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Abstract A novel technique is presented to combine

genetic algorithms (GAs) with level-set functions to segment

objects with known shapes and variabilities on images. The

individuals of the GA, also known as chromosomes consist of

a sequence of parameters of a level-set function. Each

chromosome represents a unique segmenting contour. An

initial population of segmenting contours is generated based

on the learned variation of the level-set parameters from

training images. Each segmenting contour (an individual) is

evaluated for its fitness based on the texture of the region it

encloses. The fittest individuals are allowed to propagate to

future generations of the GA run using selection, crossover

and mutation. The GA thus provides a framework for com-

bining texture and shape features for segmentation. Level-

set-based segmentation methods typically perform gradient

descent minimization on an energy function to deform a

segmenting contour. The computational complexity of

computing derivatives increases as the number of terms

increases in the energy function. In contrast, here the level-

set-based curve evolution/deformation is performed deriv-

ative-free using a genetic algorithm. The algorithm has been

tested for segmenting thermographic images of hands and for

segmenting the prostate in pelvic CT and MRI images. In this

paper we describe the former; the latter is described in [11,

12]. The LSGA successfully segments entire hands on ima-

ges in which hands are only partially visible. At the end of the

paper we report experimental evaluation of the performance

of LSGA and compare it with algorithms using single fea-

tures: the Gabor wavelet based textural segmentation method

[1, 9], and the level-set based segmentation algorithm of

Chan and Vese [6].

Keywords Medical image processing �
Image segmentation � Genetic algorithms �
Level-set methods � Image texture analysis

1 Introduction

Genetic algorithms (GAs) [22, 32] simulate the learning

process of biological evolution using selection, crossover

and mutation. Genetic algorithms are blind optimization

techniques that do not need derivatives to explore the

search space. Instead they use payoff values, known as

fitness, to guide the search towards better landscapes. This

quality makes GAs more robust [15] than other local search

procedures such as gradient descent or greedy techniques

like combinatorial optimization.

GAs have been used for a variety of image processing

applications, such as edge detection [18], image segmen-

tation [19], image compression [34], feature extraction

from remotely sensed images [19] and medical feature
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extraction [20]. The image processing problem being

explored in this paper is image segmentation; a technique

of delineating a region of interest on an image.

Level-set methods have become very popular in the field

of image segmentation due to their ability to represent

boundaries of objects that change with time or are ill-

defined [35, 39]. In this method, a deformable segmenting

curve is associated with an energy function and curve

evolution/movement is performed by minimizing this

energy function using gradient descent. The energy function

may consist of region-based terms (such as pixel intensity

values, edges etc.) and contour-based terms (such as cur-

vature and length of the curve). These features are called

low-level because they encode the information that can be

derived directly from the image. There are many real-world

problems that require high-level features for segmentation,

such as the prior knowledge of shapes and context infor-

mation derived from the extrapolations of human percep-

tion [4, 16]. Incorporating such information into an explicit

energy function term may be difficult or impossible to

encode for performing segmentation. A genetic algorithm

(GA) solves this difficulty because it eliminates the energy

function (and instead uses a fitness function) thereby pro-

viding a framework for incorporating high-level features

and combining multiple features for segmentation. The

level-set based genetic algorithm scheme (LSGA) proposed

here uses the learned shape and textural properties of a

known object to segment it on unseen images.

Here, the LSGA has been used to segment thermographic

images of hands. The images of hands were acquired for

studying upper extremity musculoskeletal disorders

(UEMSD). The pathophysiology in UEMSDs is largely

unknown. However, a component may include reduced

blood flow in the upper extremity [3, 13, 14, 26, 36, 38].

Infrared thermography reveals skin temperature which is

largely determined by subcutaneous perfusion. For this

study subjects with UEMSD were given a typing challenge

and images were taken at periodic time intervals. This

segmentation problem is challenging because the fingers of

the patients start to disappear on the thermographic images

as their fingers become cold after typing (a symptom of

UEMSD). A successful segmentation of these images

involves deriving the prior human knowledge of the shape

of the hand and modeling the movement of the hand and

fingers from training images to perform the segmentation.

An individual in an LSGA population is a vector of

parameters of a level set function and is referred to as a

chromosome of the GA. The GA adapts the parameters of

the level-set function to produce fit individuals or good

segmentations of the given image using the information

encoded in its fitness function. The algorithm terminates by

finding a reasonable segmentation within the bounds of

known shape and texture of the hands. Thus, the main

contribution of this work is the use of GAs to optimize a

level-set function thereby combining so-called high-level

features (such as shape and texture) for segmentation.

The rest of the paper is organized as follows: first a

literature review is provided on image segmentation spe-

cifically emphasizing level-set-based segmentation algo-

rithms. The LSGA algorithm is then described in detail

followed by a comparison with the level-set-based seg-

mentation method of Chan and Vese [6] and with the

Gabor wavelet-based segmentation method [1]. The

description of the dataset used and the results achieved

from applying the algorithm to thermographic images of

the hand are then discussed. Discussion and evaluation of

results is presented at the end.

2 Segmentation methods

Segmentation is defined as the process of demarcating an

object on an image with a boundary/contour. Segmentation

is performed by determining either pixel-level or object-

level properties of an object that set it apart from the rest of

the image. These properties can be edges, texture, pixel

intensity variation inside the object, shape, size, orienta-

tion, and location of objects with respect to other objects in

the image, and so on.

Pixel-based methods identify local features such as

edges and texture in order to extract regions of interest on

images. The most commonly-used pixel based operation is

the edge-detector. Edges are defined as regions on the

image with large pixel intensity variations. A comprehen-

sive review of edge-detection methods is provided by [17].

However, these techniques can produce broken edges and

also include boundaries of other features present in an

image. Another intensity-based method is the region-

growing method [42], which starts from a seed-point

(usually placed manually) on the image and performs

segmentation by clustering neighborhood pixels using a

similarity criterion.

More complex pixel-level features are textures. Texture

is usually defined as a region consisting of mutually related

elements. Various approaches for textural feature extrac-

tion exist including co-occurrence matrices [10], filtering

methods such as Gabor filters [9], Fourier transform

methods, texture element finding methods such as textons

[24, 40], Laws’ texture method [27], to name a few. One

major drawback of all pixel-based segmentation algorithms

is that regions outside the object can also be identified as

being part of the object and there is no notion of shape of a

region in these methods.

Segmentation using object level-features involves

quantifying object characteristics such as shape, pose [41],

and relative position with respect to objects as well as
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region-based properties of the object. This quantification

process transforms the object into a series of feature vec-

tors [7]. Deriving these transformations and combining

them is the main challenge of object-based segmentation.

Object-level features are first derived from manually seg-

mented objects and then used to perform object-level

segmentation on test images. Shapes are generally repre-

sented using contours, transforms, or regions. In this work,

shape has been represented using an active contour, which

can be easily deformed to represent a flexible boundary;

pose has been incorporated into the shape representation.

The following section provides an overview of active

contour methods of segmentation.

2.1 Active-contour method and the level-set method

of segmentation

Deformable contour models (also known as active-contour

models) are shape-based procedures that minimize an

energy function to perform segmentation. The energy

function is typically a function of regional properties of the

image such as edges, mean pixel intensity, and/or object-

level features such as curvature of the object and size. In

these methods the initial contour is usually placed ran-

domly or manually inside, on, or outside the region of

interest. During the curve evolution process, minimization

of the energy function drives the curve towards the

boundary of the object.

One approach for curve evolution is the marker point

method [35, 39] in which the segmenting curve C is

parameterized by converting each point on the curve to

represent a position vector [s, t], where s are points of the

curve along a certain orientation (clockwise or counter-

clockwise), and t is time. The front can be interpolated

from these marker points as either line segments in two-

dimensions (2D) or triangles in three-dimensions (3D).

One disadvantage of this method is that if the curve evo-

lution makes two marker points come closer to each other

into a corner then it can lead to an uneven advancement of

the markers. Within a few time steps this can lead to

oscillations in the curvature making the output unbounded.

Another approach to active shape modeling is the level-

set method introduced by Sethian [39]. In this approach the

evolving boundary (interface) is implicitly embedded as

the zero isocontour of some function. For example, a unit

circle can be defined as the zero isocontour of the function,

uðx~Þ ¼ x2 þ y2 � 1, uðx~Þ ¼ 0. In the level-set method, the

equation of motion of the curve is defined using a simple

convection equation (the level-set equation) such as:

_uþ V~ � ru ¼ 0; ð1Þ

where _u is the temporal partial derivative of the implicit

function /, V~ ¼ u; v;wh i is the velocity field (u, v, w are

components of the velocity field in the x, y and z directions,

respectively), and r is the spatial gradient operator.

The level-set function / may be defined in terms of the

signed distance function. The signed distance function takes

any point in the plane and returns the Euclidean distance

between the pixel and the closest point on the interface.

Pixels outside the interface have positive distance while the

pixels inside have negative distance values assigned to

them. The zero level-set is defined as the interface itself,

i.e., the set of all points that are at height zero, or equiva-

lently, whose distance to the interface is zero. Curve evo-

lution in the level-set method is stable and small errors in

approximation are not amplified with time.

Level-set methods have been used extensively for image

segmentation [8, 31]. Some of the popular methods are by

Leventon et al. [28], Tsai et al. [43] and Chan and Vese [6].

Leventon et al. introduced the concept of shape represen-

tation by principal component analysis (PCA) on signed

distance functions. They also incorporated statistical shape

priors into their geodesic active-contour model to generate

maximum a posteriori estimates of pose and shape. They

segmented synthetic as well as medical images using their

method and compared level-set evolution with and without

shape influence. Their segmentation results were within

one or two voxels of manual segmentation. However, the

initialization point was placed manually on the images.

Chan and Vese introduced a region-based energy function

based on Mumford-Shah segmentation techniques [33] in

order to detect features with diffuse boundaries. The limi-

tation of their model as pointed out by them in the paper is

that it could only detect objects by intensity average values.

They also mention that other image features such as texture

need to be combined with a level-set framework in future to

perform more generalized Mumford-Shah segmentation.

The LSGA developed here attempts to address this need.

Tsai et al. derived a shape-based level-set function. Tsai

et al.’s goal was to find the parameters of this function that

produce a good model of the object shape based on priors

from the training data. Tsai et al. derived these parameters

via an optimization procedure that used statistics defined

over local regions in a set of training images. The perfor-

mance of Tsai et al.’s algorithm thus depended on the

particular choice of statistics used to distinguish various

regions within a given image. They showed automatic

segmentation results on several synthetic images and semi-

automatic segmentation on cardiac and pelvic MRI images.

We have adopted this level-set function for the LSGA

because it is a scheme for modeling known shapes as is

required by the current problem. Here, a GA has been used

to evolve the same level-set function using texture feature

for curve evolution. In future, other high-level image fea-

tures such as spatial relationships between objects would

be tried to be incorporated into the LSGA.
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2.2 Genetic algorithms for segmentation

Genetic algorithms have been used for segmentation by [2,

21, 29, 30, 37]. In [19, 20] a general-purpose image-seg-

mentation system called GENIE (short for GENetic

Imagery Exploration) is described that was developed at

Los Alamos National Laboratory. GENIE used genetic

programming to evolve image-processing ‘‘pipelines’’:

sequences of elementary image processing operations,

including morphological, arithmetic and point operators,

filters and edge detectors, among others. Each pipeline,

when run on a given multi-spectral image, performed

image segmentation by classifying certain pixels as being

part of a desired feature or otherwise. The fitness of each

pipeline in the population was computed by comparing the

final classification output with a set of training images, in

which positive and negative examples of the desired fea-

ture had been manually highlighted. At the end of a run of

GENIE, the fittest pipeline in the population was used to

segment the desired feature in new images. A fitness

measure similar to that used in GENIE has been adopted in

the LSGA developed here because it has distinct payoff

terms for reward and penalty. Harvey et al. [20] applied

GENIE to a medical feature-extraction problem using

multi-spectral histopathology images. Their specific aim

was to identify cancerous cells on images of breast tissue.

Their results were not very accurate, since GENIE used

only texture-based image operations, and did not have any

object or shape-based operators. Such operators are clearly

needed for more accurate medical image segmentation.

A model-based image analysis technique using a GA is

described in [29]. The method used a evolutionary Hough

transform scheme to detect known shaped objects on

images such as circle and ellipse. The GA population

consisted of a set of points in the parameter space. In

contrast, the LSGA evolves a population of segmenting

contours constrained by known shape.

Cagnoni et al. [5] used a GA for segmenting images by

evolving parameters of an active contour model called

‘‘snakes’’ [25]. It optimized an energy function based on low-

level features such as smoothness of the curve, curvature and

image gradient. In contrast, the LSGA framework evolves

parameters of a level-set function. Unlike the explicit rep-

resentation of shapes used in [5, 29], the level-set based

implicit representation of shape used here allows textural

features to be used for searching the parameter space.

3 LSGA: combining level-sets and genetic algorithms

The algorithm presented here consists of two stages: the

training stage and the segmentation stage. In the training

stage shape, shape variability and texture information of

the region of interest are derived from manually segmented

images. The data for the training stage is obtained from a

set of training images on which a human has drawn a

contour around the object to be segmented. The set of these

training contours provides information about the shape and

pose variability of the given object. The textural properties

of the object are also derived from the same set of training

data. The segmentation phase involves the genetic algo-

rithm evaluating candidate contours for segmenting the

desired object in a new image using a fitness measure, and

iterating over successive generations until the fitness

exceeds a threshold.

3.1 Training: deriving shape information

The shape representation is derived from the mean and

variance of all manually drawn contours in a training set

[43]. The manually drawn contours from the training data

are first converted into signed distance functions, wi (i = 1

to n, is the number of training contours). The level-set

function is a linear combination of the mean shape and

weighted shape variances in the signed-distance domain.

The mean shape is defined for n contours as:

�U ¼ 1

n

� �Xn

i¼1

wi: ð2Þ

Mean offset functions are derived by subtracting

the mean from the signed distance representations of

the training contours ~wi ¼ wi � �U
� �

. The columns of the

mean offset functions (size N = N1 9 N2 the same as

the training images) are then successively stacked on top

of one another to form one large column vector (bi) of

size 1 9 N. A new matrix S (size N 9 n), called the

shape variability matrix, is formed from n such column

vectors

S ¼ b1; b2; . . .; bn½ �: ð3Þ

The variance in shape is then computed by an

eigenvalue decomposition on this shape variability matrix

as,

1

n
SST ¼ URUT : ð4Þ

Here U is an N 9 n matrix whose columns represent n

orthogonal modes of shape variation and R is a diagonal

matrix of eigenvalues. By rearranging the columns of U to

form an N1 9 N2 structure, the n different eigenshapes can

be obtained {U1, U2,…, Un}. The mean shape and shape

variability derived from the training phase are used to

define a level-set function that represents the segmenting

curve,
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U½w� ¼ �Uþ
Xk

j¼1

wjUj: ð5Þ

Here w are the weights for linearly combining the k

principal eigenshapes. By incorporating pose parameters

into this level-set framework a new level-set function is

obtained that can handle object shapes with different sizes

and orientation. Pose is defined using an affine transform

which is the product of three matrices, the translation

matrix, the scaling matrix and the rotation matrix,

respectively,

~x

~y

1

2
64
3
75 ¼

1 0 a

0 1 b

0 0 1

2
64

3
75

h 0 0

0 h 0

0 0 1

2
64

3
75

�
cos h � sin h 0

sin h cos h 0

0 0 1

2
64

3
75

x

y

1

2
64
3
75: ð6Þ

Here, x and y are the pixel coordinates of the input image

and ~x,~y are the pixel coordinates of the affine transformed

image. Note that a homogeneous coordinate system is used

here. Using this homogeneous coordinate system allows

the translation operation in Eq. (6) to be represented with a

matrix multiplication.

This new level-set function is defined as [43]

U½w; p�ðx; yÞ ¼ �Uð~x; ~yÞ þ
Xk

j¼1

wjUjð~x; ~yÞ: ð7Þ

Here p = [a, b, h, h], a, b are x, y translation parameters,

h is the scale factor and h is the angle of rotation. The

zero-level of this level-set function gives the segmenting

contour and its parameters are evolved by the GA.

Before deriving the mean shapes and shape variance

from the training data the images need to be aligned for

pose. Gradient descent is used to minimize the difference

between pairs of binary images with respect to their pose

parameters. The transformed image based on pose is given

by:

~I ¼ T ½p� � I; ð8Þ

where, T[p] is the 2D transformation matrix of Eq. (6). The

energy functional used to minimize the difference between

two images is given by:

Ealign ¼
RR

X Ii � I jð Þ2RR
X Ii þ I jð Þ2

; i 6¼ j: ð9Þ

Here, X is the image domain. The area normalizing term in

the denominator is employed to prevent the images from

shrinking to improve the cost function. The initial pose

parameters of one of the shapes are kept fixed and the pose

parameters of the second image are calculated to minimize

the pose differences.

3.2 Training: deriving texture information

The textural priors were derived from training images

using Gabor wavelet-based texture segmentation method.

Gabor wavelets are based on the Gabor elementary func-

tion given by the modulation of the Gaussian with a

complex exponential function (Eqs. 10, 11).

hðx; yÞ ¼ gðx; yÞ exp j2p UxþVy

� �� �
ð10Þ

gðx; yÞ ¼ 1

2prxry
exp �1

2

x

rx

� �2

þ y

ry

� �2
" #( )

: ð11Þ

Gabor wavelets are derived from the mother wavelet

h(x, y) by several translations and dilations. The method of

Gabor wavelets assumes that local texture regions are

spatially homogeneous and the mean and standard

deviation of the transform coefficients are used to

represent regions for classification. The Gabor wavelet is

given by Eq. (12)

hmnðx; yÞ ¼ aHðx0; y0Þ;
a [ 1;

m; n ¼ integers,

and x0 ¼ a�mðxCos
np
k
þ ySin

np
k
Þ;

y0 ¼ a�mð�xSin
np
k
þ yCos

np
k
Þ:

ð12Þ

Here, k is the number of orientations. Given an image I(x, y),

the Gabor wavelet transform is given by

Wmnðx; yÞ ¼
Z

Iðx1; y1Þh�mnðx� x1; y� y1Þdx1dy1: ð13Þ

Here, h* is the complex conjugate of h. The mean and

standard deviation of transform coefficients for each known

region are the derived texture priors.

3.3 Segmentation using LSGA

Segmentation is performed using LSGA by optimizing a

population of segmenting contours for shape, texture of

enclosed region, location and pose. Each individual in the

GA population is defined as a fixed-length string of real-

valued genes.

I ¼ ½w1;w2;w3;w4; a; b; h; h�: ð14Þ

The four weight parameters are used for deriving the

weighted ±r1 and ±r2 variation (where r2 is the eigen-

value corresponding to the principal eigenshapes) of the

mean shape and a, b, h, and h are pose parameters as

defined in Eq. (6). For the individuals of the GA
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population, the pose parameters are chosen randomly from

the space of real numbers. Each individual (I) in the pop-

ulation represents a unique segmenting contour. This seg-

menting contour produces a binary image (B1) at its output

with ones inside and zeros outside the segmenting contour.

The fitness of an individual I is calculated based on the

degree to which the contour encloses the region of interest

(ROI) in a test image (a new image not in the training set).

The ROI on the test image is determined by the textural

segmentation of the test image. Thus, LSGA performs

deformable template matching around the textural region

of interest. The fitness is calculated by comparing the two

binary images B1 and B2. Binary (‘‘true’’/‘‘false’’) image

B1 is generated by the textural classification of pixels on a

new test image using the mean and variance of the saved

wavelet-coefficients. Each pixel of the test image is clas-

sified as ‘‘true’’ (ROI) or ‘‘false’’ (does not belong to ROI).

The second binary (‘‘true’’/‘‘false’’) image (B2) is obtained

from the GA individual being evaluated, by placing the

corresponding contour on the test image and classifying all

pixels inside the contour as ‘‘true’’ and all other pixels as

‘‘false’’.

The fitness is a function of the detection rate (D) and the

false alarm rate (F) as:

Fitness ¼ 500ðDþ ð1� FÞÞ: ð15Þ

The detection rate is defined as the fraction of ‘‘true’’

(‘‘false’’) pixels in the segmented image (B2) matching the

‘‘true’’ (‘‘false’’) pixels in the textural classification B1.

Note that B1 is the so-called ‘‘truth plane’’ used by the

fitness function and is not the ground truth (derived from

manual segmentation). The ground truth images are only

used for evaluating the final segmentation results. The false

alarm rate denotes the fraction of ‘‘false’’ (‘‘true’’) pixels in

B1 that are classified as ‘‘true’’ (‘‘false’’) pixels in the

segmented image B2. For convenience in calculations, the

constant 500 scales the fitness so that the maximum fitness

score that can be attained using this function is 1,000. The

processes in GA evolution: selection, crossover, and

mutation to create a new generation are iterated until the

maximum fitness is attained or after a specified number of

generations have been produced.

Rank selection and fixed-length crossover have been

implemented here. Rank selection is implemented by

comparing the fitness of individuals, and making individ-

uals with higher fitness more likely to be selected to pro-

duce offsprings. Fixed-length crossover is performed by

swapping fixed length segments of genes between two

individuals. Mutation is performed by randomly changing

the value of a gene with another real number within a fixed

range of values. Mutation rate is defined as the probability

of a single gene to be mutated. Similarly, the crossover rate

defines the probability of a crossover to occur between two

individuals.

For evaluating the performance of the algorithm the

definitions of closeness of the segmentation outcome to the

truth (here, manual segmentation) were derived using the

dice similarity coefficient [44] and the partial Hausdorff

distance [23]. Both of these measures have been exten-

sively used for evaluating segmentation algorithms. The

ground truth was obtained by averaging over multiple

manual delineations.

The dice similarity coefficient provides a measure of the

degree of overlap between two segmentations as:

DSCðA;BÞ ¼ 2 A \ Bj j
Aj j þ Bj jð Þ: ð16Þ

A DSC of 1 indicates a perfect match and 0 indicates no

match. The partial Hausdorff distance is derived between

the boundary points of two contours. If A = {a1,…, ap}

and B = {b1,…,bq} be finite sets of points on two contours,

then the partial Hausdorff distance between them is defined

as:

HðA;BÞ ¼ maxðhðA;BÞ; hðB;AÞÞ; ð17Þ

where

hðA;BÞ ¼ max
a2A

min
b2B

a� bk k: ð18Þ

The function h(A,B) takes each point in A and finds the

closest point in B from that point. It then ranks the points in

A based on the distance values and finds the point with the

greatest ‘‘mismatch’’. Thus, the partial Hausdorff distance

is a measure of the distance by which two contours i.e., the

final segmentation outcome and the ground truth differ.

4 Data: thermographic images

The data for this analysis has been obtained from Temple

University’s Ergonomics and Work Physiology Lab where

researchers are studying musculoskeletal disorders of distal

upper extremity (e.g., tendinitis and carpal tunnel syn-

drome). Infrared thermography of the hand reveals skin

temperature which is related to the amount of blood

flowing into the hand. For this study far-infrared images of

hands were acquired using ThermaCAM AM40 thermo-

graphic camera (FLIR Systems, Wilsonville, OR) with a

sampling rate of 7 Hz. The subjects were given a 9 min

typing challenge and images were taken at the following

intervals: before typing, 0–2 min (post-typing), 3–5 min

(post-typing), and 8–10 min (post-typing).

Figure 1 (upper panel) shows the hands of four subjects

before starting to type. Figure 1 (lower panel) shows the

hands of the same patients 8 min after typing. The subjects’
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fingers are partially visible on these images because the

hands approach the temperature of the surrounding surface.

Also a near infrared spectroscopy (NIRS) probe is adhered

to the skin above the first dorsal interosseous muscle of

their right hand (between the thumb and index finger) and

on some of the images the boundary of the hand touching

the probe is not visible.

These images were manually segmented by a human

who has a prior knowledge of the shape of the hands and

has also looked at the hand images of each subject taken

prior to typing. The challenge in the problem is more than

mere shape matching because the subjects tend to move

their hands and fingers during the imaging process.

Therefore, a rigid template matching method is not suitable

for solving this problem. The LSGA performs a deformable

template matching within known bounds of mean shape

and shape variability (movement of fingers and the hand

itself) and the texture of the region it encloses to perform

the segmentation task.

Once an image is manually segmented a score of the

mean temperature of the hand is generated and compared

with the temperature of the hand at successive time steps to

determine if and where the blood flow is changing in the

hand with time. The dataset consists of images from four

subjects. For each subject there are 500 images for each

time range, that is, a total of about 2,000 images per subject.

5 Results and discussion

The experiments for segmenting the thermographic images

of hands were set up in the following way. The images

acquired prior to typing were used as the training images.

The images taken after the typing challenge at various

intervals were used as the test images. A subset of 240 test

images (every 25th image was chosen i.e., about

20 9 3 = 60 images per patient) were used for validation

purposes. The ground truth in the form of manual seg-

mentation was derived only for the validation set. The

segmentation performance for rest of the test images were

analyzed visually by a human. A subset of the training

images (*100) was also manually segmented by a human

to derive the model for known shape, texture and move-

ment of the hands of the subjects.

Figure 2 shows the mean shape and the variability of the

mean shape from one patient. The eigenvalue r1 depicts

the movement of the fingers and r2 the width of the fingers

which varies between multiple segmentations (shown in

Table 1 for all patients). Other eigenvalues affect the

length of the fingers, the size of fingertips etc., and are

ignored for this study because they are not the principal

modes of variation of the shape of hands.

Segmentation was performed on the test images of each

subject using the following methods: LSGA, Gabor

wavelet based segmentation algorithm (GW), and the Chan

and Vese algorithm (CV). Figure 3 (top left panel) shows a

manually segmented hand test image. The outcome of the

Gabor wavelet-based segmentation algorithm on the sam-

ple test image is shown in Fig. 3 top right panel. This

method finds only the region of the hand visible by pixel

intensity variations on the image. Figure 3 (bottom left

panel) shows the result of applying the Chan and Vese

level-set-based algorithm to the same hand image. Since

both these methods do not have the notion of a known

Fig. 1 Thermographic images

of hands of four subjects taken

before typing (upper panel);
after 8 min of typing (lower
panel). The fingers start to

become invisible due to reduced

blood flowing in the subjects’

hands
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shape they could not segment the entire hand on the test

image.

Finally, the LSGA was used to segment the same hand

image. The parameters used by the GA to evolve the

segmenting contour are shown in Table 2.

Figure 4 shows some candidate segmenting contours in

the GA population. The LSGA found the optimal location

and pose of the hand in the image from a population of 50

segmenting contours (Fig. 3 lower right panel). The seg-

menting contour is shown on top of the test image to show

the segmentation outcome here. The fitness of the final

segmenting contour for this image was 828. The figure

clearly shows that the LSGA outperforms the other meth-

ods. This is also confirmed by visual analysis of the results.

Figures 5, 6, and 7 show how the fitness values change

as the GA parameters such as mutation rate, crossover-rate

and population size vary. Therefore, a population size of

50, mutation rate of 10% and a crossover rate of 50% were

chosen as the default parameters for performing segmen-

tation on all the images. Figure 8 shows the segmentation

results from every time interval for each patient.

The average DSC and H were computed from all the

segmentation outcomes for each patient. Table 3 shows

Fig. 2 Mean shape (center). ±3r1 variability depicting movement of

fingers (left, right). ±3r2 variability of width of fingers (top, bottom)

Table 1 Shape variability of hands

r1 r2

Patient 1 2.7 9 104 1.5 9 104

Patient 2 1.0 9 102 0.7 9 102

Patient 3 1.8 9 102 1.1 9 102

Patient 4 2.2 9 102 1.0 9 102

Fig. 3 Segmentation outcome on a test image (manual segmentation

shown in upper left) using: Gabor-wavelet based method (upper
right), Level-set based method of Chan and Vese (lower left), LSGA

(lower right)

Table 2 LSGA parameters

Population size 50

Mutation rate 10% per gene

Crossover rate 50% single-point

Selection criteria Rank selection

Weights for eigen shapes, w (1–5) integers

Translation parameters a, b Integer (0–30)

Rotation parameter h -90� to ?90�
Scale parameter h 1

Fig. 4 Three candidate segmenting contours in the GA population.

Here, F denotes the fitness of each individual defined in Eq. (15)
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the average values of DSC and H obtained for all the

images in the validation set for each of the four subjects.

Note that in the case of patient 4 the DSC is low and for

patient 1 the H is relatively high even though a visual

inspection of the results shows satisfactory segmentation.

This is due to the limitation in acquiring accurate ground

truth as the fingertips are completely invisible in the test

images.

6 Conclusion and future work

The LSGA performs derivative-free optimization of a

level-set function for image segmentation. This brings

flexibility to the level-set curve evolution process by letting

the user choose different kinds of features for exploring the

fitness landscape. In this paper two types of features, tex-

ture and shape, have been explored for evolving the level

sets for segmenting thermographic images of hands.

Fig. 5 Variation of the maximum fitness by number of generations of

the GA run for the population sizes of 25, 50, and 100

Fig. 6 Variation of the maximum fitness by number of generations of

the GA run for the mutation rates of 2, 5, and 10%

Fig. 7 Variation of the maximum fitness by number of generations of

the GA run for the crossover rates of 50, 90, and 100%

Fig. 8 Segmentation result from every time interval for each patient

Table 3 Validation criteria: comparison with ground truth

DSC H

Patient 1 0.8 6.7

Patient 2 0.9 3.4

Patient 3 0.85 3.5

Patient 4 0.6 3.5

Evol. Intel. (2010) 3:1–11 9

123

 Author's personal copy 



Although these images had visible textural areas separating

the hand region from the background, the knowledge of

known shape was needed to segment them. The LSGA

combined shape with texture to achieve the desired

segmentation.

The current LSGA framework has been used to segment

the prostate gland in pelvic CT/MRI images, a more

complex segmentation problem, with promising results [11,

12]. However, features such as relative positions of objects

need to be incorporated into this framework in the future to

produce more accurate segmentations. This paper presents

the basic framework for an evolutionary image segmenta-

tion scheme using level-sets which can be improved further

for addressing more complex segmentation tasks.
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