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Abstract

Object localization is currently an active area of research in computer vision.

The object localization task is to identify all locations of an object class within

an image by drawing a bounding box around objects that are instances of that

class. Object locations are typically found by computing a classification score

over a small window at multiple locations in the image, based on some chosen

criteria, and choosing the highest scoring windows as the object bounding-boxes.

Localization methods vary widely, but there is a growing trend towards methods

that are able to make localization more accurate and efficient through the use of

context.

In this thesis, I investigate whether contextual relationships between related

objects can be leveraged to improve localization efficiency through a reduction

in the number of windows considered for each localization task. I implement a

context-driven localization model and evaluate it against two models that do not

use context between objects for comparison. My model constrains the search

spaces for the target object location and window size. I show that context-driven

methods substantially reduce the mean number of windows necessary for localizing

a target object versus the two models not using context. The results presented

here suggest that contextual relationships between objects in an image can be

leveraged to significantly improve localization efficiency by reducing the number

of windows required to find the target object.
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Chapter 1 Introduction

An important goal in computer vision is to be able to locate all instances

of a target object class in an image. For instance, the military may want to

automatically locate all instances of missile silos in a few million satellite images.

Alternatively, a self-driving car may need to quickly locate all pedestrians in a

series of video images. Regardless of the application, the goal is to find all the

target objects in an image.

Each object instance in an image is localized by drawing a box that tightly

encloses the borders of the object. This process of finding all instances of an

object class in an image is known as object localization, or simply, localization.

Most state-of-the-art computer vision systems use an exhaustive search approach

to localization, called sliding-windows [3,4,6–8,16,18]. A downside of the sliding-

window approach is that, in a typical task, it can require a search through tens of

thousands of windows to localize each object instance, making it a rather inefficient

[11]. Recently, a number of methods propose using the context present within an

image (e.g. horizon lines, sky and ground locations, etc.) to improve localization

efficiency by reducing the number of windows considered. [2, 9, 10,17].

In this thesis, I investigate whether the context between object classes can

be learned and then leveraged to make the localization process more efficient.

In particular, if the location and size of one object class instance is known, I

hypothesize that a previously learned context model can be used to reduce the

number of windows required to localize an instance of a related object class by

constraining the location and size search space for that object.
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1.1 Background

Over the past decade, computer vision systems have become increasingly adept

at object localization. However, current state-of-the-art computer vision systems

still perform well below that of human ability [15]. For example, if shown Figure

1.1, most humans would easily interpret this image as an instance of the concept

dog-walking and very quickly locate the human dog-walker, the dog, and even the

hard-to-see leash.

Figure 1.1: Image demonstrating the concept of dog-walking.

In contrast, most current computer vision systems would take an exhaustive

approach to locating the objects in this image. Such a system might start with a

small window in the upper left corner of the image and assign a score indicating

the confidence of the system that a dog is present in that window. The system

would then continue this process repeatedly over the whole image with different

size windows and pick the highest scoring windows for dog locations. If the system

then wanted to find the dog-walker, this exhaustive search process would begin

anew. In the end, this system might be able to locate the dog or dog-walker but it

would do so in an exhaustive, brute-force, kind of way. As is typical, brute-force

methods are very inefficient. Such an approach makes no effort to use the situation

(i.e., dog-walking) represented in this image to improve its search strategy. While
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there are rich contextual interactions between the dog, dog-walker, and leash in

the dog-walking situation, most current approaches would not attempt to model

these relationships, instead opting to try window after window in a sequential,

linear fashion.

The brute-force method I just described is used by most state-of-the-art sys-

tems and is more widely known as the sliding-window approach. More formally,

in the sliding-window approach, a confidence score is computed for a fixed aspect-

ratio window over many image locations and scales. The confidence score is com-

puted by extracting image features (e.g., pixel values, object edges, textures, etc.)

from the window and feeding them to a trained object classifier that computes the

score. The highest scoring window is then returned as the likely object location

within the image [11]. Since it is generally intractable to consider all locations and

scales within the image, only a small subset of windows are actually evaluated for

any particular image. Even so, the number of window samples required to localize

an object can run into the tens to hundreds of thousands [11]. If a system needs

to locate instances of many different object classes in an image, exhaustive search

techniques for localization will be unacceptably expensive.

To address this kind of problem, some promising methods employ a context-

driven localization approach where image context is used in order to improve the

efficiency of localizing objects in the image [2,9,10,17]. Global image context, such

as 3D structure [10] or general scene shape [17], is used by some, while others [1]

use the local context directly surrounding an object (e.g., color contrast, object

edges, etc.) to constrain the search space. However, few approaches directly use

the situation-specific contextual relationships that exist between object classes to

improve localization.

When contextual relationships, spatial or otherwise, exist between object classes

in a particular situation (e.g., “dog-walking”), it may be possible to use these re-

lationships for more efficient localization. For instance, knowing the location and

size of the person in Figure 1.1 may tell us something about where to look for
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an instance of the dog object class. If the context provided by the person is able

to reduce the search space for both dog location and size, it is possible that the

localization task for the dog instance can be completed using fewer windows. This

is precisely the idea that this thesis explores.

Motivating this work is Petacat [14], a system in development by the Mitchell

Research Group that focuses on the problem of image interpretation. As one

of its initial computer vision goals, Petacat seeks to recognize image situations,

with dog-walking being the first such situation to recognize. Given a new image,

Petacat’s task is to determine if the image is an instance of a situation category

it has previously learned. In this sense, Petacat already knows what situation it

is currently trying to find and can use this knowledge to drive which objects and

contextual relationships to look for in the image. A future goal is to integrate the

work presented in this thesis with the Petacat system to help make localization

efficient and scalable.

In the next sections, I discuss related work and give a high-level description of

my approach to context-driven localization.

1.2 Related Work

In this section, I describe some of the more prominent approaches to object

localization in recent literature.

Torralba et al. [17] use the global context of the image by computing the “gist”

of an image. This is done by pre-processing the image with a series of Gabor filters

to obtain a gist feature vector that describes the spatial layout of the image.

These gist features are then used with a weighted average of linear regression

models to learn a distribution over vertical image locations for a particular object

class [17]. This distribution can then be used to focus the localization task on a

narrow horizontal band within the image through a process that Torralba et al.

call location priming. However, this method is unable to restrict the horizontal

object location search space. In contrast, the methods proposed in my thesis allow
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for constraining both vertical and horizontal search space.

Elazary and Itti [5] use general saliency maps to restrict the search space prior

to localization attempts. The saliency maps are constructed using the pixel inten-

sities, color opponencies (e.g., green vs. red) and edge detectors at four different

orientations. Using these features, each pixel in the image is given a saliency value.

Higher values indicate likely locations of objects (of any type) in the image. The

localization search space is then constrained to the most salient areas of the image.

While Elazary and Itti’s saliency approach uses local pixel and color context, it

does not otherwise leverage spatial or size relationships in the image.

Alexe et al. [1] use what they call image “cues” to obtain a measure of “object-

ness” for segmented regions of the image. These cues include multi-scale saliency

maps, color contrasts, edge densities, and superpixel straddling to combine over-

segmented image patches into groups of superpixels likely to contain an object.

This effectively reduces the search space prior to localization but only uses the

local context immediately surrounding the object instead of the contextual rela-

tionships between objects in the image.

Hoiem et al. [10] attempt to estimate the 3D structure of an image by calculat-

ing the camera viewpoint and surface geometry. The surface geometry classifies

each pixel as belonging to the sky, ground, or vertical class (a surface sticking up

from the ground). The vertical class also has further subclasses: planar, left, cen-

ter, right, non-planar solid or porous. These features are then used in a Bayesian

network to estimate prior locations and scales for various objects in the image.

However, the vertical class labeling involves considerable hand annotations for the

image set. Again, no attempt is made to use contextual object interactions in

Hoiem et al.’s approach.

Perhaps most similar to my work is another approach of Alexe et al., described

in [2]. Here they use the spatial context between similar randomly selected win-

dows and a target object class. During training, [2] samples a large number of

windows from all training images and records their location and size within the
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image they were sampled from. Features are extracted for each of these windows

and a displacement vector from the window center to the ground truth target ob-

ject is calculated. To perform localization in a new test image, a random window

is chosen in the image and its features computed. These features are compared

with the windows sampled during training to find the ten most similar training

windows. The displacement vectors from the similar windows “vote” for the loca-

tion of the target object. A probability distribution over possible image locations

for the target object is then computed from the votes using kernel density estima-

tion. A new window is then sampled at the highest probability location and the

process repeats for a fixed number of iterations T . The distribution over possible

locations is updated with each iteration and the window sampled on iteration T

is used as the object location in the image. While this approach does use the spa-

tial context between regions in the image, it does not directly use the interaction

between target objects in the image. Instead, [2] uses the spatial context between

clustered groups of windows and the object of interest.

While various types of image context are used in the above mentioned ap-

proaches, none make use of the direct contextual interactions between objects of

interest to restrict the search during localization. As such, my focus is on learning

situation-specific context models that allow the size and location of one object to

constrain the search for another related object in the image. For example, consider

Figure 1.2, which depicts a person skateboarding. Here the size and location of the

person can heavily influence the size and location of the skateboard and vice versa.
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Figure 1.2: Image representing a skateboarding situation.

1.3 Summary of Experimental Approach

In this section, I present a high-level overview of my approach to context-driven

localization and define the evaluation metrics used during my experiments.

I chose the Portland Dog-Walking image corpus for the context-driven local-

ization task. This dataset consists of photographs of people walking dogs. The

photographs were taken by members of the Mitchell Research Group at Portland

State University. A few examples of these images are shown in Figure 1.3 and the

dataset is explained in detail in Section 2.1.

Figure 1.3: Example images from the Portland Dog-Walking corpus.

The essential characteristic of this dataset is that there are two main object

classes, person and dog, that maintain similar contextual relationships throughout

all the images (i.e., the person is walking the dog).
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To examine the role of inter-object context in localization, I assume that one

object has been located with a bounding box and the second object must be

found (i.e., the system must draw a bounding box around it). The context of

the first object will be used to localize the second object. In particular, a con-

ditional probability distribution over object locations is estimated for one object

given the other. This results in a distribution over all image pixels where each

pixel has some probability of being the center of the target object given the lo-

calized object. Additionally, probability distributions are learned over the ratio

of bounding-box heights and ratio of bounding-box areas between objects. For

instance, a probability distribution for the ratio of dog bounding-box heights to

dog-walker bounding-box heights is estimated. Given the bounding-box height of

a localized dog-walker, the height ratio distribution can be sampled to estimate

the likely height of the dog given the dog-walker height. The probability distribu-

tions over image pixels encode the spatial context while the height and area ratios

encode the relative size context. Together, these learned conditional probability

distributions are used by my system to localize objects in new (“test”) images.

In my system, the above distributions are learned on a training set of images

in which each image contains a single dog and dog-walker. On a test image, the

location and bounding-box height and area of one object are given. The context

encoded in the learned distributions is then used to constrain the search space

and window size for the related object. Likely object locations are sampled from

the learned spatial context distribution and a window is generated by sampling

from the learned size context distribution. For each sampled window, the inter-

section over union (IOU) of the sampled window and ground truth bounding-box

is computed. The IOU is a measure of the correct overlap between a predicted

bounding-box and the ground truth bounding-box of the target object (see Equa-

tion 2.3). An IOU ≥ 0.5 is a standard measure of localization success in current

literature [15]. If the IOU for the sampled window meets or exceeds this threshold,

it is used as the bounding-box for that object instance.
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To evaluate the efficiency gains of my system with respect to models that

do not use context, I compare my system with a uniform model in which image

locations and window sizes are selected uniformly. I also compare my system

against saliency models similar to those proposed by Elazary and Itti [5]. The

primary quantity of interest is the mean number of windows required to localize

dogs and dog-walkers in the Portland Dog-Walking corpus. In this thesis, I show

that my context-driven system is able to substantially reduce the mean number of

windows required to localize dogs and dog-walkers. Furthermore, I show that it

is possible to combine my system with saliency based models to make additional

efficiency gains.

The rest of my thesis is organized as follows: Chapter 2 describes the Port-

land Dog-Walking corpus, the methods used to learn the conditional probability

distributions for spatial and size context, and implementation details for each lo-

calization model. Chapter 3 presents the results of running each localization model

on the Portland Dog-Walking corpus. Chapter 4 presents a method for combining

my context-driven model with a saliency approach and Chapter 5 presents the

performance results of the combined model. Finally, in Chapter 6, I discuss the

localization performance of each model, discuss future work, and make my final

conclusions.
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Chapter 2 Methods

In this chapter, I describe the dataset and methods used by my system to

build localization models. I also describe the localization process used for testing.

Object localization can be broken into two essential parts: location selection and

window generation. During location selection, the localization model probabilis-

tically chooses image locations one at a time. This is done by sampling from a

probability distribution over image locations. At each sampled location, a window

is generated. The goal is for the target object instance to be contained within the

generated window. Each model handles window generation differently, as will be

described below. A target object is considered to be correctly localized if the win-

dow has significant overlap (IOU ≥ 0.5) with the ground truth bounding-box for

that object instance.

There are three localization models under consideration: Salience, Context,

and Uniform. The Salience model uses saliency maps like those in [5] for location

selection and a learned distribution over relative size of object classes and images

for window generation. The Salience model is used for comparison purposes to

determine if the Context model provides additional benefits over a model that does

not use contextual relationships between objects. The Context model I developed

uses learned conditional probability distributions over image locations for choosing

possible object locations. For window generation, probability distributions over

relative object sizes (i.e., dog size vs. dog-walker size) are sampled to obtain the

window size parameters. Finally, the Uniform model serves as a baseline for

performance comparison purposes. As its name implies, the Uniform model takes

a uniform approach to both location selection and window generation.

The rest of this chapter describes the dataset used for training and testing, each

of the model implementations, and the localization process used during testing.
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2.1 Portland Dog-Walking Image Corpus

I use the Portland Dog-Walking image corpus for training and testing all mod-

els in this work. The corpus consists of 562 dog-walking images of various aspect-

ratios (421 training, 141 testing). Each image contains a single dog-walker and

dog, but may have multiple occurrences of other objects (people, bicycles, etc.).

The training images are used to learn object location and window size probability

distributions. Test images are used only for object localization and kept strictly

segregated from training data. Each image has a corresponding label file that

specifies the ground truth bounding-box height and width for both dogs and dog-

walkers. All photographs in this corpus were taken by members of the Mitchell

Research Group from various viewpoints, times of day, and orientations, using

multiple camera types. Image labels are manually annotated by members of the

group using a web-tool that automatically generates the corresponding label file.

2.2 Salience Model

I use Elazary and Itti’s salience model [5] as a non-context-driven baseline with

which to compare context-driven models. According to this salience model, the

most salient areas of the image are thought to be the most likely locations for

objects. In particular, given an image, the salience model computes 42 types of

features based on edges, color, and contrast, at several difference scales. These

features are computed at each location in the image, producing 42 saliency maps.

The maps are then combined into a single saliency map for the image, as described

in [5]. The output is a probability distribution over locations in the image, where

the most salient locations have the highest intensity (see Figure 2.1). Note that

the model implemented in [5] does not perform any learning on training data; the

salience of a given input image location depends only on simple features directly

computed from the image itself.
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(a) Test image (b) Saliency map

Figure 2.1: Original image (a) and saliency map (b), where the most salient (i.e.,
brightest) pixels in (b) represent regions of interest in (a) that are likely to belong
to objects.

All saliency maps for this model are generated using Max Quinn’s Matlab

implementation of Elazary and Itti’s algorithm [5]. In my system, I use the saliency

maps to perform location selection and I extend the model by implementing a

window generation method, as described below.

While an absolute location prior could have been used

2.2.1 Salience Model Location Selection

Location selection for the Salience model is straightforward. Given a test

image, my system computes the saliency map from the image features as described

in [5]. The resulting saliency map is interpreted as a probability distribution over

image locations, where the most salient locations have the highest probability of

belonging to an object of any class. During localization, likely object locations

can be sampled directly from the saliency map distributions.

For example, suppose the task is to localize the dog in Figure 2.1a. To pick a

new location in the image to look for the dog, an image location would be sampled

directly from the saliency map in Figure 2.1b, where the highest intensity pixels

have the highest probability of being chosen.

To be precise, let O denote any object class (e.g. dog-walker, dog, leash, etc.)
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and let Oxy be the event that the pixel located at image coordinate (x, y) is the

center of an instance of the object class O. Additionally, let θs represent the

salience map used to generate saliency values at each image pixel. For an N ×M

input image, the probability distribution over all pixel coordinates (i, j) is:

Pr(Oij|θs) = Gij i = 1 . . . N, j = 1 . . .M (2.1)

where Gij is the saliency value at index (i, j) of the image saliency map.

2.2.2 Salience Model Window Generation

After sampling an image location from Pr(Oxy|θs), a window must be gener-

ated. Recall, the goal is for the window to have significant overlap (IOU ≥ 0.5)

with the ground truth bounding-box of the target object instance. Inherently, the

approach used in [5] provides no method for window generation. To deal with

this issue, I decided to have the Salience model learn a probability distribution

for window sizes from the observed ratios of object bounding-box height and area

with respect to image height and area.

Specifically, for a training image, let Oa and Oh represent the target object

ground truth bounding-box area and height, respectively. Similarly, let Ia and Ih

denote the image area and height, respectively. My system estimates two proba-

bility distributions, Pr(β) and Pr(η), from the training images, where β = Oh/Ih

and η = Oa/Ia. This is done by observing β and η for all training images and

using the Matlab function ksdensity [13] to estimate both Pr(β) and Pr(η). To

generate a new window, W , with a sampled location as its center, my system sam-

ples a new β and η from their respective distributions and computes the window

height, Wh, and area, Wa, as follows:

Wh = β ∗ Ih

Wa = η ∗ Ia
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Once the window has been generated, the IOU of the window and the ground

truth object bounding-box can be computed to determine if the object has been

localized.

2.3 Context Model

The Context model I developed leverages the known location and bounding-box

of one object class instance to probabilistically choose a possible image location

and size for a related target object class. In my system, the two object classes

of interest are dog and dog-walker. As an example, suppose we have identified

the location and have specified a bounding-box for the dog-walker as depicted in

Figure 2.2. The task of the Context model is now to localize the dog in this image

using the context of the dog-walker.

Similar to the Salience model, the Context model uses probability distributions

over image locations and window size during localization, but the methods used to

obtain them differ from the salience approach. Specifically, the context between

dogs and dog-walkers observed in training data is leveraged to generate the dis-

tributions over locations and window size. The next sections explain how these

distributions are learned from the training data. Note, throughout this chapter,

I will assume that the dog-walker has been localized and the dog is the target

object for localization. The reverse process is completely analogous.

2.3.1 Context Model Location Selection

In the Context model, location selection is conditional on the known location

of one of the object classes. For example, in Figure 2.2, the dog-walker has been

localized. Given the location of the dog-walker, the Context model will probabilis-

tically choose possible dog locations by sampling from a learned image location

distribution. Context location distributions differ from salience map distributions

in that the context distributions are object-specific and conditional on the loca-

tion of some other object class. The distributions are object-specific because a
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different distribution is used for each object class (e.g. dog, dog-walker, etc.).

Figure 2.2: An image where the dog-walker has been localized.

My approach to learning these conditional probability distributions is straight-

forward. For each training image, the displacement from the center of the dog-

walker bounding-box to the center of the dog bounding-box is calculated and

represented as a point (x, y) where the center of the dog-walker is considered

the origin. The point (x, y) is then normalized by the height1 of the dog-walker

bounding-box so that points from different images will be on the same scale. More

formally, let N be the number of training images; (dx,dy) be the coordinate of the

dog center; (wx,wy), be the coordinates of the dog-walker center, and wh be the

height of the dog-walker bounding-box. A collection of displacement points for

1Height is chosen because it more naturally captures the distance of an object from the
camera.
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the ith image are calculated as follows:

(x(i), y(i)) =

(
d
(i)
x − w(i)

x

w
(i)
h

,
d
(i)
y − w(i)

y

w
(i)
h

)
i = 1 . . . N (2.2)

A plot of all the points (x(i), y(i)) from the training images can be seen in Figure

2.3, where the origin represents the center of the dog-walker and the axes are the

normalized distances in pixels from the dog-walker to the dog.

Figure 2.3: Plot of dog locations relative to dog-walkers from the training set. The
origin represents the center of the dog-walker bounding-box. Figure best viewed
in color.

The grouping of points in the plot make it clear that there is a non-random

spatial relationship between dogs and dog-walkers.

Of course, a collection of points is not a probability distribution. To resolve

this problem, a probability distribution must be estimated from the points com-

puted in Equation 2.2. To do this, a distribution over image locations is estimated
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with the Matlab function p2kde, written by Max Quinn. The p2kde function takes

as input a collection of points and performs kernel density estimation to approx-

imate the two-dimensional probability distribution from which the points were

likely sampled. For example, Figure 2.4b visualizes the estimated probability dis-

tribution obtained from the points in Figure 2.4a.

(a) Point samples (b) Estimated distribution

Figure 2.4: Example of kernel density estimation using Matlab function p2kde.
(a) is a collection of points represented as an image. (b) is the resulting probability
distribution. High intensity (bright) locations correspond to high probability.

From the process described above, two conditional probability distributions

over image locations are learned. The first, Pr(dxy|wxy), is the conditional distri-

bution of dog locations given the dog-walker location, where dxy and wxy denote

the dog and dog-walker locations, respectively. The second learned conditional

distribution, Pr(wxy|dxy), is over dog-walker locations, given the dog location.

For a new image with the dog-walker localized, possible dog locations are

selected by sampling points from the learned conditional probability distribution,

Pr(dxy|wxy). If the dog was the localized object, then possible dog-walker locations

would be sampled from Pr(wxy|dxy) instead. As in the Salience model, once a point

is selected, a window must be generated in order to compute the IOU. The window

generation method for the Context model is described next.
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2.3.2 Context Model Window Generation

Window generation for the Context model is similar to that in the Salience

model except I leverage the size relationships between the dog and dog-walker

object classes rather than the size relationship between the object and image.

Specifically, the ratio of ground truth bounding-box area and height between dogs

and dog-walkers is used to estimate two probability distributions for window size.

The first distribution is over the height ratios between dogs and dog-walkers.

Let dh and wh be the height of the ground truth bounding-box for the dog and

dog-walker, respectively. Also, let γd = dh/wh be the ratio of dog height to

dog-walker height. A probability distribution, Pr(γd), over the height ratio is

estimated by observing all height ratios in the training set and using Matlab’s

ksdensity function [13] to perform one-dimensional kernel density estimation on

the observed ratios. The distribution, Pr(γw) for the ratio of dog-walker to dog

heights is similarly estimated.

The second distribution learned is over the area ratios between dogs and dog-

walkers. Let da and wa be the ground truth bounding-box area for dogs and

dog-walkers, respectively. Let αd = da/wa be the ratio of dog area to dog-walker

area. The distribution over area ratios, Pr(αd) is also estimated by observing all

αd in the training set and obtaining an estimate of Pr(αd) from the ksdensity

function. Again, the distribution for dog-walker to dog area ratios, Pr(αw), is

estimated in a similar way.

The window size distributions just described can be used for localization on a

new image to probabilistically generate window height and area based on the con-

text of the localized object. For example, given a new image where the dog-walker

has been localized, the Context model samples γd and αd from their appropriate

distributions and computes the window height, Wh, and area, Wa, as follows:
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Wh = γd ∗ wh

Wa = αd ∗ wa

Generating candidate windows for dog-walkers is accomplished in the same

way, with the appropriate adjustments to the sampling distributions.

2.4 Uniform Model

The Uniform model serves as a null comparison model for localization on the

dog-walking dataset. For the Uniform model, the probability distribution for

object locations is uniform (i.e., all object locations are equally likely). During

location selection, an image location is simply selected uniformly from all image

locations.

Window generation in the Uniform is very simple. A uniform distribution over

the height ratios β between the target object class and the image is obtained by

observing the minimum and maximum β in the training set and using those values

as the extreme for the distribution. The uniform distribution for area ratios η is

computed in a similar way. On a new image, a window W is generated by picking

a β and η uniformly from their respective distributions and computing the window

height Wh and area Wa as follows:

Wh = β ∗ Ih

Wa = η ∗ Ia

where Ih and Ia represent the image height and areas, respectively, as in the

Salience model.

19



2.5 Localization Procedure

As I described above, the goal of object localization is to specify the location

of the target object in an image by drawing a bounding-box around the object.

The standard measure of an accurate localization is the intersection over union

(IOU) metric [15]. Specifically, an object is considered successfully localized if the

IOU is greater or equal to 0.5. IOU is calculated as:

IOU(Bgt, Bp) =
area(Bgt ∩Bp)

area(Bgt ∪Bp)
(2.3)

where Bgt and Bp are respectively the ground truth and predicted bounding boxes.

As an example, Figure 2.5 shows some predicted bounding-boxes and the corre-

sponding IOU values.
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(a) IOU = 0.38 (b) IOU = 0.51

(c) IOU = 0.72

Figure 2.5: Example bounding-box predictions with IOU values. Yellow boxes are
ground truth and red are window predictions. Figure best viewed in color.

Throughout this section I assume the target object is the dog. The process

for localizing the dog-walker is essentially the same. Additionally, for the Context

model, it is assumed that the dog-walker has been localized and we know its

bounding-box size.

The localization process has two steps: location generation and window gen-

eration. The first step is to sample a location from one of the model probability

distributions over image locations. Figure 2.6 illustrates sampling from the Con-

text model distribution. By sampling a point from the distribution in Figure 2.6b,

we obtain a point in the test image, shown in Figure 2.6a, that is thought likely

to locate the center of the dog.

This location selection procedure is identical for all of the models. That is,

points are sampled from the respective model probability distributions to generate
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points of interest that may locate the center of the target object in the test image.

(a) Test image (b) Sampled points (c) Plotted points

Figure 2.6: An example of location sampling. (a) is the image under consideration,
(b) shows five points sampled from Pr(dxy|wxy), and (c) shows the points plotted
on the test image. Figure best viewed in color.

Once a location has been sampled for a possible dog location, a window is

generated. The sampled locations serve as the center of the window. Window size

is determined by sampling from the appropriate size distributions as described

above for each model.

Figure 2.7 illustrates an example of window generation for the Context model.

The red point is the sampled location for a possible dog location relative to the dog-

walker. The three windows centered on the sampled location were generated by

sampling height and area ratios from Pr(γd) and Pr(αd) distributions, respectively.

Finally, the actual height and area for each window is computed as described in

Section 2.3.2 using the localized dog-walker height.
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Figure 2.7: An example of window generation for Context model. Here the red
point has been chosen as a possible location for the dog. Three windows are shown
where the area and height parameters are calculated by sampling from Pr(αd) and
Pr(γd). Figure best viewed in color.

Finally, for each point and window sampled, I calculate the IOU for the ground

truth dog bounding-box and the generated window. If IOU ≥ 0.5, the dog has

been successfully localized and, if not, the process can begin anew by sampling a

new point and generating a new window from the appropriate distributions.

It is worth noting that no classifiers for dogs or dog-walkers are used in my

localization process. I chose to isolate and evaluate the merits of these localization

models directly. Using window classifiers would introduce errors into my results,

making it difficult to determine the true contribution of context for object local-

ization. In practice, any object window classifier could be used in the process

explained above to assign a score for each window.
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Chapter 3 Results

In this chapter, I report the dog and dog-walker localization performance re-

sults for the Uniform, Salience, and Context models on 141 test images from the

Portland Dog-Walking corpus. All models were trained on 421 images from the

same corpus. Localization results are obtained by sampling locations from the

specified model probability distribution and generating a window for the target

object at each location until an IOU ≥ 0.5 is reached or 5000 locations have been

sampled. If the target object has not been localized after 5000 window samples,

the model is considered to have failed the localization task for that image. The

window generation method is dependent upon the type of localization model un-

der consideration. The entire process described above is repeated ten times for

each model to yield an average number of windows required to localize the target

object in each test image.

The graphs in this chapter plot the percentage of the target object class that

was successfully localized against the mean number of windows sampled to localize

that percentage of targets. For example, Figure 3.1 plots the model results for

the dog localization task. If we choose a window threshold along the x-axis, say

1000, the y-axis tells us what percentage of dogs, across all test images, were

successfully localized within an average of 1000 window samples. Each plot also

contains error bars that extend one standard deviation above and below the graph

line at periodic intervals.

3.1 Dog Localization Task

Figure 3.1 plots the performance results of the Uniform, Salience, and Context

models on the dog localization task. The Context model clearly localizes a greater

percentage of dogs than either the Uniform or Salience models for all window
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sample thresholds. In particular, the Context model successfully localizes at least

80% of the dogs within 500 box evaluations while the next best model, Salience,

has only localized around 20% of dogs in the test images.

Figure 3.1: Localization performance plot for Uniform, Salience, and Context
models. The y-axis plots the percentage of dogs in all test images that are suc-
cessfully localized within the mean number of sampled windows plotted along the
x-axis. Figure best viewed in color.

The Salience model also significantly outperforms the Uniform model for nearly

all window sample thresholds. However, it appears that the Uniform model is able

to localize a greater percentage of dogs than the Salience model for window sample

thresholds less than 300.

As an overall quantitative measure of model performance on the dog localiza-

tion task, I calculate the mean and standard deviation of the number of window

samples required to successfully localize a single dog instance for each model.

Table 3.1 reports these results.

The best performing model for dog localization across all metrics is the Con-

text model, with a mean of 352.7 window samples required for a successful dog

25



localization. This is a reduction of 85.8% over the Uniform model and 74.1% over

the Salience model for mean window samples. The Salience model is also able to

substantially reduce the mean window samples versus the Uniform model, requir-

ing only 1363.7 samples on average, a reduction of 45.1% over the Uniform model.

Dog Localization

Model Mean Windows StdDev

Uniform 2485.6 1628.5

Salience 1363.7 1230.9

Context 352.7 748.9

Table 3.1: Performance of the Uniform, Salience, and Context models on dog
localization task. The mean windows column represents the mean number of
window samples required to successfully localize a single dog instance, averaged
over all test images, for ten independent trials.

3.2 Dog-Walker Localization Task

The results for the dog-walker localization task exhibit some substantial differ-

ences from those for dog localization. Figure 3.2 plots the results over 5000 window

samples. Here, the Context model is able to localize a greater percentage of dog-

walkers for all window thresholds, however, the improvement over the Salience

model is less pronounced. For the 500 window threshold, the Context model suc-

cessfully localizes approximately 90% of the dog-walkers in all test images, while

the Salience model localizes roughly 82%. Both the Context and Salience models

localize a significantly greater percentage of dog-walkers than the Uniform model

across nearly all window sample thresholds.
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Figure 3.2: Dog-walker localization performance up to 5000 window samples. Fig-
ure best viewed in color.

Table 3.2 reports the mean and standard deviation of the number of window

samples required to successfully localize a single dog-walker instance. All models

require significantly fewer window samples on the dog-walker localization task in

comparison to dog localization. The Context model requires the fewest windows

at 207.7, a reduction of 81.8% over the Uniform model and 40.7% over the Salience

model. The Salience model again requires fewer window samples than the Uniform

model at 350.5, a reduction of 69.3% over the Uniform model.
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Dog-Walker Localization

Model Mean Boxes StdDev

Uniform 1141.4 1269.5

Salience 350.5 628.1

Context 207.7 540.0

Table 3.2: Performance of Uniform, Salience, and Context models on dog-walker
localization.

In summary, for both localization tasks, the Context model requires signif-

icantly fewer window samples on average to successfully localize the target ob-

ject than the Uniform or Salience models. Additionally, all three models require

fewer window samples on average for dog-walker localization than for the dog-

localization task.
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Chapter 4 Combining Context and Salience

In this chapter I present a methodology for combining the Context and Salience

models. Because the Context and Salience models both use a probability distri-

bution over image locations to select possible object locations, I was interested

in seeing if the performance of Context model improves by combining it with the

Salience model approach. To do this, I combine the probability distributions over

image locations from both models as illustrated in Figure 4.1.

(a) Test image (b) Salience distribution

(c) Context distribution (d) Combined distributions

Figure 4.1: An illustration of the result (d) from combining the Context and
Salience model location distributions. (b) and (c) are the distributions obtained
from the Salience and Context models, respectively, for the image in (a).
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Combining the Context and Salience model location distributions is done

in a simple way. The probability distribution, Pr(dxy|wxy), computed as de-

scribed in Section 2.3, is simply point-wise multiplied with the salience distri-

bution Pr(Oxy|θs). Specifically, since the discrete Context and Salience location

distributions are both the same dimensions (i.e., the dimensions of the image

under consideration) and are represented as a probability matrix, the combined

distribution for dog locations, Pr(dxy|wxy, θs), is calculated as follows:

Pr(dij|wxy, θs) =
Pr(dij|wxy) Pr(Oij|θs)∑
ij Pr(di,j|wxy) Pr(Oij|θs)

i = 1 . . . N, j = 1 . . .M (4.1)

where the denominator is simply a normalization term to make the distribution

sum to 1. The result of Equation 4.1 is visualized in Figure 4.1d for the test image

in Figure 4.1a.

During localization, Pr(dxy|wxy, θs) can be sampled in the same way as the

Context model to generate possible object locations. Window generation also is

performed the same way as that described for the Context model.

Next, I present the results for the combined model in comparison to the Context

model.
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Chapter 5 Combined Model Results

In this chapter, I present the localization performance results for the combined

Context and Salience model. For clarity, I will refer to the combined model by

the title Combined. I also include the results for the Context model alone for

comparison purposes.

5.1 Dog Localization Task

Figure 5.1 plots the performance results of the Combined and Context mod-

els on the dog localization task. The Combined model slightly outperforms the

Context model for most window threshold values. For instance, at a threshold of

500 windows, the Combined model has localized around 90% of the dogs while the

Context model has localized a little over 80% of the dogs in the test set.

Figure 5.1: Localization performance plot for the Context and Combined models
on dog localization task. Figure best viewed in color.
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As was done for the previous model results, I calculate the mean and standard

deviation of the number of window samples required to successfully localize a

single dog instance for the Combined model and present them in Table 5.1.

The Combined model makes slight improvements in the mean number of win-

dows required to successfully localize a dog. In particular, the Combined model

requires only 266.7 windows on average, for an improvement over the Context

model of 24.4%.

Dog Localization

Model Mean Windows StdDev

Context 352.7 748.9

Combined 266.7 613.2

Table 5.1: Performance of the Context and Combined models on the dog local-
ization task. The mean windows column represents the mean number of window
samples required to successfully localize a single dog instance, averaged over all
test images, for ten independent trials.

5.2 Dog-Walker Localization Task

Figure 5.2 plots the performance results of the Combined and Context models

on the dog-walker localization task. For dog-walker localization, the Combined

and Context models have very similar results. In fact, it is difficult to say which

model performs best for various window thresholds. For instance, at a threshold

of 500 window samples, both models are able to localize around 90% of the dog-

walkers successfully.
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Figure 5.2: Localization performance plot for the Context and Combined models
on dog-walker localization task. Figure best viewed in color.

Table 5.2 reports the mean window samples required to successfully localize

a dog-walker on the test image set for both the Combined and Context models.

Again, the performance between the two models is very close, with the Combined

model requiring slightly fewer window samples, 192.2, versus the Context model.

This is a small improvement approximately 7.5% over the Context model for this

task.

Dog-Walker Localization

Model Mean Windows StdDev

Context 207.7 540.0

Combined 192.2 589.9

Table 5.2: Performance of the Context and combined Context and Salience models
on the dog-walker localization task.

33



In summary, the Combined model performs slightly better than the Context

model alone for the dog localization task. However, the results for the dog-walker

localization task are nearly equivalent for both models. As was seen with the Uni-

form, Salience, and Context models, the Combined model required fewer window

samples on average for the dog-walker localization task than for the dog localiza-

tion task.

34



Chapter 6 Discussion

In this thesis, I presented the Context object localization model that leverages

the contextual relationships between dogs and dog-walkers in the “dog-walking”

situation to constrain the search space for object location and size during local-

ization. There are two ways in which the contextual relationships between dogs

and dog-walkers are used in the Context localization model I developed. First,

the location context of one object is used to restrict the search space over possible

target object locations via learned conditional probability distributions. Second,

the size context of one object is being leveraged to constrain the search space

for target object window sizes. I also presented a method for combining Salience

models with the Context model to further constrain the search space over object

locations.

In the next sections, I discuss the results of the Context and Combined models,

highlight a few potential drawbacks of the Context model, mention future work,

and finish with my conclusions.

6.1 Context-Driven Localization

The Context model I created in this work directly leverages the location and

size context of dogs and dog-walkers to substantially reduce the number of window

samples required for a successful object localization. As we can see in Figures

3.1 and 3.2, the Context model is able to successfully localize a much greater

percentage of target objects with substantially fewer window samples than either

the Salience or Uniform models. For example, on the dog localization task, the

Context model successfully localizes at least 80% of all dogs in test images in

as few as 500 window samples. The Salience model would require at least 2000

window samples to achieve the same localization percentage and the Uniform
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model would require 5000 or more windows. A similar pattern is seen for the

dog-walker localization results.

From Tables 3.1 and 3.2, we can also see that the average number of windows

required in the Context model to successfully localize either a dog or dog-walker in

a test image is significantly lower than the Uniform and Salience models, suggesting

that the use of context in localization is able to substantially reduce the number

of windows required for a successful localization. These reductions in the number

of windows required translate to substantial efficiency gains. Recall that a sliding-

window localization method can require a search over tens of thousands or more

window samples to localize a single object class. These results also suggest that

using object specific context can yield greater localization performance benefits

than an object-neutral method like that of the Salience model.

The significant improvement of the Context model over the Uniform model is

largely the result of how the Context model constrains the search space over image

locations during localization. For instance, in Figure 6.1, the context-driven prob-

ability distributions are able to constrain the possible dog locations to a fraction

of the total image area.

Figure 6.1: Illustration of Context probability distributions overlaid on three test
images. Figure best viewed in color.

The constrained search space and the fact that the distributions typically have

high density over actual target object locations, results in the substantial reduc-

tions in window samples.

It is for similar reasons that the Combined model is able to further reduce
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the mean number of window samples required during localization over that of the

Context model alone. For example, Figure 6.2 shows the Context and Combined

model probability distributions for the same test image. The Context location

distribution in Figure 6.2b has been suppressed in the least salient areas so that the

dog location search space has been even further constrained to the most relevant

parts of the image.

(a) Test image (b) Context distribution (c) Combined distribution

Figure 6.2: A comparison of the Context and Combined probability distributions
for the same test image.

However, the reduction in the object location search space from the Context

distribution to the Combined distribution is not nearly as significant as the re-

duction in going from a uniform distribution to the Context distributions. This

explains why the percentage window sample reduction (24.4% and 7.5%) is not

nearly as large as that seen for the Context versus the Uniform model (85.8% and

81.8%). While the reduction in window samples for the Combined model over the

Context model is relatively small, it is still an interesting result as it suggests that

localization models that use probability distributions over image locations can be

combined for better localization results.

Even though the Context model presented here performs quite well, it is not

without its drawbacks. First, this method depends upon the successful localization

of one of the two object classes from which the probability distributions were

learned (e.g. dog or dog-walker). This creates a sort of chicken-and-egg dilemma

because the localization model can not be applied until one of the objects has been

localized. However, it may be possible to first apply the Salience model to initially
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localize one of the objects and then use the Context model to substantially reduce

the number of window samples required to localize related objects. The end result

would still likely be a net-savings in window samples. Exploring this idea is left

to future work.

A second drawback of the Context model is that it does a poor job of dealing

with outliers. In particular, if the object we are trying to localize lies far outside

of the high-density areas of the probability distribution, it is extremely unlikely

that we would ever sample that object location from the distribution. For exam-

ple, the dog in the test image shown in Figure 6.3 was never successfully localized

by the Context model during my tests. However, the Uniform model was able to

localize this dog successfully within the 5000 window sample threshold. A possible

remedy to this issue is to suppress locations that have already been sampled. As

the high density areas become suppressed, choosing a location at a low probability

location becomes more likely. This type of approach may allow the Context model

to more easily localize objects that do not adhere closely to the learned location

distributions.

Figure 6.3: Dog outlier. Figure best viewed in color.

Finally, the Context model is designed to leverage the contextual relationships

between object classes involved in some type of image situation (e.g., dog-walking,
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skateboarding, etc.). If the objects of interest do not have any such relationships,

there would likely be little value in using the Context model for that localization

task. However, in situations where the objects of interest do have location and

size relationships, the results here indicate the Context localization model would

perform reasonably well.

Despite the drawbacks present in the Context model, the substantial reduction

in window samples for localization over the Uniform and Salience models indicates

that there is value in using context-driven probability distributions to improve

localization efficiency.

6.2 Future Work

A primary future goal for the work presented in this thesis is the integration

of the Context model into the Petacat computer vision system. When presented

with a new image, Petacat will attempt to determine if the image is in various

situation categories. Assuming the situation category currently being considered

is dog-walking, Petacat will first try to localize one of the relevant objects for this

situation (e.g., dog, dog-walker, leash, etc.). Once that object is found, other ob-

jects belonging to that the dog-walking situation will need to be localized. This is

the point of integration for my Context model. At this stage of analysis, the Con-

text model could be applied to efficiently localize the remaining objects belonging

to the dog-walking situation, if they are present in the image.

While Petacat is the primary motivation for this work, it can be extended in a

number of other ways. For instance, the current Context model requires that the

target objects that share a contextual relationship be defined in advance. Ideally,

the model would be able to learn these relationships in an unsupervised manner.

In doing so, the model could automatically learn pairs, or groups, of objects that

share a contextual relationship in a training set and leverage this information for

faster localization on test images.

It would be interesting to explore the possibility of using the Context model to
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resolve class labelings of candidate windows within an image. For example, if two

candidate windows in a test image were classified as a dog and dog-walker, the Con-

text probability distribution over object locations could be applied to determine if

windows adhere to typical locations encoded in the distribution. This would make

it possible to decrease or increase the confidence in a candidate window propor-

tional to the adherence of the windows to the learned contextual relationships.

Another future step would be to incorporate real window classifiers into the

Context model. Currently, the Context model assumes an oracle window classifier.

In theory, any window classifier could be used with this model. It is possible that

using real window classifiers could further constrain the image search space during

localization by updating the probability distributions over image locations based

on the window score for each sampled location. Such an implementation may

reduce repeated evaluations of locations that are unlikely to contain the object.

Of course, an obvious drawback of the object context models presented in this

work is that one of the objects must be localized prior to applying the model. The

downside of this is that other methods must be used to localize the first object.

Because of this drawback, further investigation on how such context driven models

can be incorporated with other localization models that constrain search without

the object context (e.g., the salience models) is necessary.

6.3 Conclusions

Using context for object localization has been shown to improve both local-

ization accuracy and efficiency through various approaches [2, 5, 9, 10, 17]. Here, I

investigated how the contextual interactions between two objects, dogs and dog-

walkers, in a situational relationship can be leveraged to constrain the search space

over object location and window size during the localization task. I presented the

Context localization model and evaluated it against the Uniform and Salience

models. For both dog and dog-walker localization tasks, I have shown that the

Context localization model is able to make sharp reductions in the mean number

40



of windows sampled during localization versus the other models. Additionally, the

combination of models using probability distributions over image locations can be

combined to yield greater performance benefits than any individual model alone.

The ability of the Context model to constrain the object location and size search

space to reduce window samples suggests that the contextual interactions between

objects can be a valuable tool for boosting localization efficiency.
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