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Abstract

We present results from experiments in which a genetic algorithm (GA) is used to evolve two
dimensional cellular automata (CA) to perform a particular computational task (“density classifica-
tion”) that requires globally-coordination information processing. The results are similar to that of
earlier work on evolving one-dimensional CAs. The behavior of the evolved two-dimensional CAs
is analyzed, and their performance is compared with that of several hand-designed two-dimensional
CAs.

1 Introduction

In many natural systems, simple, locally-interacting components give rise to coordinated
global information processing. In both natural and human-constructed information-
processing systems, allowing global coordination to emerge from a decentralized collection
of simple components has important potential advantages—e.g., speed, robustness, and
evolvability—as compared with explicit central control. However, it is difficult to design
a collection of individual components and their interaction in a way that will give rise
to useful global information processing or “emergent computation”. The term “emergent
computation” refers to the appearance in a system’s temporal behavior of information-
processing capabilities that are neither explicitly represented in the system’s elementary
components.

In order to understand the mechanisms by which an evolutionary process can discover
methods of emergent computation a simplified framework was proposed and studied by
Crutchfield, Mitchell, and their colleagues [9, 2, 4, 3] in which a genetic algorithm (GA)
evolved one-dimensional cellular automata (CAs) to perform computations. In their work
the GA was able to discover CAs with high performance on tasks requiring cooperative
collective behavior. In this paper we describe extending this work to two-dimensional
CAs.



2 Cellular Automata

Cellular Automata (CAs) are regular lattices of variables, each of which can take a finite
number of values (“states”) and each of which evolves in discrete time steps according to
a local rule that may be deterministic or probabilistic. Physical, chemical and biological
systems with many discrete elements with local interactions can be modeled using CAs.
The CAs discussed in this paper all use square lattices with L cells in each row and col-
umn. We denote the lattice size (i.e., number of cells) as N = LxL. A CA has a single
fixed rule ¢ used to update each cell; the rule maps from the states in a neighborhood
of cells to a single state s, which is the update value for the central cell in the neighbor-
hood. The lattice starts out with an initial configuration of states and this configuration
changes in discrete time steps. We use the term ”state” of site i (s;(t)) to refer to the
local state of a single site at time ¢, and the term ”configuration” (s(t)) to refer to the
entire lattice configuration of states. The transition rule ¢ that can be expressed as a
look-up table (a “rule table”), which lists for each local neighborhood the updated state
of the neighborhood’s central cell. The CAs discussed here use the Moore neighborhood,
which is depicted in the following picture:
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Table 1: The Moore neighborhood

In this way a neighborhood can be thought of a string of 9 bit in the following way:

(o18[7[6]5[4]3[2][1]

Table 2: The neighborhood as a 9-bit-string

The CA we will discuss here are two dimensional with two possible states per cell (0
or 1) and periodic boundary conditions. Note that the number of different neighborhood
configurations is 2% = 512.

3 A density-classification task for cellular automata

In [9], one-dimensional CAs were evolved by a GA to perform a density classification task
called the “p. = 1/2” task. (This built on earlier work by Packard [10].) A successful
CA for this task will decide whether or not the initial configuration (IC) contains more
than half 1s. If it does, the whole lattice should eventually iterate to the fixed point
configuration of all cells in state 1; otherwise it should eventually iterate to the fixed-
point configuration of all 0s. More formally, let py denote the density of 1s in the initial
configuration. If py > 0.5 then within M time steps the CA should go to the fixed-point



Figure 1: Final state (fixed point ) of the majority rule ¢,,,; starting from an initial state with py = 0.51.
Lattice size is 127x127.
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Figure 2: Cross-section of ¢y,.; at v = 64

configuration of all 1s; otherwise within M time steps the CA should go to the fixed-point
configuration of all 0s.

As described in [9], designing an algorithm to perform the p. = 1/2 task is trivial for
a system with a central controller. However the task is not trivial for small-radius CA,
since a small-radius CA relies only on local interactions. Because the 1s can be distributed
throughout the CA lattice, the CA must transfer information over large distances (= N ).
To do this requires the global coordination of cells that are separated by large distances
and that cannot communicate directly. The need for a coordination is illustrated by the
two-dimensional “majority” rule ¢,,,;, in which a cell’s state at time ¢ is 1 if a majority
of its neighbors are in state 1 and 0 otherwise. Figure 1 shows the final state of ¢,
beginning with py /~ 0.51. When an all-1s region and an all-Os region border each other,
there is no way to decide between them, and both persist.

In order to understand the computation performed by different CA rules evolved by
the GA, we will use the tools of the ”computational mechanics” framework developed for
44

one-dimensional CAs by Crutchfield and Hanson [1, 6]. This framework describes the “in-
trinsic” computation embedded in the CA space-time configurations in terms of regular
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Figure 3: Filtered diagram of the cross-section for ¢q;.

domains, particles and particle interactions. Regular domains are homogeneous regions
that are computationally simple to describe—i.e., they correspond to simple regular lan-
guages. In particular, a domain’s "pattern” is described using the minimal deterministic
finite automaton (DFA) that accepts all and only those configurations that appear in the
domain. Such domains are called "regular” since their configurations are members of the
regular language recognized by the DFA. Once a CA’s regular domains have been de-
tected, non-linear filters can be constructed to filter them out, leaving just the deviations
from those regularities. The resulting filtered space-time diagram reveals the propagation
of domain ”walls”. If these walls remain spatially-localized over time, then they are called
particles.

Particles are one of the main mechanisms for carrying information over long space-time
distances. In case of one-dimensional CAs, the space-time diagram is a two-dimensional
surface, with particles forming a one-dimensional surface that can be easily displayed (see,
e.g., [1, 2]). However, in the case of two-dimensional CAs, the space-time diagram is a
three-dimensional surface, and particles form a two-dimensional surface, making display
difficult. However when the regular domains consist simply of regions of all 1s or all
0s (black (B) and white (W) domains), as in Figure 1 as well as several of the evolved
rules to be described here, some information can be obtained a space-time diagram of
a one-dimensional cross-section of the CA that shows a subset of the time-iteration of
the two-dimensional domains. For example, in Figure 2 the space-time diagram of a
one-dimensional cross-section for the majority rule is shown. As can be seen, local neigh-
borhoods with majority of 1s map to regions of all 1s and similarly for Os, but when an
all 1s region and an all-Os region border each other, there is no way to decide between
them, and both persist. Though the exact shape of the domain wall can be very com-
plicated, Figure 2 illustrates the existence of differentiated regions that persist over the
time. Figure 3 displays a space-time diagram in which the regular domains (B and W)
have been filtered out. For ¢,,,; the cross section filter diagram shows straight lines that
do not cross each other. This illustrates the lack of coordination between different regions
or information transfer needed to perform the p. = 1/2 task.

An interesting variation of the majority rule was constructed by Gerard Vichniac [11].
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Figure 4: Snapshot at time ¢ = 2000 of the evolution of the anneal rule ¢g,peq beginning with pg & 0.51.
Lattice size is 127x127.
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Figure 5: Cross-section of ¢gnneqr at © = 64.
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Figure 6: Filtered cross-section of ¢gnneat-



It is defined as follows:

0 ifS(t)<4dorSit)=5>5
Si(t“):{ 1 ifsgt;;orsgtgzzl

where S(t) = [Eneighbm S; (t)} By swapping the two table entries that are adjacent to
the threshold (i.e., a neighborhood of four cells in state 1 will be mapped to 1 and a
neighborhood of five cells in state 1 will be mapped to 0) one encourages re-shuffling at
the boundary between 1s and 0Os regions. The net effect is one of gradual annealing of
domains: in the long term, each cell behaves as if the vote reflected not only the state of
the immediate neighbors, but also that of cells that are further away from it. Domains
form as in the majority rule but now the boundaries are in continual ferment (Figures 4—
6). We call this rule ¢gnpeq- The filtered cross-section (Figure 6) shows how different
domains are growing. This corresponds to a “block expanding”strategy, in which blocks
of Os or 1s grow so as to take over the lattice [9]. In contrast to @maj, in Pannear there is
some interaction between different domains. But usually the final state of the CA under
Oannear Will contain some small islands of 1s inside a sea of Os or small islands of 0s in a
sea of 1s. Thus neither the majority rule nor the anneal rule perform the p = 1/2 task.

4 Details of Experiments

We used a genetic algorithm (GA) to evolve two-dimensional, binary state CAs to per-
form the p. = 1/2 task. GA are search methods inspired by biological evolution. In a
typical GA, candidate solutions to a given problem are encoded as bit strings (“chro-
mosomes”). A population of such strings is chosen at random and evolves over several
generations under selection, crossover and mutation. At each generation, the fitness of
each bit string is calculated according to some externally imposed fitness function, and the
highest-fitness bit strings are selected preferentially to be the “parents” who form a new
population via crossover and mutation. Under crossover, pairs of parents exchange bits
to form offspring, which are then subject to a small probability of mutation at each bit
position. After several generations, the population often contains high-fitness bit strings
representing high-quality solutions to the given problem. The search mechanism of a GA
requires balancing two objectives: exploiting the best solution and exploring the search
space.

The GA that we used begins with a population of 100 randomly generated chromo-
somes listing the rule-table output bits in lexicographic order of neighborhood patterns.
The size of the rule space the GA searches in this case is 2°'2. The fitness evaluation
for each CA rule is carried out on a lattice of 21x21=441 cells (other experiments have
been done with lattices sizes of 31x31, 41x41, 51x51, 61x61 and 71x71). A rule’s fitness is
estimated by running the rule on I randomly generated initial configurations (ICs) that
are uniformly distributed over p € [0.0,1.0]. We allow each rule to run for a maximum
number M of iterations. Here M = 20 x L. The rule’s fitness Fj(¢) is the fraction of the
ICs on which the rule produces the correct final pattern. No partial credit is given for
partially correct final configurations.
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Figure 7: Best fitness, elite mean fitness, and population mean fitness versus generation for one typical
run maded on a lattice of 21x21 cells; other lattice sizes gives the same plot. Only the firts 50 generations
are shown.

In each generation: (i) A new set of ICs is generated. (ii) Fy(¢) is calculated for
each rule ¢ in the population. (iii) The population is ranked in order of fitness. (iv)
A number E of the highest fitness (“elite”) rules is copied without modification to the
next generation. (v) The remaining P — F rules for the next generation are formed by
single-point crossover between randomly chosen pairs of elite rules. The parent rules are
chosen from the elite with replacement. The offspring from each crossover are each mu-
tated with a probability m, where mutation consists of flipping a randomly chosen bit in a
string. This defines one generation of the GA; it is repeated G times for one run of the GA.

Since I << 2% the fitness function Fj(¢) is only an estimate of the “exhaustive per-
formance “— the performance that would be measured by exhaustively testing a CA on
all 2V 1Cs. Fy(¢) is a random variable, since the precise value it returns for a given rule
depends on the particular set of ICs used to test the rule. Thus, a rule’s fitness can
vary stochastically from generation to generation. For this reason, at each generation the
entire population, including the elite rules, is re-evaluated on a new set of ICs. See [9] for
a discussion of this version of the GA.

5 Results

We performed more than 100 different runs of the GA with the following parameters: for
each CA in the population P = 100; £ = 10; I = 100; m = 0.016; G = 100 ( in some
runs G' was set to 400 ), each with a different random-number seed. The dynamics of a
typical run is shown in Figure 7 which plots the best fitness rule, the elite mean fitness
and the population mean fitness versus the generation for the first 50 generations. Before
the GA discovers high fitness rules, the fitness of the best CA rule increases in rapid
jumps. Qualitatively, the rise in performance can be divided into several “epochs”, each
corresponding to the discovery of a new, significantly improved strategy. In our experi-
ments the different epochs appear in the first 30 generations, by the end of which the GA
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Figure 8: Snapshots of the evolution of rule ¢3 and a filtered diagram of the evolution at time: (a-d) t=0
, (b-e) t=4, (c-f) t=8. Initial condition is py ~ 0.51.

typically has discovered rules with fitness ~ 0.9. In general we found that running the
GA for more generations did not result in improved fitness.

On most runs the GA evolved a rather unsophisticated class of strategies that we have
called “block-expanding” strategies. We will compare these with ¢,,q; and @gnnea-

Here we describe the behavior of the best rules at each epoch in the run plotted in
Figure 7.

Epoch 1

The first epoch starts at generation 0, when the best fitness in the initial generation
is 0.5 and the A values are uniformly distributed between 0.0 and 1.0 ( The A parameter
[7] of a given CA rule is the fraction of non zero output states in the rule table). In this
epoch rules default to either all Os or all 1s, respectively making correct classifications on
half the ICs, and then the highest fitness is 0.5.

In the following figures the lattice size is taken as 127x127 and the CA starts from a
random initial concentration or from some other configurations such as a black square or
a black triangle. We display snapshots of the evolution and some space-time diagrams of
the best fitness rule of the generation in question.

Epoch 2

In generation 3, a new strategy (¢3) ( A & 0.61) is discovered, resulting in significantly
better performance: Fjoo(¢3) = 0.73. The behavior of this rule reveals that it always
defaults to the all 1s configuration except when py ~ 0, in which case it iterates to the
all Os configuration. This second epoch begins when a rule is discovered in which most
neighborhood patterns in the rule table that have p < p. map to 0 and most neighborhood
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Figure 9: Space-time diagram of a filtered cross section of rule ¢3 at = 64 starting with a random
initial condition.

Figure 10: Space-time diagram of a cross section of rule ¢3 at © = 64 starting with an initial condition
that consist of a vertical black and a white domain. Time goes from left to right.



Figure 11: Snapshots of the evolution of rule ¢s and a filtered diagram of the evolution at time: (a-d)
t=3, (b-e) t=6, (c-f) t=20. Initial condition is py =~ 0.51.

patterns in the rule table that have p > p. map to 1. Snapshots of the evolution for the
fittest generation 3 rule ¢3, starting from a random initial condition, is shown in Figure 8.
There are small white domains that move along the diagonal with velocity of -(i4j) using
vectorial notation. In Figure 9 the filtered diagram of a cross-section for the space-time
behavior of ¢3 is shown. The time that the CA needs to go to a fixed configuration is less
than 20 time steps.

In terms of computational mechanics, the strategy used by ¢3 can be explained as
follows: ¢3 creates two domains: all 1s (B) and all 0s (WW). Though the particles that
are created between these domain walls depend on the angle between them, some infor-
mation can be obtained from simple arrangements such as domain walls at 180 degrees
(horizontal walls, configurations of cells: 000-111-111 , 111-000-000, 000-000-111,111-111-
000) and at 90 degrees (vertical walls, configurations of cells: 100-100-100 , 110-110-110,
011-011-011, 001-001-001). The velocities of these particles are given in Table 3. For ¢
we can see that the particles Pgwp and Pgpw both have a velocity of -j and particles
Pywp and Py a velocity of -i . This combination of velocities between these domain
walls causes the irregular domains to move along the diagonal with velocity -(i+j). In
Figure 10 a cross-section from an initial condition that consists only of a vertical B and
W domain can be seen. In this plot time increases from left to right and the vertical axis
represents the positions at which the cross-section is taken. This configuration is dynam-
ically stable but irregularly shaped W domains inside a larger B domain begin to move
along the diagonal and this is accompanied by a shrinking until the W domain disappears.

Epoch 3

In generation 8 a new epoch begins with the discovery of ¢g, where the sharp jump
in fitness (Figo(¢) = 0.92) corresponds to a significant innovation. The typical evolution

10
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Figure 12: Space-time diagram of a filtered cross section of rule ¢35 at x = 64 starting with a random
initial condition po = 0.51.

Figure 13: Space-time diagram of a cross section of rule ¢g at © = 64 starting with an initial condition
that consist of a vertical black and a white domain. Time goes from left to right.
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¢s is illustrated in Figure 11. The small white regions are now larger than in the previ-
ous epoch, and they still move along the diagonal. In Figure 12 the filter diagram of a
cross-section for ¢g is shown. The time that the CA needs to reach a fixed configuration
is increased (= 50 time steps). For ¢g the velocities of Pywp, Pgpw and Pywp are the
same as for ¢3, but the velocity of Py gy is now 0. In this way small islands of black in a
sea of white will shrink and disappear. This can be seen in Figure 13, which started from
an initial condition with a vertical B and W domain. Where the strategy of ¢3 was to
allow some white islands to survive, ¢g discovers a way to expand white islands and thus
correctly classify more ICs with p, < 1/2.

| Wall type | Particle | ¢3 [ ¢s | d12 | doos | D301 |

Horizontal- WB | Pywp | -j |-j | -3 | § | -j

Horizontal-BW |  Pypw - -i |- J -J
Vertical-WB Pyws i [0 0| - i
Vertical-BW Pypw S TS S I B S | 0

Table 3: The particles and their velocities generated by the best rules in different generations. i and j
are unit vectors along the x and y axe respectively.

Epoch 4

The best rule of generation 12, ¢12, has A = 0.52 and Fjgo(¢) = 0.99. Figure 14 illus-
trates its typical evolution. Now the stability of W domains is higher than in the previous
epochs, and W domains continue to move along the diagonal. The boundaries between
black and white domains are now in “ferment” as in the anneal-rule. The filtered space-
time diagram of a cross-section is shown in Figure 15; this displays the domain walls. In
previous generations a fixed state is obtained quickly because A is a high value but for
¢12 there is a more balanced situation and the time that the system needs to go to a fixed
state is higher. The velocities of the particles Pywg, Pasw, Pyws Pyew for ¢4 are the
same that for ¢g. The differences between ¢ and ¢g concern different types of domain
walls. Consider domains with the shape of a square triangle, i.e., there is a domain wall
at 45 degrees and at 135 degrees. There are four different arrangements with the squared
angle of the triangle at position (0,0), (0,1),(1,1) and (1,0) (these arrangements will be
labeled as t1, t2, t3, and t4). Figure 16 displays the space-time behavior of ¢g starting
with an initial configuration containing a black t1 inside a sea of white cells. Here, a
cross-section of the two-dimensional CA has been taken at a position that coincides with
the domain wall W-B that is fixed. As the Pypw moves with velocity 4+j and the new
P,ywp moves down, the island of black cells shrinks until it disappears. The strategy
implemented by ¢1o (Figure 17) is completely different. Here the new particle Pywp
transforms into different particles until a vertical Py gy is formed. This has a velocity of
-i that quickly reaches the other side and the t1 vanishes abruptly.

In summary: In this run, all of the evolved rules have a A > 0.5. This means that
most neighborhoods are mapped to 1. Thus, initial conditions with p, > p. will be easily

12



Figure 14: Snapshots of the evolution of rule ¢ and a filtered diagram of the evolution at time: (a-g)
t=0, (b-h) t=20, (c-i) t=45, (d-j) t=75, (e-k) t=100, (f-1) t=150. Initial condition is py > 0.5.
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Figure 15: Space-time diagram of a filtered cross section of rule ¢12 at x = 64 starting with a random
initial condition.
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Figure 16: Space-time diagram of a cross section of rule ¢g at © = 64 starting with an initial condition
that consist of a black triangle t1 into a sea of white cells. Time goes from left to right.

Figure 17: Space-time diagram of a cross section of rule ¢1, at © = 64 starting with an initial condition
that consist of a black t1 into a sea of white domain. Time goes from left to right.

14



classified correctly, but many initial conditions with p, < p. will be misclassified. The
best evolved rules are those that have found some kind of mechanism to correctly classify
initial conditions with p, < p.. As can be seen in Table 3, the different particles described
allow W domains to survive or expand inside larger B domains.

CA Rule Table Hexadecimal code Symbol N=441 | N=961 | N =1681
Majority 00000001-00010117-00010117-0117177f Gmaj 0 0 0
00010117-0117177£-0117177£-177{7£Ef
00010117-0117177£-0117177£-177f71f
01171771777 -1 77E 7 (- THITEE
Anneal 00010116-01161669-01161669-16696997 bann 0.359 0.278 0.215
01161669-16696997-16696997-6997977f
01161669-16696997-16696997-6997977f
16696997-6997977f-6997977{-97T{7 It
B-Expand-1 || 00000000-00102010-00000041-00246004 P12 0.660 0.653 0.639
20050032-00048320-12adeebe-d7d2d6£7
4fb7tba8-51d7{7H-Tca7fbf7-cfdf 7t
bfe37feb-fitttt-ed 6fefff-95{Fof
B-Expand-2 || 0122043b-0134057d-453c380f-2374df9d P208 0.679 0.654 0.611
122ee407-56d07dcb-6247c506-07df27F
04255459-0d8b91cf-44617bb7-5cT477E
2ble4bed-e3870f27-2b7c2337-3{H877f
B-Expand-3 || 0003606c-00cd4096-1117160a-87272841 $301 0.690 0.652 0.641
10110225-759e457f-29d9653 7-9{6fbf7{
173652be-45ab1369-913f8849-7b7cb3df
00723337-537{td 7f-b38f97fd-575fddd7

Non-Local o (r=10) 0.794 0.789 0.782
3-majority
GKL PGKL 0.873 0.854 0.842

Table 4: Measured values of PIJX4 at various values of IV for different rules: the majority rule, the anneal

rule, three of the rules discovered by the GA in different runs, a non-local majority vote among three
different cells taken inside a Moore neighborhood of radius r = 10 , and the two-dimensional GKL rule.
To recover the 512-bit string giving the output bits of the rule table, expand each hexadecimal digit to
binary. The output bits are then given in lexicographic order.

The best rules discovered by the GA in all runs are : ¢391, A = 0.51 and ¢z, A = 0.51.
In Figure 18 snapshots of the evolution of ¢opg starting from a random initial condition
is shown. For this rule the previous movement of white regions inside a sea of black cells
no longer exists. The filtered space-time diagram, shown in Figure 19, shows that at
the boundaries between domains there is some kind of transmission of information in the
sense of complex structures that propagate during short periods of time and for small
distances (Figure 18d,f). This can be seen clearly from an initial condition that consists
of a triangle t3 inside a white sea (Figure 20) where a group of three vertical straight lines
of (0-0-0-0),(1-1-1-1) and (0-1-0-1) cells is propagating from right to left. In Figures 21
and 22, a cross section of ¢gps’s space-time diagram made at positions (y=94 and y=98)
is shown. In 22 it can be observed that when the structure arrives to the other side of the
B domain the boundary is destroyed more rapidily.

The typical evolution of ¢3; is shown in Figure 23. As in the previous rules ¢so;’s
strategy primarily consists of expanding blocks of white(black) inside a sea of black(white)

15
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Figure 18: Snapshots of the evolution of rule @05 and a filtered diagram of the evolution at time: (a-g)
t=5, (b-h) t=10, (c-i) t=30, (d-j) t=60, (e-k) t=140, (f-1) t=330. Initial condition is py < 0.5.

0000000,

Boe &0 og
%@%@g@o&%@

P

¥ el )
L G .

%&%%

o I I I I I
20 40 60 80 100 120
Time

Figure 19: Space-time diagram of a filtered cross-section of rule ¢ops.
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Figure 20: Snapshot of the evolution of rule ¢29g starting with an initial condition that consists on a
black t3 triangle into a sea of white cells at time ¢ = 34. Inside the black domain it can be observed a
structure that is moving to the left (-i ).

Figure 21: Cross section of rule ¢2ps at position y = 94 corresponding to Figure 20

Figure 22: Cross section of rule ¢o0g at position y = 98 corresponding to Figure 20

17
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Figure 23: Snapshots of the evolution of rule ¢3o1 at time: (a)t=0, (b) t=10, (c) t=40, (d) t=70, (e)
t=160, (f) t=350. Initial condition is py > 0.5.

100 120

Figure 24: Space-time diagram of a cross section of rule ¢39; at z = 64
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Figure 25: Snapshot of the evolution of rule ¢39; starting with an initial condition that consists on a
black t3 triangle into a sea of white cells at time ¢ = 24. Inside the black domain it can be observed a
structure that is moving up with velocity (4j )

Figure 26: Cross section of rule ¢391 at position z = 90 corresponding to Figure 25

0.4 . N=21x21—
"ol N=31x31 o
N=41x41---

fraction of correct classifications

0.2

Figure 27: Fraction of correct classifications versus pg maded by rule ¢391 for three lattice sizes: 21x21,
31231 and 41x41 .
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Figure 28: Averaged time to go to a fixed configuration versus po for rule ¢3g1 for three different lattice
sizes: 21221, 31231 and 41x41.

(“block-expanding”). The difference between ¢sq; and previous rules is the existence of
fixed boundaries. As can be seen in Figure 23d,e, and f, in order to eliminate a white
domain inside a black sea, the rule has found a fixed boundary; thus the process of
elimination is not done along the whole perimeter of the domain. For this type of block-
expanding rule, information must be processed along the boundaries between white and
black domains, and the strategy of ¢39; consists mainly in reducing such boundaries.
Starting from an initial condition such a black triangle (t3) inside a white sea it can
be observed (Figure 25) that the particles Pygw and Pispw have zero velocity, and the
shrinking of the black domain is mainly done through the movement of Py p. There is
also a horizontal straight line of cells (1-0-1-0) that propagates inside the black domain
with a velocity of j. The effect of this propagating structure is interesting because it is
a way of sending information between two sides of a black domain, and in this way the
information is not only processed along the boundaries. In Figure 26 a cross-section taken
at the plane x=90 shows the way in which the structure propagates from side to side. The
lower part of the Figure 26 corresponds to the vertical B and W boundary and the upper
to the horizontal W and B which is moving down in Figure 25. When the propagating
structure collides with Ppwp , the structure is absorved and the velocity of Pywp is
lowered. Plot of the fraction of correct classifications made by this rule versus py for three
different lattice sizes are shown in Figure 27. All the misclassifications occur around p,.
and the error region decreases as lattice size increases. In Figure 28, the average time that
the CA needs to iterate to a fixed point is also shown. As can be seen from the Figure 27
and Figure 28 rule, Fipo(¢301) does not scale well with lattice size. The performance de-
creases for larger lattice sizes since the block to expand was tuned by the GA for N = 441.

Performance of the Best Rules

Under Figo(¢) the fittest rules evolved by the GA obtained fitnesses between 0.9 and
1.0 for different sets of ICs. A more indicative performance measure is the “unbiased
performance”, P (), defined as the fraction of I ICs chosen from an unbiased distri-
bution over p on which ¢ produces the correct final pattern on a lattice of size N after
2 % N time steps. With an unbiased distribution most ICs chosen have p ~ 0.5. Table
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Figure 29: Performance of the non-local majority rule ¢ versus r.

4 shows the performance of some of the rules evolved by the GA, as well as ¢,,,; and
Panneai- The highest measured P[.(¢) of the GA evolved rules was approximately 0.69
for a lattice of 441 cells for the rule ¢3;. This value is higher than the performances of
the block-expanding rules found in one dimension, whose values are around 0.65 for a
lattice of 149 cells [9]. In both one and two dimensions, as N increases the performance
of the rules decreases.

Table 4 also lists the performance of a non-local majority rule vote among 3-cells ¢,
that is defined as follows:

s;(t + 1)= majority [ s,(t), s;(t), sk(t)]

where s;(t) and sj(t) (i # j # k) are picked randomly inside a Moore-neighborhood of
radius r around s;(¢). Many properties of non-local CAs were investigated by Li [8]. The
performance of ¢y, versus r is shown in Figure 29. For r = 5 the performance of this rule
seems to be not dependent on r and has a value ~ 0.79. However the best performance
rule for the p = 1/2 task seems to be a two dimensional version of the GKL rule [5, 9].

The Two-Dimensional GKL rule

The one-dimensional Gacs,Kurdyumov and Levin (GKL) CA is defined by the following
rule:

If s;(t) = 0, then s;(t + 1) = majority]| s;(t), s;_1(t), s;i—3(t)]
If s;(t) = 0, then s;(t + 1) = majority]| s;(¢), si+1(t), Siv3(t)]

For the two-dimensional version, this rule is applied during one time step in the hori-
zontal direction and in the next time step in the vertical direction. The rule hasa A = 1/2
and two absorbing states, i.e., the final state consists of every cell 0 or every cell 1. From
an initial condition the GKL evolves towards one of the absorbing states and there is a
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Figure 30: Space-time behavior of a cross section of the GKL rule maded at position z = 64 , starting
from an initial condition that consists of a square black inside a sea of white cells. The initial condition
has pg < 0.5. Time goes from left to right.

Figure 31: Space-time behavior of a cross section of the GKL rule maded at the diagonal (z = y)
corresponding to Figure 30
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Figure 32: Space-time behavior of a cross section of ¢pgxi at position z = 64 starting from a random
initial condition py > 0.5.
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Figure 33: Filtered diagram corresponding to Figure 32
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Figure 34: Log-log plot of the performance of ¢gx versus the number of cells. Pf};l(gzﬁGKL) ~ N% with
a~ —0.06.
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transient during which spatial and temporal transfers of information take place around
local neighborhoods. The GKL CA classifies local regions and the classified region grows
with time. In regions where there is some ambiguity a ”"signal” is propagated. This is
seen either as checkerboard patterns or as white-to-black boundaries , both with p = p. .
These signals indicate that the classification is to be made at a larger scale.

In Figure 30 the initial condition consists of a square black region inside a sea of white
cells (the initial condition has p < 1/2 so that the final configuration should be a W
domain). We took a cross-section at the mean point while in Figure 31 the cross-section
is taken along the diagonal. As can be seen, at the boundary between B and W domains
a particle Pgy is formed and produces a checkerboard-like pattern. For the GKL rule
there are at least 18 different regular domains. A cross-section space-time diagram and
a filtered version of that diagram for a random initial condition are shown in Figures 32
and 33 . For this rule there is transmission of information between distant regions of the
CA. The performance of the GKL is 0.873 for a lattice size of 441 and as the lattice size
increases the performance decreases slowly with a scaling exponent of ~ —0.06 as can be
seen in Figure 34. We are currently working on a computational-mechanics analysis of
this rule’s computational strategy.

6 Conclusion

To date, the best two-dimensional rules evolved by the GA in our experiments imple-
ment unsophisticated “block-expanding” strategies Although they have higher perfor-
mance than that of simple hand-designed rules such as the majority or the anneal-rule,
their performance is lower than that of the two-dimensional GKL rule and the non-local
majority rule, and that of the high-performance rules evolved by the GA in the one-
dimensional case [2, 4].

Why did the GA not find higher-performance rules with much better performance ?

Some of the impediments that the GA has in evolving one-dimensional CAs to perform
the p = 1/2 have been discussed in [10]. In the case of two-dimensional CAs, some of the
possible impediments are:

a)The breaking of symmetries in early generations for short-term fitness gain [9]. In
two-dimensional CAs this is amplified by the fact that the block-expanding rules in two
dimensions have higher fitness than in one-dimensional CAs.

b) The symmetries in the bit-string encoding may influence that the search strategy
of the GA. For example, consider neighbors such as those represented in Table 5 and 6:

11010
0(0]0
0(0]0

Table 5: Neighbor at the 2-position
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Table 6: Neighbor at the 257-position

These two neighborhood configurations are 255 positions apart from one another other
in the rule-table, but considering a simple rotation symmetry they represent the same
neighborhood.

c¢) The rules that have the highest performance, the GKL and the non-local majority
vote rules, have radius r greater than 1 The CAs in our GA experiments had » = 1. Tt
may be the case that there are no r = 1 CAs that perform the p = 1/2 task well.

What needs to be done next?

One possible way to improve the results of our GA experiment is to modify the en-
coding of look-up tables so that neighborhoods that are the same when considering the
different symmetries are mapped to the same value in the rule table. Also the neigh-
borhood ordering in the look up table could be modified so that very high and very low
density neighborhoods are close together. Another possibility is to encode CA look-up
tables as arrays instead of as simple bit-strings and to have crossover and mutation could
work directly on such structures. Finally, experiments should be done using CAs with an
increased neighborhood radius. The next step in this work-in-progress is to experiment
with these modifications.
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