
Combinatorial Shape Decomposition

Ralf Juengling, Melanie Mitchell

Department of Computer Science
P.O. Box 751

Portland State University
Portland, Oregon 97207-0751

To appear in Proceedings of the Third International Symposium on Visual Com-
puting (ISVC07). Springer (Lecture Notes in Computer Science).

Abstract. We formulate decomposition of two-dimensional shapes as
a combinatorial optimization problem and present a dynamic program-
ming algorithm that solves it.

1 Introduction

Identifying a shape’s components can be essential for object recognition, object
completion, and shape matching, among other computer vision tasks [1]. In this
paper we present a novel shape-decomposition algorithm, aimed at capturing
some of the heuristics used by humans when parsing shapes.

In 1984, Hoffman and Richards [2] proposed the minima rule, a simple heuris-
tic for making straight-line cuts that decompose a given shape (or silhouette):
Given a silhouette such as the one in Fig. 1(a), the end-points of cuts should be
negative minima of curvature of its bounding contour (Fig. 1(b)). Note that this
rule does not specify which pairs of these points should be connected to make
cuts. Fig. 1(c) gives one possible set of cuts connecting negative minima.

Later, Singh, Syranian, and Hoffman [3] proposed an additional simple heuris-
tic, supported by results of psychophysics experiments on human subjects, called
the short-cut rule: If there are several competing cuts, select the one with short-
est length. For example, in Fig. 1(c), most people would prefer the cuts shown
as compared with a cut between the two topmost black dots, which would be
significantly longer.

Singh et al. make clear that the minima and short-cut rules are not the
only necessary heuristics for shape decomposition; other possible heuristics could
involve local symmetries or good continuation, or rely on prior knowledge about
the shape’s category. However, the two simple heuristics seem to explain many
of the experimental results on people.

In this paper we propose an efficient algorithm for shape decomposition that
results in these two heuristics being approximately satisfied, without having to
compute boundary curvature. Given a polygonal description of a silhouette, our
algorithm computes the constrained Delaunay triangulation of the shape, and
chooses among the interior edges of this triangulation an optimum set of cuts
by solving a corresponding combinatorial optimization problem.

2 Ralf Juengling, Melanie Mitchell

Fig. 1. (a) Silhouette. (b) Black dots mark points at which curvature has a negative
minimum. (c) Three possible cuts based on these points.

α1

β1
β

α

B

A

C
B

A

B

A

β2

D
α2

Fig. 2. Making a cut means breaking a polygon into two polygons. Here the cut is
made between two concave vertices A and B. Because α = α1 + α2 and α < 2π the
number of concave vertices never increases through a cut.

2 Finding Cuts by Combinatorial Optimization

We assume a polygonal description of the shape and require that a cut (1) con-
nects two polygon vertices, and (2) does not cross a polygon edge. It follows that
there is only a finite number of possible cuts for any given polygon. Our strategy
is to define an objective function over the set of possible cuts, C, and to select
the subset of cuts that minimizes the objective function. This is a combinatorial
optimization problem with a number of possible solutions exponential in |C|. We
introduce a third constraint on the set of possible cuts in Section 2.1 to make
the problem amenable to a solution by dynamic programming.

Curvature is not available in our polygonal framework and we need to adapt
the minima rule. As in Latecki and Lakaemper [4], vertices with a concave angle
play the role of boundary points of negative curvature (we measure the inside
angle and call vertices with an angle greater than π concave; see Fig. 2).

As Fig. 2 illustrates, placing a cut amounts to breaking a polygon in two.
Our objective function favors a decomposition into convex parts by penalizing
concave vertices. It is is basically of the form

∑

k f(θk), where θk ranges over all
angles of a given partition or cut set. For the example in Fig. 2 the difference of
the objective function values between the empty cut set (left) and the set {AB}
(right) is therefore

f(α) − f(α1) − f(α2) + f(β) − f(β1) − f(β1) (1)

Thus f should be such that this sum is negative when the cut AB is considered
desirable. We will resume discussing the objective function below in Section 2.2.

Lecture Notes in Computer Science 3

Fig. 3. Different triangulations of a dog-shaped polygon: A minmax length triangula-
tion (left) minimizes the maximum edge length, the minimum weight triangulation
(middle) minimizes total edge length, and the constrained Delaunay triangulation
(right) minimizes the maximum triangle circumcircle.

2.1 The Set of Possible Cuts

If a set of cuts for the polygon in Fig. 2 includes the cut AB, then it cannot
simultaneously include the cut CD because AB and CD cross. On the other
hand, if it were understood that possible cuts never cross, then it is enough to
know all other cuts ending in either A or B to decide whether AB should be
included to improve a tentative cut set. This insight is the key to our dynamic
programming optimization algorithm (Section 2.4). We therefore pose as a third
requirement on C, the set of possible cuts or chords, that no two elements in C
cross.

This also means that we are excluding a number of possible cuts outright
when choosing C for a given shape. For the shape in Fig. 2, for example, we have
to decide between AB and CD, among others.

Any maximum set of chords obeying our third requirement corresponds to
a triangulation of the shape polygon, a well-studied subject in computational
geometry [5]. For C we need to choose a triangulation that contains most of the
desired cuts. Since by the short-cut rule we prefer shorter cuts over longer ones,
the minmax edge length or the minimum weight triangulation [6] ought to be
good candidates (cf. Fig. 3). In addition we consider the constrained Delaunay
triangulation (CDT, Fig. 3 right).

The CDT optimizes several criteria (e.g., it maximizes the minimum angle
and minimizes the maximum triangle circumcircle). While it tends to yield short
chords as well, it is in general not optimal with respect to length criteria [6].
However, we find that chords of the CDT match our intuitive notion of “possible
cut” best. This has to do with the defining property of the CDT, that every
circumcircle is an empty circle [5]: If a sequence of polygons converges to a
silhouette then the empty circles of the respective CDTs converge to maximum
inscribed circles of the silhouette, and hence, in the limit, the chords of the CDT
connect boundary points in local symmetry [7]. This observation corresponds to
a third rule stated by Singh et al. [3], that a cut ought to cross an axis of local
symmetry.

4 Ralf Juengling, Melanie Mitchell

iAB iAC FA(iAB , iAC)

0 0 f(α1 + α2 + α3)

0 1 lAC

lA
f(α1) + lAC

lA
f(α2 + α3)

1 0 lAB

lA
f(α1 + α2) + lAB

lA
f(α3)

1 1 lAC

lA
f(α1) + lAB lAC

lAlA
f(α2) + lAB

lA
f(α3) B

A

C

α1 α3α2

Fig. 4. Left: Term FA; lAB denotes the length of chord AB, lA is the length of the
shortest chord incident to A. Right: Chords (dashed) and corner angles incident to A.

2.2 The Objective Function

We now define a function E that determines whether one set of cuts is “better”
than another. To that end we introduce a binary indicator variable ic for every
chord c ∈ C and use the notation E(ic| C) to indicate that E is a function of the
|C| variables ic, c ∈ C. The assignment ic = 1 means that chord c is a cut, ic = 0
means c is not a cut. A set of assignments to all ic is called a configuration.

E(ic| C) =
∑

v∈V

Fv(ic| Cv) (2)

Function E is the sum of |V | terms, V being the set of polygon vertices.
For every v ∈ V we write Cv for the set of chords incident to v (every chord is
incident to two vertices). Each term Fv in Equation (2) is itself a sum of the
form

∑

k wkf(αk), where {αk} are angles of part corners incident to v and {wk}
are weights, which we will discuss shortly. The number of angles depends on the
configuration and ranges between 1 and | Cv| + 1.

For example, assume there are two chords, AB and AC, incident to vertex A

(Fig. 4 Right). Then there are four possible configurations of CA (Fig. 4 Left).
With configuration iAB = iAC = 0 (no cuts incident to A) the value of FA

depends on the interior angle of the polygon at A only. With iAB 6= iAC (one
cut) it depends on the angles of the two corners separated by the cut and of the
relative length of the cut, and with iAB = iAC = 1 it depends on three angles
and two relative cut lengths.

Thus the f -terms in a sum Fv are weighted by the relative lengths of the cuts
involved (the lengths are normalized by the length of the shortest chord incident
to v). This weighting scheme is again motivated by the short-cut rule.

We finally turn to the function f , which has to be defined on the interval
(0, 2π). We derive its qualitative form from three principles:

1. Cuts should remove concave angles, except minor ones.
2. A convex polygon should never be partitioned.
3. Cuts that create an angle π or close to π are preferable.

From the second principle it follows that f should be non-increasing and have
non-negative curvature in the range (0, π]. From the third principle it follows
that f should have a minimum at π. We are free to choose f(π) = 0 as adding
a constant to E does not affect the ranking of the configurations.

Lecture Notes in Computer Science 5

0

5

10

15

0 γ0 π 2π

π π+ γ

γ

Fig. 5. Left: Plot of f(α) over α with γ0 = π

8
. Right: The chord (dashed) should

become a cut only if γ > γ0.

From the first principle it follows that f(α1 +α2) > f(α1)+f(α2) when α1 +
α2 > π + γ0, where γ0 is some small angle by which we realize the tolerance for
minor concavities. To derive a constraint on f related to this tolerance parameter,
we consider the situation depicted in Fig. 5 Right. The protrusion should be
separated by a cut if and only if γ > γ0. With f(π) = 0 it follows that f(π+γ) >

f(γ) when γ > γ0 and f(π + γ) < f(γ) when γ < γ0.
The following simple function meets all the stated constraints. It is plotted

in Fig. 5 Left.

f(α) =

α−π
γ0−π

, α < π
(

α−π
γ0

)2

, π ≤ α < π + γ0

2

γ0

(α − π) − 1 , π + γ0 ≤ α

(3)

2.3 Robustness to Similarity Transforms

Fig. 6. Simplified polygon obtained with Lowe’s algorithm (left). Polygon obtained
from first by regular resampling with parameter r = 8 (middle) and r = 3 (right),
respectively. Polygon vertices are indicated by points; in the right polygon, points
overlap and appear as a continuous line. Each polygon is shown with best cut set.

The objective function Eq. (2) is invariant under rotation, translation and
scaling as it depends only on angles between edges and chords, and on ratios
of chord lengths. However, this invariance is irrelevant if the process by which

6 Ralf Juengling, Melanie Mitchell

the shape contour is obtained is not also invariant or at least robust to these
transforms.

We therefore take the output of a contour tracing algorithm and simplify it
with Lowe’s algorithm [8] to obtain a polygonal description robust to the named
transformations. We next add polygon vertices so that the Euclidean distance
between two adjacent vertices is bounded from above by some value r (r = 8
is used for all following results). This step is to ensure that the set of chords is
dense in the sense that there are chords close to the cuts that would be obtained
in the continuous limit r → 0 (Fig. 6).

2.4 Minimizing the Objective Function

We briefly discuss two algorithms for minimizing the objective function, a dy-
namic programming algorithm which yields an optimal solution, and a greedy
algorithm which finds a good but not always optimal solution.

The Dynamic Programming Algorithm: First observe that the number of
arguments of each term Fv in the objective function Eq. (2) is much smaller
than the number of arguments of E, | Cv| << | C|. Second, each variable ic is
an argument of only two terms. Whether ic = 0 or ic = 1 in the optimal con-
figuration is conditional on the optimal arguments of these two terms only. For
example, the optimal configuration for the variables in {ic|c ∈ CA ∪ CB − {AB}}
determines the optimal value for iAB .

The dynamic programming or “variable elimination” approach consists of
reducing the number of variables in the objective function one by one. We write
En for the objective function obtained after n elimination steps. The functions
En are related in that the optimal configuration for E is also optimal for all
En. A variable ic that is an argument of En is eliminated by replacing the two
terms of En that ic appears in by a single new term. The new term is defined
as the minimum over the values of the eliminated variable of the sum of the
replaced terms. For example, assume iAB appears in the two terms F (ic| CF)
and G(ic| CG) of En. We eliminate iAB by replacing F and G by

H(ic| CF ∪ CG − {AB}) = min
iAB

F (ic| CF) + G(ic| CG) (4)

in En to obtain En+1.
The process of iteratively eliminating variables eventually yields a function

Em of only one variable. Call the variables eliminated in the successive steps
i1, i2, ..., im−1, and the remaining variable im. The value om that minimizes
Em is the optimal assignment to im. The value that minimizes Em−1 with
im = om is the optimal assignment to im−1. Optimal assignments to variables
im−2, im−3,...i1 are obtained in the same way.

The Greedy Algorithm: The greedy algorithm works as follows. Starting with
the empty set as current cut set it repeatedly finds a single cut that, when added

Lecture Notes in Computer Science 7

Fig. 7. An example in which the greedy algorithm gives an unsatisfactory result (left;
optimal cut set on the right).

to the current cut set, reduces the objective function value by the largest amount.
The algorithm terminates when no such cut can be found.

This algorithm often yields the optimal or a close-to-optimal solution, and
it has the advantage of being faster and simpler than our original algorithm.
However, it sometimes makes inappropriate cuts, as illustrated in Fig. 7.

2.5 Computational Complexity

To summarize, our algorithm first ensures the sampling of the silhouette is dense
enough, and the number of vertices n is proportional to silhouette length. Second,
C, the set of possible cuts, is computed in O(n log n) time [6], and |C| is linear
in n. Third, the objective function with |C| variables is dynamically created.
Fourth, a configuration is found which minimizes the objective function.

The objective function is represented by a set of tables—one table for each
term in Eq. (2). The complexity of the third step is governed by the number of
tables (n), and by the size of the tables, which is |Cv|2

|Cv|. Thus, if we use d to
denote the maximum degree of the CDT computed in the second step, then the
third step is O(n(d − 2)2d−2) = O(nd2d) in time and space.

Evaluation of the objective function may be implemented to cost O(n) if the
argument is a configuration, or O(c) if the argument is a list of the c variables
with non-zero assignment. We use the second variant.

With the greedy algorithm we first evaluate the objective function for all sin-
gleton cut sets (all but one variable values are zero) and store the correspond-
ing variables in a heap with objective function value as key (takes O(n log n)
time). We then take variables from the heap until the current configuration
cannot be improved upon (m times, say), updating the heap in each iteration
(O(md + d log n), as at most 2(d − 2) variables are affected). Thus, the greedy
algorithm takes O(n log n + nd2d + md log n)time, which is O(n log n) if d is
bounded.

For the optimal algorithm the situation is more complicated because the
computational cost of computing the tables corresponding to new terms as in
Eq. (4) hinges on the number | CF ∪CG|, respectively. How big these numbers get
depends crucially on the order in which the variables are eliminated, and finding
a variable ordering that minimizes the total table size is known as the “secondary

8 Ralf Juengling, Melanie Mitchell

optimization problem” in nonserial dynamic programming [9]. We lack the space
to discuss it here, but point out that, when the shape is simple (it has no holes),
the structure of objective function (2) is described by an “interaction graph” [9]
that is chordal. In this case an optimal elimination ordering can be found in O(n+
|C|) = O(n) time [10]. The computational complexity of the optimal algorithm
then is O(n log n + nD2D), where D is the maximum number of variables of a
single term that occurs in the course of the variable elimination process.

3 Results

Fig. 8 presents results of the global optimization and the greedy algorithm,
respectively. For most shapes both cut sets are very similar, due to the fact that
cut sets tend to be sparse subsets of C (every cut that does not share a vertex
with another cut is selected by both algorithms). However, the results show the
more complicated optimal algorithm might yield more appropriate results. For
instance, all teeth of the cockscomb were separated by the optimal algorithm
because cutting all teeth results in a relatively smooth part corresponding to the
cock’s head.

Many of the resulting parts seem too small (e.g., the parts of the lizard
shape). This is because “part significance” is not reflected in the objective func-
tion. We believe that the best approach would be to determine part significance
in subsequent processing and prune the cut set instead of incorporating part
significance directly into the objective function. Occasionally neither of our al-
gorithms selects a desired cut, as the elephant example shows: the leftmost leg
is not separated from the torso. This is because the leg’s left and right boundary
curve both are too smooth and do not feature a “concave enough” vertex.

4 Related work

We briefly discuss the relation to other algorithms that assume a polygonal shape
description as input. The algorithm by Latecki and Lakaemper [4] also chooses
cuts that connect vertices of the input polygon. These vertices are found as the
most stable vertices in a process of “discrete curve evolution”. While Latecki and
Lakaemper’s method selects good vertices it does not pair according to proximity
and sometimes yields implausibly long cuts.

Rosin’s approach is perhaps closest in spirit to ours [11]. It also defines cuts
as interior edges connecting polygon vertices and optimizes an objective func-
tion that favors a decomposition into convex parts. Unlike our algorithm, which
chooses from C, Rosin’s algorithm considers all possible cuts and needs to iden-
tify crossing cuts during optimization. The computational cost depends expo-
nentially on the number of cuts; searching for an optimal decomposition is only
feasible if the number of cuts is very small (most decompositions presented in
[11] contain only one or two cuts).

Prasad recently proposed selecting cuts from the chords of the CDT of a
shape [12]. He defines a function on the set of chords that evaluates the degree

Lecture Notes in Computer Science 9

Fig. 8. Example shapes with optimal cut sets (top figure in each row) juxtaposed with
the corresponding result of the greedy algorithm (bottom figure in each row).

10 Ralf Juengling, Melanie Mitchell

of overlap of adjacent circumcircles (“approximate co-circularity”), and selects
chords with low co-circularity score, resulting in good correspondence to the min-
ima and short-cut rules. However, the connection to his co-circularity measure
is unclear.

A quantitative evaluation and comparison with the cited other approaches
is very desirable, but to our knowledge no established benchmark for shape
decomposition currently exists. We plan to propose evaluation measures and to
conduct a comparative study in future work.

5 Acknowledgements

This work was supported by a grant to MM from the J. S. McDonnell Founda-
tion. We used J. R. Shewchuk’s Triangle code [13], Y. LeCun and L. Bottou’s
Lush programming environment, and obtained the shape data for our experi-
ments from R. Lakaemper.

References

1. Zhu, S.C., Yuille, A.L.: Forms: A flexible object recognition and modelling system.
International Journal of Computer Vision 20 (1996) 187–212

2. Hoffman, D.D., Richards, W.A.: Parts of recognition. Cognition 18 (1985) 65–96
3. Singh, M., Seyranian, G., Hoffman, D.: Parsing silhouettes: The short-cut rule.

Perception and Psychophysics 61 (1999) 636–660
4. Latecki, L.J., Lakaemper, R.: Convexity rule for shape decomposition based on

discrete contour evolution. Computer Vision and Image Understanding 73 (1999)
441–454

5. Goodman, J.E., O’Rourke, J., eds.: Handbook of Discrete and Computational
Geometry. CRC Press (1997)

6. Bern, M., Eppstein, D.: Mesh Generation and Optimal Triangulation. In Hwang,
F.K., Du, D.Z., eds.: Computing in Euclidean Geometry. World Scientific (1992)

7. Brady, M., Asada, H.: Smoothed local symmetries and their implementation. In-
ternational Journal of Robotics Research 3 (1984) 36–61

8. Lowe, D.G.: Three-dimensional object recognition from single two-dimensional
images. Artificial Intelligence 31 (1987) 355–395

9. Bertele, U., Brioschi, F., eds.: Nonserial Dynamic Programming. Volume 91 of
Mathematics in Sciece and Engineering. Academic Press (1972)

10. D. J. Rose, R.E.T., Lueker, G.S.: Algorithmic aspects of vertex elimination on
graphs. SIAM Journal on Computing 5 (1976) 266–283

11. Rosin, P.L.: Shape partitioning by convexity. IEEE Transactions on Systems, Man,
and Cybernetics, Part A 30 (2000) 202–210

12. Prasad, L.: Rectification of the chordal axis transform and a new criterion for shape
decomposition. In E. Andres, G.D., Lienhardt, P., eds.: Discrete Geometry for
Computer Imagery, 12th International Conference, Poitiers (France), April 2005,
Proceedings. Volume 3429 of LNCS., Springer (2005) 263–275

13. Shewchuk, J.R.: Triangle: Engineering a 2D quality mesh generator and delaunay
triangulator. In Lin, M.C., Manocha, D., eds.: Applied Computational Geometry,
Towards Geometric Engineering, FCRC’96 Workshop, WACG’96, Philadelphia,
PA, May 27-28, 1996, Selected Papers. Volume 1148 of LNCS., Springer (1996)
203–222

