Vese. 

 
 
Figure 5 (middle panels) shows the segmentation output generated by the Laws’ 

texture segmentation method on a test CT and MR image. For the CT images the result 
was again computed on contrast-stretched CT images. The figure shows the classification 
of pixels as similar to prostate (white) or otherwise (black). Figures 5 (lower panels) 
shows the outcome of the Gabor wavelet-based segmentation algorithm applied on the 
same test CT (left) and MR image (right panel). Both of these methods found regions 
texturally similar to the prostate, but also marked some regions outside the prostate as 
similar to the prostate. The GA used this texture based classification for its fitness 



determination. It used the mean position information derived from training images to 
place the segmenting contour in the prostate region and then optimized its pose and 
location in the prostate region using the texture information derived using these methods. 

 
 
 

         

 

          

 

          

 

 

Figure 5. Test CT and MR images (upper left and right panels). Laws’ texture classification 

method applied to the test CT image (middle left panel). Laws’ texture classification method 

applied to the test MR image (middle right panel). Gabor wavelet segmentation algorithm applied 

to the test CT (lower left) and MR (lower right) images. 



The parameters used by the GA are shown in table 1. Before computing PCA on the 
training contours, they were aligned with respect to pose with one training contour. 
Figure 6 shows the mean shape and shape variability of the prostate derived in 2D from 
the training images. The initial population of the GA was generated using values chosen 
randomly from the range of parameter values specified in table 1. These parameter values 
when substituted into the level set equation 9, generated segmenting contours as a sum of 
the mean shape and shape variability information derived from the training images. The 
evolution of the curve (selection, cross-over and mutation over 100 generations) was 
guided by the fitness derived from textural priors generated by Laws’ texture method 
since it narrowed the region of interest more than the Gabor wavelet-based method. The 
GA used the textural classification map (around the mean location of the prostate) on a 
test image, to place the final the segmenting contour.  

 
 

Population Size                        50 

Mutation Rate                         10 %  per gene 

Crossover Rate                         50%  single-point 

Selection Criteria                      Rank Selection 

Weights for eigen shapes, w    (0 ± 2σ) 

Translation parameters a, b      Integer (0-30) 

Rotation parameter θ               -90° to +90° 

Scale parameter h                     (0.5-2) 

 

Table 1. LSGA Parameters 

 
 
 

 
 
 
 

                             
   

 
 
 
 
 

Figure 6. Mean shape of the prostate derived from training images (left panel). Shape 
variability of the prostate derived from training images (right panel). 



The segmentation result from the LSGA in 3D is shown in figure 7 (right panel). 
Figure 7 (left panel) shows a slice from the 3D segmentation result obtained on the test 
CT image. The highest-fitness 3D individual evolved by the GA was found to be 
[1170(w1), 161(w2), 9(a), 2(b), 4(c), 1.3(h), 25(α), 13(β), 24(θ)] and its fitness was 316. 
Figure 8 shows a slice from the 3D segmentation result obtained on a test MR image. The 
highest-fitness 3D individual evolved by the GA was found to be [3.99e+003(w1), 
4.7e+003(w2), 8(a), 27(b), 2(c), 1.9(h), 4(α), 14(β), 6(θ)] and its fitness was 526. There 
were only five slices in the 3D MR image as compared to ten slices in the 3D CT image, 
therefore the 3D structure of the shapes look different. Note that the fitness values found 
are low because it was derived from the texture segmentation of the entire image and not 
just the prostate region. For achieving more accurate fitness values only the textural 
segmentation around the prostate region could be used along with the information of the 
relative position of the prostate with respect to the bladder and the rectum. This will be 
the subject of future work. 

 
Tables 2 and 3 show the performance evaluation by comparing the binary results 

obtained from the four different methods. The abbreviations LSGA, LTM, GW, and CV 
are for the genetic algorithm developed here, the Laws’ texture method, Gabor Wavelet 
based segmentation method and the Chan & Vese method respectively. As mentioned 
before the outcome of the Chan & Vese algorithm is not a binary image and therefore it 
cannot be evaluated using the measures used here. For the other methods, the precision, 
and validity measures (TP, TN, FP, FN) were derived for all the test images. The 
segmentation result of the GA in 3D has been used for evaluation purposes.  

 
 

Protocol Precision TP FP TN FN 

LSGA 0.42 0.67 0.007 0.99 0.32 
LTM 1 0.5 0.07 0.93 0.5 
GW 1 0.44 0.08 0.92 0.56 
CV NA NA NA NA NA 

 

Table 2. Performance evaluation of the four protocols for segmenting the  

prostate on pelvic CT images. 

 

 

 
Protocol Precision TP FP TN FN 

LSGA 0.4 0.73 0.005 0.99 0.28 
LTM 1 0.44 0.24 0.76 0.56 
GW 1 0.79 0.42 0.58 0.21 
CV NA NA NA NA NA 

 

Table 3. Performance evaluation of the four protocols for segmenting the  

prostate on pelvic MR images. 

 

 

 



        
           
Figure 7. 3D segmentation result of the LSGA on a test CT image (right panel). A slice of the 3D 

segmentation generated by the GA (left panel).   

 

 

        

 

Figure 8. 3D segmentation result of the LSGA on a test MR image (right panel). A slice of the 3D 

segmentation generated by the GA (left panel). There are only 5 slices in this figure as compared 

to 10 in the previous figure, therefore the 3D structures look different. 

 
 
Significance of this work 
 
This algorithm is a step towards automating the complex task of prostate segmentation. 
The GA allows multiple types of features to be used for segmentation: texture, shape and 
mean location of prostate for initial contour placement. The GA provides a means for 
derivative-free curve evolution for performing segmentation. This brings flexibility to use 
high-level features such as the combination of textures, shapes and location information 
for curve evolution. The GA developed here is not specific to prostate segmentation and 
can be used in other domains and applications involving multiple feature based 
segmentation. 
 
 
FUTURE RESEARCH DIRECTIONS 
 
There is a considerable scope for improvement in this GA framework. Currently the 
initial position of the contour is derived from the mean position of the contour from 
training images. The desired method of automatically placing the initial contour is to 
encode the information of relative position of the organs in the pelvic region image into 



the GA framework. Some algorithms used for finding spatial relations between objects 
are Bayesian network classifiers (Pham & Smeulders, 2006), graph matching (Bunke, 
2000) and histograms of distances and angles (Miyajima & Ralescu, 1994).  Relative 
position information would be incorporated into the GA framework in future not only for 
initial contour placement but also in the fitness function to determine the fitness of a 
segmenting contour. 

  
Also, a linear classifier has been used for texture based classification of pixels. There 

are many other methods of classification such as support vector machines (SVMs), neural 
networks, etc. that can be tried in future to improve the classification outcome of the 
texture-based segmentation. Tables 2 and 3 show that the precision of the GA could not 
achieve high precision on these images. Perfect precision is impossible to achieve for this 
dataset because there are no clearly visible edges to drive an optimization algorithm to 
the exact boundary of the prostate. However, using the texture classification outcome 
only from the prostate region and surrounding organs, for deriving fitness may improve 
the precision of the segmentation outcome. 

 
Another major shortcoming of the GA based optimization is its speed of execution. 

Currently the 3D LSGA takes about 15 minutes to a few hours for each set of test images 
to find the segmentation outcome. The speed depends on a number of factors such as, the 
number of generations of the GA run, the population size, etc. Methods to speed up the 
GA such as parallel GA (Luque et al., 2005) would be explored for finding the practical 
viability of the algorithm. 
 
 
CONCLUSION 
 
A genetic algorithm framework has been applied to level-set curve evolution to 
incorporate multiple features for performing the complex segmentation task of prostate 
segmentation on pelvic CT and MR images. Representing candidate solutions of the GA 
as segmenting contours and assessing their performance using a fitness function 
eliminates the need for defining an energy function (and the associated derivatives) and 
simplifies the optimization procedure needed for curve evolution. Complete automation 
can be achieved when the knowledge of organ locations with respect to the prostate is 
incorporated into this framework. 
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