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Abstract

I review the purported opposition between computational and
dynamical approaches in cognitive science. I argue that both
computational and dynamical notions will be necessary for a
full explanatory account of cognition, and give a perspective
on how recent research in complex systems can lead to a much
needed rapprochement between computational and dynamical
styles of explanation.

The “Computation vs. Dynamics” Debate
Cognition and computation have been deeply linked for at
least fifty years, particularly in the symbolic AI tradition. The
origin of the electronic digital computer lies in Turing's at-
tempt to formalize the kinds of symbolic logical manipula-
tions that human mathematicians can perform, and compu-
tation was later viewed by Newell, Simon, and others as the
correct conceptual framework for understanding thought in
general (Newell & Simon, 1976).
Another tradition for understanding thought is rooted in

dynamical systems theory. Dynamical approaches to cogni-
tion go back at least to the cybernetics era in the 1940s in
which information theory, dynamics, and computation were
brought together in studying the brain (Ashby, 1952). How-
ever, with the dominance of symbolic AI and “information-
processing psychology” in the 1960s and 1970s, dynamical-
systems-based approaches were not extensively pursued.
More recently, the idea that dynamics is a relevant frame-

work for understanding cognition has become popular again.
For example, Thelen and Smith (1994) describe the develop-
ment of kicking and reaching in infants in terms of dynami-
cal notions such as the stability of attractors in a phase space
defined by body and environmental parameters. Movements
to new stages in development are explained in terms of bi-
furcations to new attractors as a result of change in order
parameters—infant weight, body length, etc.—as the infant
grows. Thelen and Smith believe that “higher cognition” is
ultimately rooted in these types of spatial skills learned in
infancy, and thus that higher cognition will itself be best un-
derstood dynamically. They contrast their account with tradi-
tional “information processing” theories of development, in
which new developmental stages are caused by brain matura-
tion and the increasing ability of maturing infants to reason
logically.

Many proponents of dynamical approaches in cognitive
science, like Thelen and Smith, take the adversarial posi-
tion that computation and information processing are mis-
leading and incorrect notions to use in understanding cog-
nition. Some go even further and dismiss more basic notions
such as representation and “symbols” as being harmful to the
cognitive science enterprise (e.g., Freeman & Skarda, 1990).
In a recent overview article, van Gelder and Port (1995)

seek to show that the “computational approach”—i.e., that
“Cognitive operations are transformations from one static
symbol structure to the next” (p. 1)—is false and that the “dy-
namical hypothesis”—that thought is best understood in the
language of dynamical systems theory—is true. In this paper,
I briefly review the main points of this debate, argue that both
computational and dynamical notions will be necessary for a
full explanatory account of cognition, and give my view on
how complex systems research can lead to an important rap-
prochement between computational and dynamical notions in
cognitive science.
Although the various dynamical approaches described by

van Gelder and Port do not yet yield a concise single formu-
lation, the general idea is that cognition should be character-
ized as a continual coupling among brain, body, and environ-
ment that unfolds in real time, as opposed to the discrete time
steps of digital computation. The emphasis of the dynamical
approach is on how the brain/body/environment system as a
whole changes in real time, and dynamics is proposed as the
best framework for capturing that change. This is said to con-
trast with computation's focus on “internal structure”—i.e.,
its concern with the static organization of information pro-
cessing and representational structure in a cognitive system.
This opposition—between dynamics as focused on change

and computation as focused on internal structure—brings to
mind a similar debate that has gone on for years in the evolu-
tionary biology community, and whose resolution will, I be-
lieve, be instructive for the dynamics/computation debate in
cognitive science. The predominant explanatory framework
in evolution has been neo-Darwinism, a theory of change par
excellence (inherited random change from one generation to
the next leads to adaptation via natural selection). But some
evolutionary theorists have questioned the adequacy of clas-
sical neo-Darwinism as either an explanatory or a predictive
theory, and argue instead for the primacy of historical contin-



gency (Gould, 1989a) or the self-organization of biological
structure not due to natural selection (Fontana & Buss, 1996;
Goodwin, 1990; Kauffman, 1993). These “historicists” and
“structuralists” are the connectionists of the evolutionary bi-
ology community—the people questioning the classical or-
thodoxy. The selectionist/historicist/structuralist debate has
been discussed at length by Gould (1989b), among others. It
is becoming increasingly clear, however, that the stark op-
positions posited among these three frameworks are not only
false oppositions, but are hindering progress in evolutionary
theory. The purely structuralist theories don' t explain how
structures can be significantly changed in evolution, and the
purely selectionist theories don' t explain what intrinsic driv-
ing forces and constraints there are on the formation of bio-
logical structures. What is needed is a theory that incorpo-
rates both change and structure1.

Dynamical Notions
Similarly, in cognitive science, dynamical approaches are the-
ories of change and movement. Although different aspects
of dynamical systems theory are emphasized in different dy-
namical approaches, a common theme is using dynamics as
a language for describing continual temporal change in com-
plex systems, something not easily captured in so-called com-
putational approaches.
Dynamical approaches view the behavior of a temporally-

changing system in a geometric way—in terms of “trajec-
tories”, “attractors”, “bifurcations”, and so on. Historically,
dynamical systems theory has been useful for understanding
complex systems in which “self-organization” or “emergent
behavior” appears. In many ways dynamics has a natural ap-
peal for cognitive science, since it provides ways to concep-
tualize systems undergoing continual change, ways to char-
acterize the relative stability of possible patterns of change
as a function of system parameters, and ways to think about
couplings between complex processes such as the brain, the
body, and the environment.
However, there are some limitations to current dynamical

approaches that seem difficult to overcome within a pure dy-
namics framework. Two major limitations, pointed out by
Clark (1997, p. 101), are scaling and style of explanation.
First, current dynamical approaches, if they are to be quan-

titative, can deal only with low-dimensional analyses (e.g.,
Beer's analysis of a five-neuron neural network controller
for a walking robot; Beer, 1995); it is not clear how the
approaches currently being proposed will scale to higher-
dimensional systems. Furthermore, it is not clear how the
approaches being explored for motor abilities, simple per-

1This formulation of the evolution debates was given to me by
evolutionist Daniel McShea, personal communication. McShea's
formulation was elaborated by Crutchfield (1994), who proposes a
particular computation-theoretic notion of structure (“computational
mechanics of nonlinear processes”) and a related mechanism for the
transformation of structure (“hierarchical machine reconstruction”).
Crutchfield suggests that a unified theory of these two processes
might be termed “evolutionary mechanics”, which he proposes as
a general theory of “emergence”.

ception, simple language processing, and the like will pro-
vide complete accounts of “higher-level” cognitive phenom-
ena such as the recognition of and reasoning about abstract
ideas (“representation-hungry”problems, to use Clark's term;
Clark, 1997).
Second, while dynamical approaches provide useful high-

level descriptions of behavior in geometrical terms, in general
they don' t on their own provide an understanding of how the
underlying system gives rise to those aspects of behavior that
are functional or adaptive. For example, we would like to
distinguish adaptive from non-adaptive behavior, understand
how two adaptive systems with very different dynamical por-
traits give rise to similar functional behavior, and understand
the source of errors made by an adaptive system and how its
function will be affected by various sorts of “lesions”. We
would also like to understand how new functional compo-
nents give rise to improvements in the system. I will argue be-
low that such accounts can be given in a dynamics framework,
but only in ones in which functional, information-bearing,
and information-processing components can be identified.

Computational Notions
There are many reasons to question computation as frame-
work for understanding cognition. The von Neumann-style
architecture that has dominated computer science for most of
its history is quite different from the architecture of the brain.
The former has centralized control, random access memory,
and serial, deterministic processing. The latter consists of
myriad relatively simple components with no (known) cen-
tral control, limited interactions among components, spatial
structure, massive parallelism, complex dynamics, and is per-
meated with noise, giving rise to stochastic processing. In
this view, computational processes couldn' t be more different
than brain processes. As Beer wrote, “the organization that
the very terms of the computational language presuppose is
nowhere apparent” (Beer, 1995, p. 128).
However, in the rush to rid the cognitive science world of

symbolic computational notions, many of the proponents of
dynamics have neglected the reasons why computation has
been such an attractive framework for cognition for such a
long time. First, computational notions have provided us
with a new notion of “mechanism”. In the history of sci-
ence, the meaning of “mechanism” has been extended a num-
ber of times. For example, in the 17th and 18th centuries,
a “model” of a scientific phenomenon was a mechanism de-
scribed as a combination of the six “basic machines”: the
lever, the wheel and axle, the pulley, the inclined plane, the
wedge, and the screw (Toulmin, 1993). Over time, what
counted as a mechanism in science was gradually broadened,
and in the 1930s, computation, in the form of Turing Ma-
chines, came to be thought of as a new type of mechanism,
one that was capable of processing symbols. Further evolu-
tion of the notion of “mechanism” and “mechanistic explana-
tion” can be expected (and has already occurred, e.g., in the
understanding of the metabolism and self-reproduction of bi-



ological cells). The kind of explanation—in terms of function
and adaptation—that I claimed above to be necessary requires
uncovering mechanisms that explain how function arises and
changes in complex systems like the brain and how informa-
tion is processed. This is something that an extended compu-
tation theory—one that is relevant to complex systems—can
offer; some steps in this direction will be described below.
Mechanisms explaining functionality are precisely what

Marr was getting at in his “representation and algorithm”
level of description of complex information processing (Marr,
1982). This is the level at which equivalence classes of pro-
cesses can be described, so that we can understand, for exam-
ple, how two processes with quite different dynamics can use
the same higher-level mechanism (“algorithm”) to accom-
plish a task and how higher-level structures (“internal rep-
resentations”) give rise to functionality by carrying informa-
tion.
In other words, computational theories in cognitive science

are theories of structure, making claims about the information
processing and functional structure of mental states (e.g., se-
mantic networks, neural networks, schemata, Bayesean be-
lief networks, fuzzy logic, theorem provers). Most of these
theories assume that information processing consists of the
manipulation of explicit, static symbols rather than the au-
tonomous interaction of emergent, active ones (Hofstadter,
1985). Such theories typically cannot easily explain what
driving forces and constraints there are on how the mental
states in question can change, what trajectories they can take,
their coupling with the body and the environment, and how
high-level symbols can emerge from a lower-level substrate.
In short, dynamical approaches contribute a much needed

characterization of continual change in cognitive systems and
a much needed framework for describing complex couplings
among brain, body, and environment. Computational ap-
proaches contribute notions of mechanism and equivalence
classes of mechanisms that shed light on functional and adap-
tive behavior in complex systems. What we need is a rap-
prochement between computation and dynamics (between
theories of structure and theories of change) that can provide
both. Others have made similar points (e.g., Clark, 1997),
but without concrete examples. I will argue below that com-
plex systems research is now leading in this direction and can
provide concrete examples that will help build our intuitions
about how to achieve such a rapprochement.

A Complex Systems Perspective
Attempts at rapprochements between computation and dy-
namics are coming from many sectors, in particular from
research on “complexity,” in which dynamics, computation,
and adaptation are beginning to be viewed in a more unified
framework. The goal of complex systems research is to ex-
plain, across disciplines, how complex and adaptive behavior
can arise from systems composed of large numbers of rel-
atively simple components with no central control and with
complicated but limited interactions. Dynamics and com-

putation have figured centrally in complex systems research,
and a major effort in that field is to understand how sophis-
ticated, functional information processing can arise from de-
centralized, dynamical substrates, and how that information
processing can improve via processes of learning and evo-
lution. This has resulted in considerable work on extending
dynamical systems theory, computation theory, and evolution
and learning theory to be relevant for such investigations. As
noted by Crutchfield (1994), “The interplay between compu-
tation, dynamics, and induction emphasizes a trinity of con-
ceptual tools required for studying the emergence of com-
plexity.”
This interplay is exemplified by the work of Hofstadter and

his colleagues on “active symbols” and mental fluidity (Hof-
stadter, 1995); Crutchfield and his colleagues' work on the
“computational mechanics of nonlinear processes” (Crutch-
field, 1994; Crutchfield & Hanson, 1993); Moore and his col-
leagues' work on understanding what dynamical systems can
compute and extending computation theory to continuous-
valued computation and two-dimensional languages (Moore,
1990, 1996; Lindgren, Moore, & Nordahl, 1997); Fontana
and Buss's work on self-organization and the development of
hierarchies in an “algorithmic chemistry” (Fontana & Buss,
1996); and Crutchfield, Mitchell, Das, and others' work on
the evolution of emergent computation in cellular automata
(Crutchfield & Mitchell, 1995; Das, Mitchell, & Crutchfield,
1994; Mitchell, Crutchfield, & Das, 1996). These are only a
few examples. Here I will describe this last project as an ide-
alized example of how computation and representation can
emerge from a complex dynamical substrate.
Cellular automata (CAs) are spatially extended, discrete

dynamical systems that capture some of the attributes of com-
plex systems described above A CA consists of a large num-
ber of simple components (“cells”), each with limited com-
munication to other components and each following a simple
transition rule. Like complex systems in nature, the micro-
scopic simple components and rules can give rise to highly
complicated and unpredictable macroscopic behavior. (For a
recent review on CAs as viewed as dynamical systems and as
computers, see Mitchell, in press.)
Our project focused on one-dimensional, binary-state CAs

with 7-bit neighborhoods. Such a CA consists of a one-
dimensional lattice of cells, each of which can be in state
0 or 1 at a given time step. Each cell communicates with
three neighbors on either side. At each time step, each cell
decides, based on its own state and those of its six neighbors,
whether to remain in its current state or to change state. Each
cell obeys the same transition rule which can be expressed
as a look-up table giving the action to take for each possible
configuration of 7 cells. The look-up table has en-
tries. At each time step, all the cells update in parallel, with
the edges wrapping around.
My colleagues and I carried out a study of how an evolu-

tionary process (modeled by a genetic algorithm) could de-
sign this type of cellular automaton to perform sophisticated
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Figure 1: (a) Space-time diagram of , one of the best-
performing CAs discovered by the GA in our experiments.
The 149-cell one-dimensional lattice is arrayed along the hor-
izontal, with time increasing down the page. Cells in state 0
are colored white; cells in state 1 are colored black. (The
“greyish” area is a checkerboard pattern of alternating 0s and
1s.) In this diagram, starts with an initial configuration
with 51% 1s, and by 150 time steps reaches the correct classi-
fication of all 1s. (b) The same diagram with the three regular
domains filtered out, revealing the particles. (Adapted from
Mitchell, Crutchfield, & Das, 1996.)

computations (Crutchfield & Mitchell, 1995; Das, Mitchell,
& Crutchfield, 1994; Mitchell, Crutchfield, & Das, 1996).
Though this project was not meant to be a cognitive model,
the results have turned out to have some relevance, I believe,
for the computation/dynamics debate in cognitive science.
In particular, we defined a “density-classification” task for

cellular automata that requires the cells to perform collective
computation. The task is to decide whether the initial config-
uration (IC) of states in the lattice contains a majority of 1s or
of 0s. If it contains a majority of 1s (0s), the task is to iterate
to a fixed-point of all 1s (0s). This task is trivial for a system
with central control and random-access memory: all the sys-
tem has to do is count up the number of 1s in the lattice and
divide by the lattice size. But CAs have no central control or
globally accessible memory—each cell can only communi-
cate locally with its neighbors. How can a collection of cells
limited to local communication cooperate on a global scale to
determine a property of the entire lattice (the initial majority
state)2?
We used a genetic algorithm (GA) to evolve cellular au-

tomaton transition rules to perform the density-classification
task (see Mitchell, Crutchfield, & Das, 1996 for details of the
algorithm and the experiments we performed). Figure 1(a)
gives a diagram illustrating the space-time behavior of ,
one of the best-performingCAs evolved by the GA. The 149-
cell one-dimensional lattice is arrayed along the horizontal,

2As was described in Mitchell, Crutchfield, & Das (1996), the
simple “local-majority vote” CA cannot perform the task because
it can process information only locally and cannot transmit infor-
mation about local segments of the initial configuration to different
parts of the lattice.

with time increasing down the page. Cells in state 0 are col-
ored white; cells in state 1 are colored black. Here starts
with an initial configuration with 51% 1s, and by 150 time
steps reaches the correct classification of all 1s.
We can estimate how well a given CA performs the

density-classification task by testing it on a sample of ini-
tial configurations to see how many times it reaches a cor-
rect classification. reached a correct classification on
approximately 80% of the IC samples drawn from a uniform
random distribution—these the hardest cases since they al-
most always have density of 1s very close to 0.5. ( 's
performance was almost as high as that of the best-known
human-designed CA for this task; Das, Mitchell, & Crutch-
field, 1994.) However, it is not immediately clear from

's space-time behavior how it performs the density-
classification task and why it obtains 80% performance.
A purely dynamical approach to understanding 's be-

havior, omitting all kinds of “information processing and rep-
resentation talk”, would consider the system's time-varying
global state to be the 149-dimensional vector encoding the
current configuration and a system trajectory to be the se-
quence of configurations the CA goes through starting with a
particular initial configuration. In principle, attractors could
be identified and stability properties of those attractors could
be determined (such an analysis of a similar CA, proving that
the only attractors are the all-0s and all-1s fixed points, was
given by Gonzaga de Sá and Maes, 1992). However, such
an analysis would miss two essential properties of this CA:
first, that with respect to density-classification performance,
the important action goes on during the transient period lead-
ing up to a fixed point, and second, that the transient config-
urations have internal structure that cannot be identified by
defining the system's global states to be 149-bit vectors. Pro-
ponents of dynamical approaches would no doubt argue that
reduced-dimensional descriptions of the global state could
be found, and they are right; I will argue below that use-
ful dimension-reduction in this case requires “information-
processing and representation talk”.
Our analysis of 's behavior builds on the “computa-

tional mechanics of cellular automata” framework of Crutch-
field and Hanson (1993), which decomposes CA space-time
behavior roughly into “pattern bases” and “particles”. Very
briefly, these pattern bases—called “regular domains”—are
regions of space-time consisting of strings in the same regular
language; in other words, they are regions that are computa-
tionally homogeneous and simple to describe. For example,
in Figure 1(a), there are three regular domains (black, white
and checkerboard), corresponding to the regular languages
, , and . Particles are the localized boundaries be-

tween those domains. They are revealed in Figure 1(b), in
which the three regular domains have been filtered out. For
convenience, some of the particles have been labeled with
Greek letters.
In computational mechanics, particles are identified as in-

formation carriers, and collisions between particles are iden-



tified as the loci of information processing. In our case, par-
ticles are an information-based method for reducing dimen-
sionality in explaining 's behavior: since the three reg-
ular domains are simple (where “simple” means “computa-
tionally simple” in the sense of simple regular languages), we
can deduce that none of those regions alone carries the infor-
mation needed to globally determine the relative density of 0s
and 1s. It is the particles that are doing the important work.
Focusing on the level of particles allows us to understand

how classifies initial densities of s. Roughly, over short
times, maps local high-density regions to all 1s and lo-
cal low-density regions to all 0s. When an all-1s region on
the left meets an all-0s region on the right, a vertical bound-
ary is created and propagated with zero velocity. When an
all-0s region on the left meets an all-1s region on the left,
a checkerboard region (alternating s and s) is created and
propagated with velocity 1 in opposite directions. When one
side of the propagating checkerboard region collides with the
black-white boundary, the inner region (e.g., each of the white
regions in Figure 1(a)) is cut off and the outer region is al-
lowed to propagate. For example, in Figure 1(a), the large
inner white region is smaller than the large outer black re-
gion, and thus the propagating checkerboard pattern reaches
the black-white boundary on the white side before it reaches
it on the black side; the former is cut off, and the latter is al-
lowed to propagate. In this way many cells collaborate, using
local interactions and global geometry, to determine the rela-
tive sizes of low- and high-density regions much larger than
the neighborhood size. As can be seen in Figure 1(a), this
type of collaboration occurs at several spatial scales.
This imprecise description can be made precise and rigor-

ous by phrasing it in terms of particles, particle velocities,
and interactions. The microscopic level of behavior— 's
transition rule on 7-bit neighborhoods and the detailed space-
time configurations that result from that rule—gives rise to an
emergent macroscopic level that can be thought of as a “par-
ticle physics” for this tiny world. In Hordijk, Crutchfield, and
Mitchell (1996)we showed how particle-level descriptions on
their own can be used to accurately predict the computation-
ally relevant behavior of their corresponding CAs, such as
classification performance, mean time to classification, and
so on.
This work is relevant for the computation/dynamics de-

bate in cognitive science in that it gives an idealized ex-
ample of how a non-traditional form of representations and
information-processing can emerge from a dynamical sub-
strate. Particles are idealized examples of emergent repre-
sentations, and particle interactions are idealized examples of
emergent information processing. Particles are emergent be-
cause they are nowhere explicitly encoded in the microscopic
CA rules, and yet have been shown to be of fundamental rele-
vance to a CA's ultimate performance (and thus to its survival
in the GA evolution). Particles are representations in that
they carry compressed information about the “environment”
(here the IC) encoded in their velocities and relative phases.

Particle interactions are the loci at which this information is
combined and used in decision-making. For example, the
and particles encode different types of ambiguity in the IC
(large black and white regions bordering one another). de-
cays into and . carries the information that it borders
a white region and carries the information that it borders a
black region. These two particles, by having the same veloc-
ity, also carry the mutual information of having come from
the same ambiguous region in the IC. When (as in the figure)
collides with before does, the information contained

in and is combined to deduce that the large initial white
region was smaller than the large initial black region it bor-
dered. This new information is encoded in a newly created
particle , whose job is to catch up with and annihilate the
(and itself).
Thus, in this very simple system, particles accomplish, in

an idealized way, two of the main things representation needs
to accomplish: compressing information about the environ-
ment and communicating that information to other parts of
the system.
The “particle-logic” story above sounds very computa-

tional, but it is certainly of a non-traditional kind. For one
thing, representations in the form of particles are not static,
passive, or symbolic—they encode information dynamically,
actively, and numerically in terms of their velocities and
other dynamical attributes. Furthermore, they are not explic-
itly defined—they emerge from a lower-level dynamical sub-
strate. And finally, there is no central executive processing the
information encoded in particles; their collective dynamics is
what effects information processing in the system.
In short, here is a system in which both dynamical and

computational notions are necessary for a full account in
functional and mechanistic terms. Without the particle level
description, we would not understand what makes one CA
have higher performance than another, what mistakes are
made by a given CA, or how two CAs with quite different
microscopic dynamics can implement the same “strategy”
for performing the task. Particles provide us with a non-
traditional version of Marr's representation and algorithm
level of description; they allow us to discover equivalence
classes of mechanisms among CAs with quite different dy-
namics. They also allow us to understand how innovation in
the evolution of these systems takes place (Das, Mitchell, &
Crutchfield, 1994).
The purpose of giving this example is to show that for

some complex adaptive systems, even idealized ones like
evolving cellular automata, a full understanding will require
rapprochements between “computation talk” and “dynamics
talk”. My claim is that the same will be true of cognitive
phenomena. The CA example and the notion of particles and
particle interactions are not meant to be a model of a cog-
nitive system; rather, they act as an “intuition pump” (Den-
nett, 1991) to help us make sense of difficult ideas in a con-
crete rather than abstract way. I believe that many concrete,
and progressively realistic, examples of such systems will be



necessary for us to make sense of the terms of the computa-
tion/dynamics debate and to effect its eventual resolution.
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