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CHAPTER 7 COEVOLUTIONARY LEARNING WITH
SPATIALLY DISTRIBUTED

POPULATIONS

Melanie Mitchell

Many approaches to machine learning require a system to learn a model from a set of
training examples that the model must classify, or training problems that the model must
solve. How are these training cases to be chosen? Typically, due to the costs of acqui-
sition or computation, only a relatively small sample from the universe of possible
problems is available to the learner. How should that sample be chosen?

Clearly, if the problems are too easy or to difficult, the system will not make progress
in learning. Ideally, the problems should be chosen to be optimally challenging for a
system’s current state of learning and to specifically target weaknesses in the system at
a given time. In life, good teachers craft such problems for their students. The challenge
in machine learning is to craft such problems automatically.

Approaches to this issue in the machine learning community include active learning
(Cohen et al., 1996), boosting (Freund and Schapire, 1997), and coevolutionary learning.
This last approach has been surprisingly successful on a number of tasks, but lacks the
theoretical underpinning of the first two. It is not well understood why coevolution
works, when it will succeed, and how best to apply it. The purpose of this chapter is to
briefly review some of the results to date in coevolutionary learning, and to report on
recent research that explores the role of spatially extended populations in the success of
coevolution.

Coevolutionary learning, which builds on genetic algorithms (GAs) and other evolu-
tionary computation techniques, has been explored by many people. The first explicit
application of computational “host-parasite coevolution” was performed by Hillis (1990).
Hillis’s inspiration came from host-parasite coevolution in nature. One striking natural
example is the phenomenon of “egg mimicry” in plants. Insects such as butterflies
sometimes lay their eggs on plant leaves, providing a ready food source for newly
hatched larvae. The passion flower plant has evolved a protection against such parasit-
ism by producing toxic chemicals in its leaves. However, the genus of butterfly called
Heliconius has evolved a counter-adaptation: its larvae are able to tolerate these chemi-
cals. In response, the passion flower has evolved a remarkable counter-counter-adapta-
tion: yellow spots on its leaves that resemble Heliconius eggs. In order to avoid too
much food competition among larvae, butterflies will not lay eggs on leaves already
crowded with eggs, and the spots on passion flower leaves fool at least some butterflies
into thinking that there are already too many eggs on the leaves. Moreover, it turns out
that the yellow spots are actually glands that produce nectar, thereby attracting ants
and wasps, which also prey on the eggs and larvae (Turner, 1981).

I.  INTRODUCTION
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II.  PROBLEM DOMAINS
SUITED FOR

COEVOLUTIONARY
LEARNING

Such “evolutionary arms races” among coevolving organisms abound in nature, and
were recognized by Darwin as a major force driving evolutionary change.

Hillis used these ideas in his computer evolution of optimal parallel sorting networks.
The evolving networks were the hosts, whose fitnesses were determined by their per-
formance on training problems (lists of items to be sorted). The lists themselves ⎯ the
parasites ⎯ evolved to be challenging for the evolving hosts. Hillis found significant
improvement in the resulting sorting networks as compared with those evolved via a
more standard genetic algorithm.

In general, coevolutionary learning systems consist of two populations of individu-
als which evolve concurrently, with the fitness of individuals in each population de-
pending on their interactions with individuals in the other population. The interactions
can be competitive, as in Hillis’ host-parasite coevolution or the coevolution of game-
playing strategies (e.g., Barricelli, 1962a, b; Reed et al., 1967; Rosin and Belew, 1997;
Fogel, 2002), or cooperative, as in the cooperative coevolution of neural network
weights (e.g., Potter and De Jong, 2000). This chapter will discuss competitive coevolu-
tion only.

For competitive coevolutionary learning to be applied to a given problem domain, both
the candidate solutions and the environment used to train them (e.g., training examples)
have to be evolvable. Game playing is one obvious domain in which this is the case: The
host and parasite populations both consist of game-playing strategies. The fitness of
an evolving strategy is its success in playing against a sample of other evolving strat-
egies. Axelrod’s (1987) and Lindgren’s (1992) work on coevolving strategies for the
prisoner’s dilemma game followed this model, though neither approach used a separate
host and parasite population. Rosin and Belew used host-parasite coevolution to evolve
strategies for the games of nim and three-dimensional tic-tac-toe (1997). Pollack et al.
(1996) used a simple coevolutionary hill-climbing strategy to evolve very successful
strategies for backgammon.

Another potential problem domain is the coevolution of special-purpose algorithms
and test cases. Hillis’work on coevolving sorting networks is an example of this. His
coevolutionary learning approach was able to discover a correct 16-input sorting net-
work with 61 comparisons, which is close to the presumed minimal number of 60 com-
parisons in a network designed by Green in 1969.

Coevolution has been applied to the design of desired behaviors for robots and
autonomous vehicles, both simulated and physical (e.g., Sims, 1994; Ronge and Nordahl,
1996; Nolfi and Floreano, 1998; and Haith et al., 1999). It has also been applied to drug
design: Rosin (1997) reported on a preliminary study in which he and colleagues co-
evolved simulated HIV protease inhibitors (hosts) with simulated protease enzymes
(parasites). The idea was to evolve inhibitors that were effective against all possible
protease mutants.

A final example of a potential application is in computer security, in which, say, intru-
sion detection or virus detection algorithms could be co-evolved with possible threats.
While there has been substantial work on “computer immune systems” (e.g., Hofmeyer
and Forrest, 2000), I am not aware of any work on this topic that uses coevolutionary
learning.

The examples described above are only a sample of the previous and potential
application areas for coevolutionary methods.

CH. 7 COEVOLUTIONARY LEARNING  WITH SPATIALY DISTRIBUTED POPULATIONS
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In spite of the volume of work on coevolutionary learning in recent years, there is still
little understanding of why and under what conditions this approach will be useful.
Why should we expect coevolutionary learning to have any advantages over more
traditional evolutionary computation approaches? Several reasons have been suggested
in the literature, similar to those suggested for biological host-parasite systems (Dawkins
and Krebs, 1979).

One hypothesis is that coevolution will be better able to preserve diversity in its
populations than non-coevolutionary methods, since the environment for each popula-
tion (i.e., the other population) is continually changing. It has also been hypothesized
that since parasites continually evolve to exploit the hosts’ weaknesses, coevolution-
ary arms races between the host and parasite populations will produce better perform-
ing, more general hosts. To be optimally challenging for the hosts, the hosts will learn
successfully with many fewer training examples than needed in traditional machine
learning approaches.

These hypotheses are compelling and plausible, but have not yet been rigorously
and generally tested in experiments on coevolutionary learning.  Sections VI and VII will
discuss some methods for testing these hypotheses and the results of these tests on
two particular sets of coevolution experiments.

The success of an evolutionary algorithm is typically measured in one or more of three
ways: the quality of the solution found, the probability of finding a high-quality solu-
tion (i.e., fraction of successful independent runs), and the computational effort re-
quired to find a high-quality solution.

Using these criteria, coevolution has met with mixed success on a number of prob-
lems. Hillis (1990) showed that coevolution found a better (smaller) correct sorting
network than did evolution alone, but this seemed to require very large populations, as
well as an initial host population that already possessed some features of optimal sort-
ing networks. Rosin and Belew (1997) demonstrated that coevolution was able to pro-
duce optimal strategies for playing nim and three-dimensional tic-tac-toe, whereas evo-
lution alone was not able to do so. However, this success was achieved only when
additional heuristics were used in conjunction with coevolution, including competitive
fitness sharing, shared sampling, and a “hall of fame” which saved the most successful
parasite from each previous generation. Nolfi and Floreano (1998) were able to foster an
arms race in the coevolution of simple robot controllers, but also needed to use the hall-
of-fame heuristic for success. Paredis (1997) coevolved cellular automaton (CA) rules
and initial configurations in order to discover a rule that performed well on the density
classification problem (Das et al., 1994), but found coevolution to be unsuccessful at
discovering a rule with good classification performance. Juillé and Pollack (1998) com-
bined coevolution with resource sharing ⎯ a diversity preserving heuristic for GAs ⎯
on the CA density classification problem. Their algorithm was successful in finding a
high-performance CA for this task. (They did not report the probability of finding high-
performance CAs or the amount of computational effort required to do so.) However,
Werfel et al. (2000) demonstrated that the success of Juillé and Pollack’s algorithm was
due largely to resource sharing rather than coevolution. De Jong and Pollack (2002)
used notions of multi-objective optimization and “Pareto-coevolution” that improve the
results of coevolution in some cases, but require large numbers of examples and interac-
tions between all hosts and all parasites. There are several other examples in the litera-
ture.

III.  HYPOTHESIZED
ADVANTAGES FOR

COEVOLUTION

IV.  POSSIBLE
IMPEDIMENTS FOR

COEVOLUTION

MELANIE MITCHELL



140

The general conclusion from these examples is that coevolution often needs special
heuristics or starting conditions in order to overcome several impediments associated
with coevolution alone. These impediments have been pointed out by various research-
ers (Cartlidge and Bullock, 2004; De Jong and Pollack, 2004; Nolfi and Floreano, 1998;
Paredis, 1997; Shapiro, 1998), sometimes using different terminology. The following is a
partial list:

Loss of gradients:  Coevolution leads to a state in which the parasite popu-
lation becomes too easy (called “disengagement”) or too difficult (called
“over-virulence”) for the host population.  The result is that every individual
in the host population either defeats all parasites it samples (though not all
possible parasites) or is defeated by all parasites it samples. In either case, all
hosts are assigned the same fitness, as are all parasites, and there is no
longer any gradient (i.e., difference in fitnesses) that can be used for selec-
tion.

Over-specialization:  The population of hosts gets stuck in a local optimum
in which hosts are able to defeat a subset of the parasites, but are not general
solutions to the problem at hand.

Red queen dynamics (or cycling or mediocre stable states): The popula-
tions of hosts and parasites continue to change in response to one another
but these changes do not force hosts to become more general solutions.

    Can these impediments be overcome without adding computationally expensive, ad
hoc heuristics to coevolution? A number of groups have investigated the hypothesis
that spatial distribution of the host and parasite populations, with local interactions
governing both fitness evaluations and selection, is a nature-inspired method for allevi-
ating these problems in coevolutionary learning. As a short-hand, I will use the term
“spatial coevolution” to mean coevolution with spatially distributed populations, and
“non-spatial coevolution” to mean more traditional approaches to coevolution in which
host and parasite populations either exhaustively test one another or use random sam-
pling to effect interactions.

Several experiments have given evidence that spatial coevolution can alleviate the
impediments described above (e.g., Hillis, 1990; Mitchell et al., 2006; Pagie and Hogeweg,
1997; Pagie and Mitchell, 2002; Ronge and Nordahl, 1996; Williams and Mitchell, 2005;
Wiegand and Sarma, 2004). However, there is still no good understanding why spatial
distribution significantly improves the performance of coevolution on numerous prob-
lems.

The next sections review the work of my own group on spatial coevolution and our
investigations into its substantial success relative to other evolutionary methods. Our
work attempts to isolate the factors that give spatially extended coevolution an advan-
tage. Is spatial distribution or coevolution alone the main factor contributing to suc-
cess, or must there be a combination of the two? Is resource sharing alone able to
achieve the same success as coevolution? We try to answer these questions by com-
paring the results of spatial coevolution with that of five other evolutionary methods in
which we eliminate coevolution or spatial extent, or both. Parts of this work have been
reported in shorter form by Pagie and Mitchell, (2002), Williams and Mitchell (2005), and
Mitchell et al. (2006).

CH. 7 COEVOLUTIONARY LEARNING  WITH SPATIALY DISTRIBUTED POPULATIONS
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V.  PROBLEM DOMAINS
USED IN OUR STUDY

Building on previous work, we have used two problem domains for studying coevolu-
tionary learning: function induction via genetic programming and evolving cellular au-
tomata to perform computations.

Function Induction

The function induction task we use is the one studied by Pagie and Hogeweg (1997).
The target function is:

The population of candidate solutions (hosts) consists of genetic-programming-style
trees created from the function set {+, −, *, %} and terminal set {x, y, ℜ} where ℜ returns
a random constant in [-1.0, 1.0] every time a node containing it is generated. The +, −, and
* operators are the standard arithmetic functions for addition, subtraction, and multipli-
cation, respectively; each takes two arguments. The protected-division function % takes
two arguments, A and B, and returns 1 if B = 0 and A/B otherwise. The terminals x and y
evaluate to the respective values of the coordinates on which the tree is being evalu-
ated.

An example of a candidate solution is the tree shown in Fig. 1. Suppose this tree is
given x = 0.8, y = 0.4 as input. When the tree is evaluated, the ℜ operator will generate a
random constant, which will be passed on to offspring of this tree. Suppose ℜ generates
0.1. Then the tree will return (+  (/  0.4  0.8)  (*  0.4  0.1) ) = 0.54. Given these same values
for x and y, the target function would return 1/(1 + 0.8−4) + 1/(1+0.4−4) = 0.316. The error
of a tree on a problem p = (x,y) is the absolute value of the difference between the target
function’s value and the host’s value on p:  | f(x,y) − h(x,y) |. In this example, the error is
| 0.316 − 0.54 | = 0.224.

Training problems (parasites) are (x,y) values evenly distributed over x ∈[−5.0, 5.0], y
∈[−5.0, 5.0] at regular intervals of 0.4. The total number of examples (x,y) in this domain
is 676. The goal is to discover a tree h representing a good approximation of the target
function such that the error over all 676 training problems (x,y) is close to zero. That is,
a successful tree will return values h(x,y) that are close to the target f(x,y).

A host h is defined to be correct on a parasite p if its error on p is less than or equal to
0.01. The fitness of a host h over a sample of n parasites is the inverse of its average error
over those n parasites. The lower the average error, the higher the fitness. For coevolu-
tionary methods, the fitness of a parasite p with respect to a single host h is equal to the
error of h on p.

A successful run of evolution on this problem is defined to be a run in which at least
one host is discovered that is correct over the complete set of 676 problems, and at least
one such host remains in the population for 50 successive generations.  Unsuccessful
runs terminate after some maximum number of generations.

Evolving Cellular Automata

Several groups have explored genetic algorithms as a means to design cellular automata
with collective computational abilities (e.g., Das et al., 1994, 1995).  Most of these studies
use one-dimensional, binary-state cellular automata. Such a CA is a one-dimensional
lattice of N two-state machines (“cells”), each of which changes its state as a function
only of the current states in a local neighborhood.  As is illustrated in Fig. 2, the lattice
starts out with an initial configuration (IC) of cell states (0s and 1s) and this configura-
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Figure 1. An example of a function tree.

Figure 2. Illustration of a one-dimensional,
binary-state, nearest-neighbor (r = 1)
cellular automaton with N = 11.  Both the
lattice and the rule table φ for updating the
lattice are illustrated.  The lattice configura-
tion is shown at two successive time steps.

CH. 7 COEVOLUTIONARY LEARNING  WITH SPATIALY DISTRIBUTED POPULATIONS
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tion changes in discrete time steps. At each time step, all cells are updated simulta-
neously according to the CA rule φ.  (Here we use the term “state” to refer to the value
of a single cell. The term “configuration” will refer to the collection of local states over
the entire lattice.)

A CA’s rule φ can be expressed as a lookup table (or “rule table”) that lists, for each
local neighborhood, the state that is taken on by the neighborhood’s central cell at the
next time step.  For a binary-state CA, these update states are referred to as the “output
bits” of the rule table.  In a one-dimensional CA, a neighborhood consists of a cell and
its r (“radius”) neighbors on either side.  (In Fig. 2,  r = 1.) Here we describe CAs with
periodic boundary conditions—the lattice is viewed as a circle.

Das et al. (1994) used a GA to evolve rule tables for one-dimensional, binary-state, r =
3 CA (with periodic boundary conditions) that would perform the “density classifica-
tion” task. The goal was to find a CA that decides whether or not the IC contains a
majority of 1s (i.e., has high density). If so, then within 2N time steps (where N is the
number of cells in the lattice), the CA should go to the fixed-point configuration of all 1s
(i.e., all cells in state 1 for all subsequent iterations); otherwise, within 2N time steps it
should produce the fixed-point configuration of all 0s.  A CA is correct on an IC if the CA
starting with that IC produces the correct final fixed point configuration within 2N time
steps.

Designing an algorithm to perform this task is trivial if one is using a system with a
central controller or central storage of some kind, such as a standard computer with a
counter register or a neural network in which all input units are connected to a central
hidden unit. However, it is nontrivial to design a small-radius (r << N) CA to perform this
task, since a small-radius CA relies only on local interactions. Since the 1s can be
distributed throughout the CA lattice, the CA must transfer information over large dis-
tances (≈ N), and process information collected from different parts of the lattice. To do
this requires the global coordination of cells that are separated by large distances and
that cannot communicate directly. This coordination must, of course, happen in the
absence of any central processor or central memory directing the coordination. Land
and Belew (1995) showed that no two-state CA exists that can correctly classify all
possible ICs of arbitrary lengths, but did not give an upper bound on possible classifi-
cation accuracy.

Crutchfield et al. (2003) describe three different CA “strategies” discovered by the GA
in the course of evolution, illustrated in Fig. 3. Each plot in this figure shows a 149-cell
one-dimensional lattice on the horizontal axis, with black representing cells with state
“1” and white representing cells with state “0”. The vertical axis shows this lattice
iterating according to the CA rule, with time increasing down the page.

The three types of CA strategies are:

Default:  The CA always iterates to a fixed point of all-1s or always iterates
to a fixed point of all-0s. A default strategy correctly classifies half of all
initial configurations.

Block-expanding: Like Default, unless the IC contains a sufficiently large
block of adjacent cells of the color opposite to the default color—if so, the
CA expands this block until it fills up the lattice.  Block expanding strategies
correctly classify between (approximately) 60–70% of all initial configura-
tions on a 149-cell lattice, depending on the details of the particular strategy.
The performance of such strategies decreases steeply with increasing lat-
tice size.

MELANIE MITCHELL
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Figure 3. Space-time diagrams illustrating
the behavior of  two “default” strategies
(top a and b), two “block expanding”
strategies (middle a and b), and two
“particle” strategies (bottom, a and b), in
each case starting from random initial
configurations.  Each (a) pair shows the
behavior for a single CA rule, but starting
with different ICs. Likewise for each (b)
pair, but for a different CA rule. The ρ0
value for each plot gives the density
(fraction of 1s) in the IC. In the bottom
“particle” strategy (a), the non-black
shaded area consists of a checkerboard
pattern of alternating black and white
states, and in (b) the non-black shaded
area consists of alternating black and
white vertical stripes. (Adapted from
Crutchfield et al., 2003.)

CH. 7 COEVOLUTIONARY LEARNING  WITH SPATIALY DISTRIBUTED POPULATIONS
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Particle:  The CA uses sophisticated signals and interactions between sig-
nals to solve the problem. The particle strategies are the only ones that have
high classification accuracy on a wide range of initial configurations.  Par-
ticle strategies correctly classify from approximately 72% to 86% of all initial
configurations on a 149-cell lattice. The performance of particle strategies
decreases with increasing lattice size, but less steeply than the block ex-
panding strategies.

CA rules also evolved that are not examples of any of these three strategies; these CAs
exhibited random-like behavior and had very low performance.  We will call these “ran-
dom” strategies.

A successful run of evolution on this problem is defined here to be one in which at
least one particle strategy is present in the final generation.

Using a traditional GA to evolve CA rules, Mitchell et al. (1996) reported that most
runs of the GA produced both default and block-expanding strategies, but very few runs
produced particle strategies.  However, Pagie and Mitchell (2002) performed experi-
ments with coevolution, using spatially distributed populations, in which the hosts
were CA rules and the parasites were initial configurations.  In their experiments, the
fitness of a host h on a sample of n parasites is the fraction of correct classifications of
h over these n parasites. The fitness of a parasite p with respect to a single host h is
defined as 0 if h classifies p correctly, and | density(p) − 1/2 | otherwise.  This is a domain-
specific way to control the virulence of parasites, since the most difficult initial configu-
rations to classify will have density ≈ 1/2.

Pagie and Mitchell reported that spatial coevolution was significantly more success-
ful at evolving particle strategies than traditional evolution alone, or than evolution
alone with a spatially distributed population.  Mitchell et al. (2006) extended Pagie and
Mitchell’s experiments and analysis; their methods and results are described below.

In order to assess and understand the success of spatial coevolution compared with
other evolutionary approaches, we implemented six different evolutionary methods and
ran experiments using each of them.  Each experiment consisted of a number of indepen-
dent runs (starting with different random number seeds) of a particular evolutionary
method with a given set of parameter values, described below.

The success rate of an experiment is defined as the percent of successful runs in the
experiment.  As was described above, a successful run on the function-induction task is
one in which at least one host h has been found that is correct on each of the 676 training
examples in the complete set, and has been in the population for at least 50 generations.
A successful run on the cellular-automaton task is one in which at least one particle
strategy is in the host population in the final generation.

Six evolutionary methods were tested.

Spatial Coevolution: The host and parasite populations are distributed on a
two-dimensional grid of M × M sites, with wrap-around at the boundaries to
form a torus. Each site contains a single host h and a single parasite p. At
each generation, the following steps take place for all hosts and for all para-
sites, constituting a single generation:

1. Fitness calculation: Calculate the fitness of each host h in the population
using nine parasites: the parasite at the same site as h and the parasites at

VI.  EXPERIMENTS
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the eight neighboring sites. Calculate the fitness of each parasite p in the
population with respect only to the host in the same site as p. The fitnesses
of all individuals in a population are computed synchronously.

2. Selection:   For each host h, rank h along with the other eight hosts in its
neighborhood according to fitness, with the highest fitness host having
rank 1 and the lowest having rank 9. Each of these 9 hosts has probability of
being selected equal to 0.5rank (except for the bottom-ranking host, which has
probability 0.58, so that the nine probabilities will sum to 1). The selected
host h′ replaces the host h in the center site of this neighborhood (if h itself
is selected, no change is made). The same selection procedure is applied to
each parasite p, which competes similarly with the eight other parasites in its
neighborhood. The replacement of hosts and parasites at each site are done
synchronously.

3. Crossover of hosts:  Each site in the grid now contains a selected host h ′
 and a selected parasite p ′. At each site, decide whether or not to perform a
crossover according to the crossover probability. In our experiments, only
hosts are subject to crossover. To cross over a host h ′, randomly choose a
second host h ′′ at a different site in the same neighborhood, and cross over
h ′ and h ′′ at a randomly selected point (in the function-induction task,
exchange randomly chosen subtrees) to form two offspring. Discard one of
the offspring at random; the other one replaces h ′ in the center site.

4. Mutation of hosts: Apply mutation to all hosts, according to the host
mutation probability. In the function-induction task, choose a node from the
tree at random and replace the function it contains by another randomly
chosen function that takes the same number of arguments (and always re-
place a terminal by another terminal). In the cellular-automaton task, choose
one or more bits and flip their values.

5. Mutation of parasites: Apply mutation to all parasites, according to the
parasite mutation probability. For the function-induction task, choose either
the x or y component and add or subtract one step of 0.4. If this mutation
would result in moving the parasite outside of the [−5.0, 5.0] boundaries, the
mutation is not applied and the parasite remains unchanged. For the cellular-
automaton task, choose one or more bits in the parasite (initial configura-
tion) and flip their values. Again, all crossovers, mutations, and replace-
ments are done synchronously throughout the grid.

For the function-induction task, this process repeats until a successful host is discov-
ered or for a maximum of 500 generations, whichever comes first. For the cellular-au-
tomaton task, this process repeats for 5000 generations.

Following Pagie and Hogeweg (1997), Pagie and Mitchell (2002), and Williams and
Mitchell (2005), the parameter values we used are as follows. For the function-induction
task, the grid size is 50 × 50. The initial population of hosts is created by generating 2500
random trees of maximum depth 3. The initial population of parasites is generated by
creating 2500 random pairs (x, y) with values chosen from the domain [−5.0, 5.0] at steps
of 0.4.  At each generation, 40% of the host population is selected (with replacement) to
undergo crossover, 20% of the host population is chosen (with replacement) to undergo
a single mutation, and 10% of the parasite population is chosen (with replacement) to
undergo a single mutation.

CH. 7 COEVOLUTIONARY LEARNING  WITH SPATIALY DISTRIBUTED POPULATIONS
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For the cellular-automaton task, the grid size is 20 × 20. The initial population of hosts
is created by generating 400 random bit strings. The initial population of parasites is
created by generating 400 bit strings of all zeros. The crossover probability is zero (i.e.,
no crossover is used). The host mutation probability is 0.0016 per bit and the parasite
mutation probability is 0.0034 per bit.

These details could, of course, be defined differently.  However, a major goal here is to
better understand the results of previous work, so we adopted the same parameter
values that were used in that previous work.  It is important for future work to under-
stand the sensitivity of the results to these various parameters.

Non-Spatial Coevolution: Here all parameters are as described for spatial
coevolution above, but the populations of hosts and parasites are not ar-
rayed on a grid. At each generation the fitness of each host is calculated
using nine parasites randomly chosen with uniform probability across the
parasite population. The fitness of each parasite is calculated with respect to
a host randomly chosen from the host population. In the selection step each
host is replaced via a tournament among itself and eight other hosts ran-
domly chosen from the host population. The tournament is carried out with
ranking as described above for spatial coevolution. The selection step for
each parasite is done analogously. Thus, for both fitness calculation and
selection, spatial locality plays no role. Crossover and mutation are carried
out as described above, with the crossover partner being chosen from the
eight other hosts in the same tournament.

Spatial Evolution:  This method follows the same procedure for hosts as in
spatial coevolution—the hosts and parasites are again arrayed in a grid.
The only difference is that the parasites do not evolve. Instead, at each
generation, a new randomly generated set of M × M parasites is arrayed on
the grid. For the function-induction task, these parasites are generated at
random as before. For the cellular-automaton task, these parasites are gener-
ated at random from a distribution that is uniform over density (all densities
in [0,1] are equally likely), as described by Pagie and Mitchell (2002).

Non-Spatial Evolution:  This is similar to a traditional evolutionary algo-
rithm.  For the function-induction task, in each generation the fitness of each
host is calculated using 9 parasites randomly drawn from the complete set of
676 parasites. For the cellular-automaton task, in each generation the fitness
of each host is calculated using 100 parasites randomly drawn from the
distribution that is uniform over density. For both tasks the hosts are se-
lected and mutated as in the non-spatial coevolution method described above.
There is no evolution of parasites; at each generation a new set is randomly
drawn.

Spatial Resource Sharing:  Resource sharing (also called “competitive fit-
ness sharing”) was proposed by Rosin and Belew (1997) and further devel-
oped by Juillé and Pollack (1998). Under resource sharing, a host gets more
credit for solving a parasite that few other hosts solve than for solving one
also solved by many other hosts. Resource sharing has been shown to be
necessary for success in some applications of non-spatial coevolution (Rosin
and Belew, 1997; Juillé and Pollack, 1998). In particular, Werfel et al. (2000)
showed that resource sharing was the mechanism largely responsible for the
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success reported by Juillé and Pollack (1998).  We experimented with both a
spatial and non-spatial form of resource sharing.  For the function-induction
task the spatial form is the same as spatial evolution described above, except
in this case at each generation the fitness of each host is based on all 676 (x,
y) cases.  For the cellular-automaton task, the spatial form is the same as
spatial evolution described above, except in this case at each generation the
fitness of each host is based on 100 parasites drawn at random from the
uniform distribution. For both cases, let covered (h, p) mean that h is correct
on p.  Following earlier work (Juillé and Pollack, 1998), the definition of
fitness used here is:

where

In this method the parasite population does not evolve but is redrawn at
random at each generation.

Non-spatial Resource Sharing:  This is the same as spatial resource shar-
ing, except that the hosts are selected and mutated as in the non-spatial
evolution method.

Comparing the performance of these various methods on these tasks can give us some
insight into what features of spatial coevolution give rise to its success. Table 1 gives
the percent of successful runs for each experiment on each task. For the function-
induction task, the percentages are out of 50 runs of each method. For the cellular-
automaton task, the percentages are out of either 20 or 30 runs of each method.

It can be seen that spatial coevolution is the most successful method by far for both
tasks. For the function-induction task, its success rate was 78%. Non-zero success rates
were also attained by spatial evolution, non-spatial evolution, and spatial resource
sharing, but the rates were considerably less than that of spatial evolution. For the
cellular-automaton task, spatial coevolution, with 67% successful runs, was the only
method to succeed at all.

These results show that the combination of spatial distribution and coevolution is
considerably more successful than either alone, or than resource sharing alone. Particu-
larly notable is the fact that spatial coevolution produced a majority of successful runs
even though each host is evaluated on only 9 parasites. Other methods, some using
many more parasites to evaluate hosts, achieved much lower success than spatial co-
evolution (and in some cases, no success at all).

In Section 4 above, I stated the hypotheses that the success of spatial coevolution is
due to two factors: its ability to maintain diversity in the populations for long periods of
time and to foster continuing arms races, in which parasites continually evolve to target
weaknesses in the evolving hosts.  Pagie and Mitchell (2002) and Mitchell et al. (2006)
gave evidence in the cellular automata experiments for both claims, which I describe
below.
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 Function Induction Cellular Automata 
Spatial Coev. 78% (39/50) 67% (20/30) 

Non-Spatial Coev. 0% (0/50) 0% (0/20) 
Spatial Evol. 14% (7/50) 0% (0/30) 

Non-Spatial Evol. 6% (3/50) 0% (0/20) 
Spatial Res. Sharing 12% (6/50) 0% (0/20) 

Non-Spatial Res. Sharing 0%  (0/50) 0% (0/30) 

Table 1. Percent (and fraction) of
successful runs for each experiment on
the function-induction and cellular
automaton tasks.

Evidence for preservation of diversity in the host population

Figure 4 gives evidence that diversity is maintained by spatial coevolution and no other
method in the cellular automata experiments.  Here we measure diversity at each genera-
tion in terms of the number of individuals in the population that encode each type of
evolved strategy: Default, Block-expanding, and Particle. Each figure plots those num-
bers at each generation for a typical run of one of the six evolutionary methods. Only
spatial coevolution displays all three strategies co-existing in significant numbers (i.e.,
exhibiting high diversity) for an extended period (approximately the last 1000 genera-
tions).  In the other plots, either one strategy can be seen to dominate the population
(spatial methods), or two different strategies exhibit oscillating domination (non-spatial
methods). Note that in some runs, there are some generations in which the population
contains very low-performance Random-strategy CAs that are not included in these
plots.

In short, spatial coevolution appears to preserve diversity in the host population
more effectively than the other evolutionary methods.

Evidence for arms races between hosts and parasites

As was described above, a block-expanding strategy works by expanding sufficiently
large blocks of 1s (or 0s) in the IC to produce an all-1 (all-0) state. In coevolutionary
settings, such strategies can be targeted by parasites that evolve to contain “deceptive
blocks”:  blocks of 1s in a majority-0s IC or blocks of 0s in a majority-1s IC.  In Pagie and
Mitchell (2002), we defined a deceptive block as the occurrence of a block of seven or
more adjacent 0s or 1s in the IC, but only when the probability of the occurrence of such
a block in a randomly generated string of the same density is less than 0.01.

Figure 5 plots, at every 10 generations, the frequency of parasites with deceptive
blocks in the parasite population in a typical run of spatial coevolution. (Pagie and
Mitchell’s runs, from which this plot was obtained, were the same as the spatial coevo-
lution runs described above except that the size of the spatial array was 30 × 30 instead
of 20 × 20). The sections of the plot labeled “default,” “block-expander,” and “particle”
correspond to generations at which that particular strategy was the highest performing
one in the host population.  It can be seen that in the period at which the best strategies

MELANIE MITCHELL
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Figure 4. Number of individuals in the
host population encoding the Default,
Block Expanding, and Particle strategies
in a typical run from each of the six
experiments.  The number of Particle
strategies is zero for all generations in all
plots except Spatial Coevolution, in
which Particle strategies are discovered at
approximately generation 4000 and
persist for the rest of the run.
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Figure 5. The frequency of ICs in the
particle population that contain deceptive
blocks, versus generation, for a typical
run of spatial coevolution. (Values are
plotted every 10 generations, for a run
lasting 5000 generations.)  The labels
“default,” “block-expander,” and
“particle” correspond to generations at
which that particular strategy was the
highest performance one in the host
population. (Adapted from Pagie and
Mitchell, 2002.)

are block-expanders, the parasites exploit this fact by evolving significantly higher num-
bers of deceptive blocks.  These deceptive blocks in turn seem to push the host popu-
lation to eventually evolve more sophisticated Particle strategies that are not suscep-
tible to this exploitation.  The frequency of deceptive blocks rises and falls during the
block-expanding period, presumably in response to the host population switching from
“expand-1s” strategies to “expand-0s” strategies, and vice versa.
    In short, by tracing the dynamics of parasites with deceptive blocks, we have identi-
fied the presence of one kind of arms race between the host and parasite populations.
There are also likely to be other types of arms races present in these runs, which have
not yet been identified.

The results reported here show that spatial coevolution is considerably more successful
on two non-trivial learning tasks than several other evolutionary methods, requires
fewer training problems for success, and may be a generally effective method for over-
coming impediments of the kind described in Section IV. One reason seems to be that
spatial coevolution, alone among these methods, is able to maintain diversity in the host
population for long periods during a run. Another reason seems to be that parasites
evolve to specifically target weaknesses in host strategies, forcing hosts to evolve new
strategies without those weaknesses⎯in short, spatial coevolution seems to foster
effective arms races between hosts and parasites.

Clearly there is still much to be done to understand these results and their generality.
We plan to take the following five steps in the near future: (1) Extend the earlier work of
Williams and Mitchell (2005) on measuring diversity in the function-induction task; (2)
Extend the methods of Pagie and Mitchell (2002) for identifying specific arms races in
both tasks; (3) Understand the spatio-temporal dynamics of host innovations in all the
spatial methods, as well as the spatio-temporal dynamics of parasite innovation in spa-

VIII.  CONCLUSIONS
AND FUTURE WORK
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tial coevolution; (4) Extend our comparisons to include boosting, a machine learning
method which has goals similar to coevolution in that it adapts distributions of training
examples over many runs of learning; and (5) Explore the effects of the network structure
of the spatial grid on the behavior of spatial coevolution. For example, how would
occasional long-range interactions in the spatial grid (producing a “small world net-
work,” Watts, 1999) affect the behavior of spatial coevolution?

Many thanks to Ludo Pagie, Michael Thomure, and Nathan Williams for their contribu-
tions to this project.
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