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Copycat and Mental Fluidity

Copycat is a computer program designed to be able to discover insightful
analogies, and to do so in a psychologically realistic way. Copycat’s architecture
is neither symbolic nor connectionist, nor was it intended to be a hybrid of the
two (although some might see it that way); rather, the program has a novel type
of architecture situated somewhere in between these extremes. It is an emergent
architecture, in the sense that the program’s top-level behavior emerges as a
statistical consequence of myriad small computational actions, and the concepts
that it uses in creating analogies can be considered to be a realization of
“statistically emergent active symbols” (Chapter 26 of Hofstadter, 1985). The
use of parallel, stochastic processing mechanisms and the implementation of
concepts as distributed and probabilistic entities in a network make Copycat
somewhat similar in spirit to certain connectionist systems. However, as will be
seen, there are important differences, and we claim that the middle ground in
cognitive modeling occupied by Copycat is at present the most useful level at
which to attempt to understand the fluidity of concepts and perception that is
so clearly apparent in human analogy-making.

Analogy problems in the Copycat domain
The domain in which Copycat discovers analogies is very small but surpris-

ingly subtle. Not to beat around the bush for a moment, here is an example of
a typical, rather simple analogy problem in the domain:
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1. Suppose the letter-string abc were changed to abd; how would

you change the letter-string ijk in “the same way'?

Note that the challenge is essentially “Be a copycat” — that is, “Do the same
thing as I did”, where «“same” of course is the slippery term. Almost everyone
answers ijl.1 It is not hard to see why; most people feel that the natural way to
describe what happened to abc is to say that the rightmost letter was replaced by its
alphabetic successor; that operation can then be painlessly and naturally “ex-
ported” from the abcframework to the other framework, namely ijk, to yield the
answer ijl. Of course this is not the only possible answer. For instance, it is always
possible to be a «smart aleck” and to answer ijd (rigidly choosing to replace the
rightmost letter by d) or yk (rigidly replacing all ¢’s by d’s) or even abd
(replacing the whole structure blindly by abd), but such “smart-alecky” answers
are suggested rather infrequently, and when they are suggested, they seem less
compelling to virtually everybody, even to the people who suggested them. Thus
ijlis a fairly uncontroversial winner among the range of answers to this problem.

There is much more subtlety to the domain than that problem would
suggest, however. Letus consider the following closely related but considerably
more interesting analogy problem:

2. Suppose the letter-string aabcwere changed to aabd; how would
you change the letter-string ikk in “the same way’?

Here as in Problem 1, most people look upon the change in the first framework
as the rightmost letter was replaced by its alphabetic successor. Now comes the tricky part:
should this rule simply be transported rigidly to the other framework, yielding
ijkl? Although rigid exportation of the rule worked in Problem 1, here it seems
rather crude to most people, because it ignores the obvious fact that the k is
doubled. The two k's together seem €0 form a natural unit, and so itis tempting
to change both of them, yielding the answer ijll. Using the old rule literally will
simply not give this answer; instead, under pressure, one «flexes” the old rule into
a very closely related one, namely replace the rightmost group by its alphabetic successor.
Here, the concept letter has “slipped”, under pressure, into the related concept
group of letters. Coming up with such a rule and corresponding answer is a good
example of human mental “fluidity” (as contrasted with the mental rigidity that
gives rise to ijkl). There is more to the story of Problem 2, however.

Many people are perfectly satisfied with this way of exporting the rule (and
the answer it furnishes), but some feel dissatisfied by the fact that the doubled
ain aabc has been ignored. Once one focuses in on this consciously, it jumps to

1. Though the popularity of this answer can easily be predicted by one’s intuition, we have carried
out many surveys, both formal and informal, of people’s answers to this and other problems. The
results of the formal surveys are given in Mitchell, 1993.
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mind easily that the aa and the kk play similar roles in their respective frame-
works. From there it is but a stone’s throw to “equating” them (as opposed to
equating the c¢ with the kk), which leads to the question, “What then is the
counterpart of the ¢?” Given the already-established mapping of leftmost object
(aa) onto rightmost object (kk), it is but a small leap to map rightmost object (c)
onto leftmost object (i). At this point, we could simply take the successor of the
i, yielding the answer jjkk.

However, few people who arrive at this point actually do this; given that
the two crosswise mappings (ae < kk; ¢ < i) are an invitation to read #kk in
reverse, which reverses the alphabetical flow in that string, most people tend to
feel that the conceptual role of alphabetical successorship in aabc is now being
played by that of predecessorship in jkk. In that case, the proper modification of
the 2would not be to replace it by its successor, but by its alphabetical predecessor,
yielding the answer hjkk. And indeed, this is the answer most often reached by
those people who consciously try to take into account both of the doubled letters.
Such people, under pressure, have flexed the original rule into this variant of
itself: replace the leftmost letter by its alphabetic predecessor. Another way of saying
this is that a very fluid transport of the original rule from its home framework
to the new one has taken place; during this transport, two concepts “slipped”,
under pressure, into neighboring concepts: rightmost into leftmost, and successor
into predecessor Thus, being a copycat — that is, “doing the same thing” — has
proven to be a very slippery notion, indeed.

Mental fluidity: Slippages induced by pressures

Hopefully, the pathways leading to these two answers to Problem 2 — il
and hjkk — convey a good feeling for the term “mental fluidity”. There is,
however, a related notion used above that still needs some clarification, and that
is the phrase “under pressure”. What does it mean to say “concept A slips into
concept B under pressure”? It might help to spell out the intended imagery
behind these terms. An earthquake takes place when subterranean structures
are under sufficient pressure that something suddenly slips. Without the pres-
sure, obviously, there would be no slippage. An analogous statement holds for
pressures bringing about conceptual slippage: only under specific pressures will
concepts slip into related ones. For instance, in Problem 2, pressure results from
the doubling of the a and the k; one could look upon the doubling as an
“emphasis” device, making the left end of the first string and the right end of
the second one stand out and in some sense “attract” each other. In Problem 1,
on the other hand, there is nothing to suggest mapping the a onto the k— no
pressure. In the absence of such pressure, it would make no sense at all to slip
leftmostinto rightmost and then to read #k in reverse, which would in turn suggest

a slippage of successor into predecessor, all of which would finally lead to the
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downright bizarre answer hjk. That would be unmotivated fluidity, which is not
characteristic of human thought (except in humor, where higher-level consid-
erations often do motivate all sorts of normally-unmotivated slippages).

Copycat is a thoroughgoing exploration of the nature of mental pressures,
the nature of concepts, and their deep interrelationships, focusing particularly
on how pressures can engender slippages of concepts into “neighboring”
concepts. When one ponders these issues, many questions arise, such as the
following ones: What is meant by “neighboring concepts”? How much pressure
is required to make a given conceptual slippage likely? Just how big a slippage
can be made — that is, how far apart can two concepts be and still be potentially
able to slip into each other? How can one conceptual slippage create a new
pressure leading to another conceptual slippage, and then another, and so on,
in a cascade? Do some concepts resist slippage more than others? Can particular
pressures nonetheless bring about a slippage of such a concept while another
concept, usually more “willing” to slip, remains untouched? Such are the
questions at the very heart of the Copycat project.

The intended universality of Copycat’s microdomain

This project, which sprang out of two predecessors, Seek-Whence
(Meredith, 1986) and Jumbo (Hofstadter, 1983a), has been under development
since 1983. A casual glance at the project might give the impression that since
it was specifically designed to handle analogies in a particular tiny domain, its
mechanisms are not general. However, this would be a serious misconception.
All the features of the Copycat architecture were in fact designed with an eye to
great generality. A major purpose of this article is to demonstrate this generality
by describing the features of Copycat in very broad terms, and to show how they
transcend not just the specific microdomain, but even the very task of analogy-
making itself. That is, the Copycat project is not about simulating analogy-
making per se, but about simulating the very crux of human cognition: fluid
concepts. The reason the project focuses upon analogy-making is that analogy-
making is perhaps the quintessential mental activity where fluidity of concepts
is called for, and the reason the project restricts its modeling of analogy-making
to a specific and very small domain is that doing so allows the general issues to
be brought out in a very clear way — far more clearly than in a “real-world”
domain, despite what one might think at first.

Copycat’s microdomain was designed to bring out very general issues —
issues that transcend any specific conceptual domain. In that sense, the micro-
domain was designed to “stand for” other domains. Thus one is intended to
conceive of, say, the successor (or predecessor) relation as an idealized version of
any non-identity relationship in a real-world domain, such as “parent of”,
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“neighbor of ”, “friend of ”, “employed by”, “close to”, etc. A successor group (e.g.,
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abe) then plays the role of any conceptual chunk based on such a relationship,
such as “family”, “neighborhood”, “‘community”, “workplace”, “region”, etc. Of
course, inclusion of the notion of sameness needs no defense; sameness is
obviously a universal concept, much as is opposite. Although any real-world
domain clearly contains many more than two basic types of relationship, two
types (sameness plus one other one) already suffice to make an inexhaustible
variety of structures of arbitrary complexity.

Aside from the idealized repertoire of concepts in the domain, there are
also the structures, such as ijkk, out of which problems are made. In particular,
allowed structures are linear strings made from any number — usually a small
number — of instances of letters of the alphabet. Thus one immediately runs
into the type/token distinction, a key issue in understanding cognition. The
alphabet can be thought of as a very simple “Platonic heaven” in which, exactly
26 letter types permanently float in a fixed order; in contrast to this, there is a
very rudimentary “physical world” in which any number of letter tokens can
temporarily coexist in an arbitrary one-dimensional Juxtaposition. In this ex-
tremely simple model of physical space, there are such physical relationships
and entities as left-neighbor; leftmost edge, group of adjacent letters, and so on (as
contrasted with such relationships and entities in the Platonic alphabet as
predecessoy, alphabetic starting-point, alphabetic segment, etc.). Both the Platonic
heaven and the physical world of Copycatare very simple on their own; however,
the psychological processes of perception and abstraction bring them into
intimate interaction, and can cause extremely complex and subtle mental
representations of situations to come about.

Copycat’s alphabetic microworld is meant to be a tool for exploring
general issues of cognition rather than issues specific to the domain of letters
and strings, or domains restricted to linear structures with precise distances in
them. Thus certain aspects specific to people’s knowledge of letters and letter-
strings — such as shapes, sounds, or cultural connotations of specific letters, or
words that strings of letters might happen to form — have not been included
in this microworld. Moreover, problems should not depend on arithmetical
facts about letters, such as the fact that £ comes exactly eleven letters after i, or
that m and n flank the midpoint of the alphabet. Arithmetical facts, while they
are universal truths, are not common enough in analogy-making to be worth-
while modeling. This may seem to eliminate almost everything about the
alphabet, but as Problems 1 and 2 show (and further problems will show even
better), there is still plenty left to play with. Reference to the alphabet’s local
structure is fine; for example, it is perfectly legitimate to exploit the fact that u
comes immediately after ¢ It is also legitimate to exploit the fact that the
Platonic alphabet has two distinguished members — namely, @ and z, its starting
and ending points. Likewise, inside a string such as hagizk, local relationships,
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such as “the gis the right-neighbor of the a”, can be noticed, but long-distance
observations, such as “the a is four letters to the left of the k”, are considered
out of bounds.

Although arithmetical operations such as addition and multiplication play
no role in the Copycat domain, numbers themselves — small whole numbers,
that is — are included in the domain. Thus, Copycat is capable of recognizing
not only that the structure fgh is a “successor group”, but also that it consists of
three letters. Just as the program knows the immediate neighbors of every letter
in the alphabet, it also knows the successors and predecessors of small integers.
Under the appropriate pressures, Copycat can even treat small integers as it
does letters — it can notice relationships between numbers, can group numbers
together, map them onto each other, and so on. However, generally speaking,
Copycat tends to resist bringing numbers into the picture, unless there seems
to be some compelling reason to do so — and large numbers, such as b, are
resisted even more strongly. The idea behind this is to reflect the relative ease
humans have of recognizing pairs and perhaps trios of objects, but the relative
insensitivity to such things as quintuples, let alone septuples and so on.

Finally, while humans tend to scan strings of roman letters from left to
right, are much better at recognizing forwards alphabetical order than back-
wards alphabetical order, and have somewhat greater familiarity with the begin-
ning of the alphabet than its middle or end, the Copycat program is completely
free of these biases. This should not be regarded as a defect of the program, but
a strength, because it keeps the project’s focus away from domain-specific and
nongeneralizable details.

A perception-based, emergent architecture for mental fluidity

When one describes the Copycat architecture in very abstract terms, the
focus is not only on how it discovers mappings between situations, but also on
how it perceives and makes sense of the miniature and idealized situations it is
presented with. The present characterization will therefore read very much like
a description of a computer model of perception. This is not a coincidence; one
of the main ideas of the project is that even the most abstract and sophisticated
mental acts deeply resemble perception. In fact, the inspiration for the archi-
tecture comes in part from a computer model of low-level and high-level
auditory perception: the Hearsay Il speech-understanding project (Erman et
al., 1980; Reddy et al., 1976).

The essence of perception is the awakening from dormancy of a relatively
small number of prior concepts — precisely the relevant ones. The essence of
understanding a situation is very similar; it is the awakening from dormancy of
a relatively small number of prior concepts — again, precisely the relevant ones

— and applying them judiciously so as to identify the key entities, roles, and
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relationships in the situation. Creative human thinkers manifest an exquisite
selectivity of this sort — when they are faced with a novel situation, what bubbles
up from their unconscious and pops to mind is typically a small set of concepts
that “fit like a glove”, without a host of extraneous and irtelevant concepts being
consciously activated or considered. To get a computer model of thought to
exhibit this kind of behavior is a great challenge.

Following this introductory section, there are six further main sections in
this article. The second section is a description of the three main components
of the architecture and their interactions. The third section deals with the
notion of conceptual fluidity and shows how this architecture implements a
model, albeit rudimentary, thereof. The fourth section tackles the seeming
paradox of randomness as an essential ingredient of mental fluidity and intel-
ligence. The fifth section views the Copycat program at a distance, summarizing
thousands of runs on a few key problems in the letter-string microworld. The
sixth section affords a close-up view of Copycat’s workings, describing in detail
the pathways followed by Copycat as it comes up with subtle answers to two
particularly challenging analogy problems. The seventh section concludes the
article with a discussion of the generality of Copycat’s mechanisms.

The Three Major Components of the Copycat Architecture

There are three major components to the architecture: the Slipnet, the
Workspace, and the Coderack. In very quick strokes, they can be described as
follows. (1) The Slipnet is the site of all permanent Platonic concepts. It can be
thought of, roughly, as Copycat’s long-term memory. As such, it contains only
concept ypes, and no instances of them. The distances between concepts in the
Slipnet can change over the course of a run, and it is these distances that
determine, at any given moment, what slippages are likely and unlikely. (2) The
Workspace is the locus of perceptual activity. As such, it contains instances of
various concepts from the Slipnet, combined into temporary perceptual structures
(e.g., raw letters, descriptions, bonds, groups, and bridges). It can be thought
of, roughly, as Copycat’s short-term memory or working memory, and resembles
the global “blackboard” data-structure of Hearsay II. (3) Finally, the Coderack
can be thought of as a “stochastic waiting room”, in which small agents that
wish to carry out tasks in the Workspace wait to be called. It has no close
counterpart in other architectures, but one can liken it somewhat to an agenda
(a queue containing tasks to be executed in a specific order). The critical
difference is that agents are selected stochastically from the Coderack, rather
than in a determinate order. The reasons for this initially puzzling feature will
be spelled out and analyzed in detail below. They turn out to be at the crux of
mental fluidity.
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We now shall go through each of the three components once again, this \
time in more detail. (The finest level of detail — complete lists of algebraic
formulas, pumerical parameters, and their exact values — is not given here, but
can be found in Mitchell, 1993.)

The Slipnet — Copycat’s network of Platonic concepls

The basic image for the Slipnet is that of a network of interrelated
concepts, each concept being represented by a node (caveat: what a concept is,
in this model, is actually 2 bit subtler than just a pointlike node, as will be
explained shortly), and each conceptual relationship by 2 link having 2 npumeri-
cal length, representing the “conceptual distance” between the two nodes
involved. The shorter the distance between two concepts is, the more easily
pressures can induce a slippage between them.

Some of the main concepts in Copycat’s Slipnet are: &, b, ¢ .. % letter,
SUCCESSoT,; predecessor, .alphabetic—ﬁrst, alphabetic—last, alphabetic position, left, right,
direction, leftmost, rightmost, middle, string position, group, sameness group, SUCCESSOT
group, predecessor group, group length, 1, 2, 3, sameness, and opposite. 1n all, there
are roughly 60 concepts.

The Slipnet is not static; it dynamically responds to the situation at hand
as follows: Nodes acquire varying levels of activation (which can be thought of
as a measure of relevance to the situation at hand), spread varying amounts of
activation to neighbors, and over ime lose activation by decay. Activation is not
an on-and-off affair, but varies continuously. However, when a2 node’s activation
crosses a certain critical threshold, the node has a probability of jumping
discontinuously into 2 state of full activation, from which it proceeds to decay.

e i T

In sum, the activation — the perceived relevance — of each concept is a
sensitive, time-varying function of the way the program currently understands
the situation it is facing.

Conceptual links in the Slipnet adjust their lengths dynamically. Thus,
conceptual distances gradually change under the influence of the evolving
perception (or conception) of the situation at hand, which of course means that
the current perception of the situation enhances the chance of certain slippages
taking place, while rendering that of others more remote.

Conceptual depth

Fach node In the Slipnet has on¢ very important static feature called its ;
conceptual depth- This is a number intended to capturc the generality and ' ;
abstractness of the concept. For example, the concept opposite is deeper than .
the concept successor which is in turn deeper than the concept a. It could be

said roughly that the depth of 2 concept is how far that concept is from being

directly perceivable in situations. For example, in Problem 2, the presence of
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instances of ais trivially perceived; recognizing the presence of successorship takes
a little bit of work; and recognition of the presence of the notion opposite is a
subtle act of abstract perception. The further away a given aspect of a situation
is from direct perception, the more likely it is to be involved in what people
consider to be the essence of the situation. Therefore, once aspects of greater
depth are perceived, they should have more influence on the ongoing percep-
tion of the situation than aspects of lesser depth.

Assignment of conceptual depths amounts to an a priori ranking of “best-
bet” concepts. The idea is that a deep concept (such as opposite) is normally
relatively hidden from the surface and cannot easily be brought into the
perception of a situation, but that once it is perceived, it should be regarded as
highly significant. There is of course no guarantee that deep concepts will be
relevant in any particular situation, but such concepts were assigned high
depth-values precisely because we saw that they tend to crop up over and over
again across many different types of situations, and because we noticed that the
best insights in many problems come when deep concepts “fit” naturally. We
therefore builtinto the architecture a strong drive, if a deep aspect of a situation
is perceived, to use it and to try to let it influence further perception of the
situation.

Note that the hierarchy defined by different conceptual-depth values is
quite distinct from abstraction hierarchies such as

poodle = dog = mammal = animal = living thing = thing.

These terms are all potential descriptions of a particular object at different levels
of abstraction. By contrast, the terms a, successor, and opposite are not descrip-
tions of one particular objectin Problem 2, but of various aspects of the situation,
at different levels of abstraction.

Likewise, conceptual depth is not the same as Gentner’s notion of “ab-
stractness” (Gentner, 1983). In Gentner’s theory, attributes (e.g., “the leftmost
letter has value @”) are invariably less abstract than relations (e. g., “the next-to-
leftmost letter is the successor of the leftmost letter”), which are in turn
invariably less abstract than relations between relations (e.g., “successor is the
opposite of predecessor”). This heuristic, based on syntactic structure, often
agrees with our conceptual-depth hierarchy, but in Copycat certain “attributes”

are considered to be conceptually deeper than certain “relations” — for exam-
ple, alphabeticfirst has a greater depth than successor because we consider the
former to be less directly perceivable than the latter. (In the following chapter,
we go into considerably more detail in contrasting Gentner’s work with ours.)
Conceptual depth has a second important aspect — namely, the deeper a
concept is, the more resistant it is (all other things being equal) to slipping into
another concept. In other words, there is a built-in propensity in the program
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to prefer slipping shallow concepts rather than deep concepts, when slippages
have to be made. The idea of course is that insightful analogies tend to link
situations that share a deep essence, allowing shallower features to slip if neces-
sary. This basic idea can be summarized in a motto: Deep stuff doesn’t slip in good
analogies. There are, however, interesting situations in which specific constella-
tions of pressures arise that cause this basic tendency to be overridden.

Activation flow and variable link-lengths

Some details about the flow of activation: (1) each node spreads activation
to its neighbors according to their distance from it, with near neighbors getting
more, distant neighbors less; (2) each node’s conceptual-depth value sets its
decay rate, in such a way that deep concepts always decay slowly and shallow
concepts decay quickly. This means that, once a concept has been perceived as
relevant, then, the deeper it is, the longer it will remain relevant, and thus the
more profound an influence it will exert on the system’s developing view of the
situation — as indeed befits an abstract and general concept likely to be close
to the essence of the situation.

Some details about the Slipnet’s dynamical properties: (1) there are a
variety of link types, and for each given type, all links of that type share the same
label; (2) each label is itself a concept in the network; (8) every link constantly
adjusts its length according to the activation level of its label, with high activation
giving rise to short links, low activation to long ones. Stated another way: If
concepts A and B have a link of type L between them, then as concept L’s
relevance goes up (or down), concepts Aand B become conceptually closer (or
further apart). Since this is happening all the time all throughout the network,
the Slipnet is constantly altering its “shape” in attempting to mold itself increas-
ingly accurately to fit the situation at hand. An example of a label is the node
opposite, which labels the link between nodes right and left, the link between
nodes successor and predecessor; and several other links. If the node opposite gets
activated, all these links will shrink in concert, rendering the potential slippages
they represent more probable.

The length of a link between two nodes represents the conceptual pfox-
imity or degree of association between the nodes: the shorter the link, the
greater the degree of association, and thus the easier it is to effect a slippage
between them. There is a probabilistic “cloud” surrounding any node, repre-
senting the likelihood of slippage to other nodes; the cloud’s density is highest
for near-neighbor nodes and rapidly tapers off for distant nodes. (This is
reminiscent of the quantum-mechanical “electron cloud” in an atom, whose
probability density falls off with increasing distance from the nucleus.) Neigh-
boring nodes can be seen as being included in a given concept probabilistically,
as a function of their proximity to the central node of the concept.
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Concepts as diffuse, overlapping clouds

This brings us back to the caveat mentioned above: Although itis tempting
to equate a concept with a pointlike node, a concept is better identified with
this probabilistic “cloud” or halo centered on a node and ektending outwards
from it with increasing diffuseness. As links shrink and grow, nodes move into
and out of each other’s halos (to the extent that one can speak of a node as
being “inside” or “outside” a blurry halo). This image suggests conceiving of
the Slipnet not so much as a hard-edged network of points and lines, but rather
as a space in which many diffuse clouds overlap each other in an intricate,
time-varying way.

Conceptual proximity in the Slipnet is thus context-dependent. For exam-
ple,in Problem 1, no pressures arise that bring the nodes successor and predecessor
into close proximity, so a slippage from one to the other is highly unlikely; by
contrast, in Problem 2, there is a good chance that pressures will activate the
concept opposite, which will then cause the link between successor and predecessor
to shrink, bringing each one more into the other’s halo, and enhancing the
probability of a slippage between them. Because of this type of context-
dependence, concepts in the Slipnet are emergent, rather than explicitly defined.

The existence of an explicit core to each concept is a crucial element of
the architecture. Specifically, slippability depends critically on the discrete jump
from one core to another. Diffuse regions having no cores would not permit
such discrete jumps, as there would be no specific starting or ending point. Even
an explicit nameattached to a coreless diffuse region could serve as a substitute
for a core — it would permit a discrete jump. In any case, however, slippage
requires each concept to be attached to some identifiable “place” or entity. One
might liken the core of a concept to the official city limits of a large city, and
the halo to the much vaguer metropolitan region surrounding the city proper,
stretching out in all directions, and clearly far more subjective and context-
dependent than the core.

It may be useful to briefly compare Copycat’s Slipnet with connectionist
networks. In localist networks, a concept is equated with a node rather than with a
diffuse region centered on a node. In other words, concepts in localist networks
lack halos. This lack of halos implies that there is no counterpart to slippability in
localist networks. In distributed systems, on the other hand, there would seem to
be halos, since a concept is equated with a diffuse region, but this is somewhat
misleading. The diffuse region representing a concept is not explicitly centered on
any node, so there is no explicit core to a concept, and in that sense no halo. But
since slippability depends on the existence of discrete cores, there is no counterpart
to slippability even in distributed connectionist models.

The lack of any explicit center to a concept would probably be found to
be quite accurate if one could examine concepts on the neural level. However,
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Copycat was not designed to be a neural model; it aims at modeling cognitive-
Jevel behavior by simulating processes at a subcognitive but superneural level.
We believe that there is a subcognitive, superneural level at which it is realistic
to conceive of a concept as having an explicit core surrounded by an implicit,
emergent halo.

Another temptation might be to liken Copycat’s context-dependent link-
lengths to the changing of inter-node weights as a connectionist net adapts to
training stimuli. One might even liken the effect of a label node in Copycat to
a multiplicative connection (where some node’s activation is used as a multipli-
cative factor in calculating the new weight of a link). To be sure, there is a
mathematical analogy here, but conceptually there is a significant difference.
As connectionist networks adapt and “learn” by changing their weights, there
is no sense of departing from a norm and no tendency to return to an earlier
state. By contrast, in Copycat, any changing of link-lengths takes place in
response to a temporary context, and when that context is removed, the Slipnet
tends to revert to its “normal” state. The Slipnet is thus “rubbery” or “elastic”
in this sense; it responds to context but has a built-in tendency to “snap back”
to its original state. We know of no corresponding tendency in connectionist
networks.

Note that whereas the Slipnet changes over the course of a single run of
Copycat, it does not retain changes from run to run, or create new permanent
concepts. The program starts out in the same initial state on every run. Thus
Copycat does not model learning in the usual sense. However, this project does
concern learning, if that term is taken to include the notion of adaptation of
one’s concepts to novel contexts.

Although the Slipnet responds sensitively to events in the Workspace
(described in a moment) by constantly changing both its “shape” and the
activations of its nodes, its fundamental topology remains invariant. That is, no
new structure is ever built, or old structure destroyed, in the Slipnet. The next
subsection discusses a component of the architecture that provides a strong
contrast to this type of topological invariance.

The Workspace — Copycat’s locus of perceptual activily

The basic image for the Workspace is that of a busy construction site in
which structures of many sizes and at many locations are being worked on
simultaneously by independent crews, Some occasionally being torn down to
make way for new, hopefully better ones. (This image comes essentially from
the biological cell; the Workspace corresponds roughly to the cytoplasm of a
cell, in which enzymes carrying out diverse tasks all throughout the cell’s
cytoplasm are the construction crews, and the structures built up are all sorts

of hierarchically-structured biomolecules.)
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Atthe start of a run, the Workspace is a collection of unconnected raw data
representing the situation with which the program is faced. Each item in the
Workspace initially carries only bare-bones information — that is, for each letter
token, just its alphabetic type is provided, as well as — for those letters at the
very edges of their strings — the descriptor leftmost or rightmost. Other than t}lat,
all objects are absolutely barren. Over time, through the actions of many small
agents “scouting” for features of various sorts (these agents, called “codelets”,
are described in the next subsection), items in the Workspace gradually acquire
various descriptions, and are linked together by various perceptual structures, all of
which are built entirely from concepts in the Slipnet.

The constant fight for probabilistic attention

Objects in the Workspace do not by any means all receive equal amounts
of attention from codelets; rather, the probability that an object will attract a
prospective codelet’s attention is determined by the object’s salience, which is a
function of both the object’s importance and its unhappiness. Though it might
seem crass, the architecture honors the old motto “The squeaky wheel gets the
oil”, even if only probabilistically so. Specifically, the more descriptions an object
has and the more highly activated the nodes involved therein, the more
important the object is. Modulating this tendency is the object’s level of
unhappiness, which is a measure of how integrated the object is with other
objects. An unhappy object is one that has few or no connections to the rest of
the objects in the Workspace, and that thus seems to cry out for more attention.
Salience is a dynamic number that takes into account both of these factors, and
this number determines how attractive the object in question will appear to
codelets. Note that salience depends intimately on both the state of the Work-
space and the state of the Slipnet.

A constant feature of the processing is that pairs of neighboring objects
(inside a single framework — i.e,, letter-string) are probabilistically selected
(with a bias favoring pairs that include salient objects) and scanned for similari-
ties or relationships, of which the most promising are likely to get “reified” (i.e.,
realized in the Workspace) as inter-object bonds. For instance, the two k’s in ijkk
in Problem 2 are likely to get bonded to each other rather quickly by a sameness
bond. Similarly, the i and the j are likely to get bonded to each other, although
not as fast, by a successorship bond or a predecessorship bond.

The existence of differential rates of speed of bond-making is meant to
reflect realities of human perception. In particular, people are clearly quicker
to recognize two neighboring objects as identical than as being related in some
abstract way. Thus the architecture has an intrinsic speed-bias in favor of
sameness bonds: it tends to spot them and to construct them more quickly than
it spots and constructs bonds representing other kinds of relationships. (How
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the speeds of rival processes are dynamically controlled will be dealt with in |
more detail in the next subsection.)

Any bond, once made, has a dynamically varying strength, reflecting not
only the activation and conceptual depth of the concept representing it in the
Slipnet (in the case of kk, the concept sameness, and in the case of i, either
successor or predecessor) but also the prevalence of similar bonds in its immediate
neighborhood. The idea of bonds is of course to start weaving unattached
objects together into a coherent mental structure.

The parallel emergence of multi-level perceptual structures
A set of objects in the Workspace bonded together by a uniform “fabric”
(i.e., bond type) is a candidate to be “chunked” into a higher-level kind of object
called a group. A simple example of a sameness group is kk, as in Problem 2.
Another simple group is abc, as in Problem 1. This one, however, is a little
ambiguous; depending on which direction its bonds are considered to go in,
either it is perceived as having a left-to-right successorship fabric and is thus seen
as a left-to-right successor group, or it is perceived as having a right-to-left \
predecessorship fabric and is thus seen as a right-to-left predecessor group. (It cannot '
be seen as both at once, although the program can switch from one vision to
the other relatively easily.) The more salient a potential group’s component
objects and the stronger its fabric, the more likely it is to be reified.
Groups, just like more basic types of objects, acquire their own descriptions,
salience values, and strengths, and are themselves candidates for similarity-
scanning, bonding to other objects, and possibly becoming parts of yet higher-
level groups. As a consequence, hierarchical perceptual structures get built up
over time, under the guidance of biases emanating from the Slipnet. A simple
example would be the successor (or predecessor) group ijkkin Problem 2, made
up of three elements: the i, the j, and the short sameness group kk.
Another constant feature of the processing is that pairs of objects in
different frameworks (i.e., strings) are probabilistically selected (again with a bias
favoring salient objects) and scanned for similarities, of which the most prom-
ising are likely to get reified as bridges (or correspondences) in the Workspace.
Effectively, a bridge establishes that its two end-objects are considered each
other’s counterparts — meaning either that they are intrinsically similar objects
or that they play similar roles in their respective frameworks (or hopefully both).
Consider, for instance, the aa and kk in Problem 2. What makes one
tempted to equate them? One factor is their intrinsic similarity — both are
doubled letters (sameness groups of length 2). Another factor is that they fill
similar roles, since one sits at the left end of its string, the other at the right end
of its string. If and when a bridge gets built between them, concretely reifying
this mental correspondence, it will be explicitly based on both these facts. The
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fact that @ and k are unrelated letters of the alphabet is simply ignored by most
people. Copycat is constructed to behave similarly. Thus, the fact that aa and
kk are both sameness groups will be embodied in an identity mapping (here,
sameness <> sameness); the fact that one is leftmost while the other is rightmost
will be embodied in a conceptual slippage (here, leftmost <> nightmost); the fact that
nodes a and k are far apart in the Slipnet is simply ignored.

Whereas identity mappings are always welcome in a bridge, conceptual
slippages always have to overcome a certain degree of resistance, the precise
amount of which depends on the proposed slippage itself and on the circum-
stances. The most favored slippages are those whose component concepts not
only are shallow but also have a high degree of overlap (i.e., are very close in
the Slipnet). Slippages between highly overlapping degp concepts are more
difficult to build, but pressures can certainly bring them about.

Once any bridge is built, it has a strength, reflecting the ease of the slippages
it entailed, the number of identity mappings helping to underpin it, and its
resemblance to other bridges already built. The idea of bridges is of course to
build up a coherent mapping between the two frameworks.

To form a clear image of all this hubbub, it is crucial to keep in mind that
all the aforementioned types of perceptual actions — scanning, bond-making,
group-making, bridge-building, and so forth (as well as all the spreading and
decaying of activation and so on in the Slipnet) — take place in paralle], so that
independent perceptual structures of all sorts, spread about the Workspace,
gradually emerge at the same time, and all the biases controlling the likelihood
of this concept or that one being brought to bear are constantly fluctuating in
light of what has already been observed in the Workspace.

The drive towards global coherence and towards deep concepts

As the Workspace evolves in complexity, there is increasing pressure on
new structures to be consistent, in a certain sense, with pre-existent structures,
especially with ones in the same framework. For two structures to be consistent
sometimes means that they are instances of the very same Slipnet concept,
sometimes that they are instances of very close Slipnet concepts, and some-
times it is a little more complex. In any case, the Workspace is not just a
hodgepodge of diverse structures that happen to have been built up by totally
independent codelets; rather, it represents a coherent vision built up piece
by piece by many agents all indirectly influencing each other. Such a vision
will henceforth be called a viewpoint. A useful image is that of highly coherent
macroscopic structures (e.g., physical bridges) built by a colony of thousands
of myopic ants or termites working semi-independently but nonetheless
cooperatively. (The “ants” of Copycat — namely, codelets — will be described

in the next subsection.)
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There is constant competition, both on a local and a global level, among
structures vying to be built. A structure’s likelihood of beating out its rivals is
determined by its strength, which has two facets: a context-independent facet (a
contributing factor would be, for insfance, the depth of the concept of which it
is an instance) and a context-dependent facet (how well it fits in with the rest
of the structures in the Workspace, particularly the ones that would be its
neighbors). Out of the rough-and-tumble of many, many small decisions about
which new structures to build, which to leave intact, and which to destroy comes
a particular global viewpoint. Even viewpoints, however, are vulnerable; it takes
a very powerful rival to topple an entire viewpoint, but this occasionally hap-
pens. Sometimes these “revolutions” are, in fact, the most creative decisions that
the system as a whole can carry out.

As was mentioned briefly above, the Slipnet responds to events in the
Workspace by selectively activating certain nodes. The way activation comes about
is that any discovery made in the Workspace — creation of a bond of some specific
type, a group of some specific type, etc. — sends a substantial jolt of activation to
the corresponding concept in the Slipnet; the amount of time the effect of such
a jolt will last depends on the concept’s decay rate, which depends in turn on its
depth. Thus, a deep discovery in the Workspace will have long-lasting effects on
the activation pattern and “shape” of the Slipnet; a shallow discovery will have but
transient effects. In Problem 2, for example, if a bridge is built between the groups
aa and kk, it will very likely involve an opposite slippage (leftmost < rightmost) . This
discovery will reveal the hitherto unsuspected relevance of the very deep concept
opposite, which is a key insight into the problem. Because opposiieis a deep concept,
once it is activated, it will remain active for a long time and therefore exert
powerful effects on subsequent processing.

It is clear from all this that the Workspace affects the Slipnet no less than
the Slipnet affects the Workspace; indeed, their influences are so reciprocal and
tangled that it is hard to tell the chicken from the egg.

Metaphorically, one could say that deep concepts and structural coherency act
like strong magnets pulling the entire system. The pervasive biases favoring the
realization of these abstract qualities in the Workspace imbues Copycat with an
overall goal-oriented quality that a priori might seem surprising, given that the
system is highly decentralized, parallel, and probabilistic, thus far more like a swarm
of ants than like a rigid military hierarchy, the latter of which has more standardly
served as a model for how to realize goal-orientedness in computer programs. We
now turn to the description of Copycat’s “ants” and how they are biased.

The Coderack — source of emergent pressures in Copycat
All acts of describing, scanning, bonding, grouping, bridge-building, de-

struction, and so forth in the Workspace are carried out by small, simple agents
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called codelets. The action of a single codelet is always but a tiny part of a run,
and whether any particular codelet runs or not is not of much consequence.
What matters is the collective effect of many codelets.

There are two types of codelets: scout codelets and effector codelets. A scout
merely looks ata potential action and tries to estimate its promise; the only kind
of effectit can have is to create one or more codelets — either scouts or-effectors
— to follow up on its findings. By contrast, an effector codelet actually creates
(or destroys) some structure in the Workspace.

Typical effector codelets do such things as: attaching a description to an
object (e.g., attaching the descriptor middleto the b in abc); bonding two objects
together (e.g., inserting a successor bond between the b and ¢ in abc); making a
group out of two or more adjacent objects that are bonded togetherin a uniform
manner; making a bridge that joins similar objects in distinct strings (similarity
being measured by proximity of descriptors in the Slipnet); destroying groups
or bonds, and so on.

Before any such action can take place, preliminary checking-out of its
promise has to be carried out by scout codelets. For example, one scout codelet
might notice that the adjacent r’s in mrrjjj are instances of the same letter, and
propose a sameness bond between them; another scout codelet might estimate
how well that proposed bond fits in with already-existing bonds; then an effector
codelet might actually build the bond. Once such a bond exists, scout codelets
might then check out the idea of subsuming the two bonded r’s into a sameness
group, after which an effector codelet could go ahead and actually build the
group.

Each codelet, when created, is placed in the Coderack, which is a pool of
codelets waiting to run, and is assigned an urgency value — a number that
determines its probability of being selected from that pool as the next codelet
to run. The urgency is a function of the estimated importance of that codelet’s
potential action, which in turn reflects the biases embodied in the current state
of the Slipnet and the Workspace. Thus, for example, a codelet whose purpose
is to seek instances of some lightly activated Slipnet concept will be assigned a
low urgency and will therefore probably have to wait a long time, after being
created, to getrun. By contrast, a codelet likely to further a Workspace viewpoint
thatis currently strong will be assigned a high urgency and will thus have a good
chance of getting run soon after being created.

It is useful to draw a distinction between bottom-up and top-down codelets.
Bottom-up codelets (or “noticers”) look around in an unfocused manner, open
to what they find, whereas top-down codelets (or “seekers”) are on the lookout
for a particular kind of phenomenon, such as successor relations or sameness
groups. Codelets can be viewed as proxies for the pressures in a given problem.
Bottom-up codelets represent pressures present in all situations (the desire to




Waw

292 Douglas Hofstadter & Melanie Mitchell

make descriptions, tO find relationships, t0 find correspondences, and
. and §
Top-down codelets represent specific pressures evoked by the SPCC’iﬁC 'to O.n).
situation

at hand (e.g-s the desire,
relations, once some have already been discovered). Ti
. Top-down codelet:
s can

ack only when triggered from “on high” — that is, from "
’ €

in Problems 1 and 2, to look for more SUCCEeSssor

Slipnet. In particular, activated nodes are given th
€ chance to “g ”
pawn” top-down

scout codelets, with a node’s degree of activation determining th 4
. ) e co ,

urgency- The mission of such a codelet is to scan the Workspace i e;et s
1n searc of

instances of its sp

awning concept

ine the speeds of rival processes

Pressures determ
te that the calculation of a codelet’s urgenc
y

It is very jmportant to no

takes into account (directlyor indirectly) numerou
s factors, which i
’ may include

f several Slipnet nodes as well as the strength or salience of
o

one oOr mo

to picture 2 top-

t. More precisely,

ked by the situation. These include workspace pressures, whi h
, whic

da coherpnt viewpoint in the Workspace and
ptto realize instances of activated concepts. It

down codelet as simply @ Proxy for the particular concept that

spawned 1 a top-down codelet is a proxy for one or more

- pressu'res evo
attempt to maintain and exten

conceptual pressures, which attem
is critical to understand that pressures while th
’ ey are very real
are not

sented explicitly anywhere in the architecture; each pressure is spread
spread out ;

repre
odelets, activations and link-lengths in the Slipnet d
, an

among urgencies of ¢
strengths and saliences of objects in the Works
pace. Pressures in
, in short, are

implicit, emergent
and Coderack.
|

Slipnet, Workspace,

Any run starts with 2 standard initial population of bottom-u d
(with preset urgencies) on the C.oderack. At each time step OnePCC:; eleFS
chosen to run and is removed from the current population Ol’l e C((’)dzlre;(:;s i

Aswas said before the choice is probabilistic bi
) ,biased by relative o
urgencies in the

current population.
Hearsay 11 which, at each step executes the wait
’ ; , waiting action with i
the highest

estimated priority. The urgency of a codelet should not be conc ived of
] iy © ' eived of as

g an estimated priont; rather, it represents the estimated relati
. ative
sented by this codelet should be attended to

consequences of the deeply intertwined events in the

Copycat thus differs from an “agenda” system such
as

representin
speed at which the pressures repre
If the highest-urgency codelet were always cho
sen to run, then low
g er-urgency

codelets would Dever be allowed to run, €ven though the pre
represent have been judged to deserve someamount of attentiof ssures they
Since any single codelet plays but a small role in helping to filrth )
pressure, it never makes 2 crucial difference that a particular e(r1 agiven
selected; what really matters 18 that each pressure move ahead at rf)?lg;ll(; t t:)le
e




The Copycat Project 223

proper speed over time. Stochastic selection of codelets allows this to happen,
even when judgments about the intensity of various pressures change over
time. Thus allocation of resources is an emergent statistical result rather than
a preprogrammed deterministic one. The proper allocation of resources could
not be programmed ahead of time, since it depends on what pressures emerge
as a given situation is perceived.

The shifting population of the Coderack

The Coderack would obviously dwindle rapidly to zero if codelets, once
run and removed from it, were not replaced. However, replenishment of the
Coderack takes place constantly, and this happens in three ways. Firstly, bottom-up
codelets are continually being added to the Coderack. Secondly, codelets that
run can, among other things, add one or more Jollow-up codelets to the
Coderack before being removed. Thirdly, active nodes in the Slipnet can add
top-down codelets. Each new codelet’s urgency is assigned by its creator as a
function of the estimated promise of the task it is to work on. Thus the urgency
of a follow-up codelet is a function of the amount of progress made by the
codelet that posted it, as gauged by that codelet itself, while the urgency of a
top-down codelet is a function of the activation of the node that posted it. The
urgency of bottom-up codelets is context-independent.

As a run proceeds, the population of the Coderack adjusts itself dynami-
cally in response to the system’s needs, as judged by previously-run codelets and
by activation patterns in the Slipnet, which themselves depend on the current
structures in the Workspace. This means there is a feedback loop between percep-
tual activity and conceptual activity, with observations in the Workspace serving
to activate concepts, and activated concepts in return biasing the directions in
which perceptual processing tends to explore. There is no top-level executive
directing the system’s activity; all acts are carried out by ant-like codelets.

The shifting population of codelets on the Coderack bears a close resem-
blance to the shifting enzyme population of a cell, which evolves in a sensitive
way in response to the ever-changing makeup of the cell’s cytoplasm. Just as the
cytoplasmic products of certain enzymatic processes trigger the production of
new types of enzymes to act further on those products, structures built in the
Workspace by a given set of codelets cause new types of codelets to be brought
in to work on them. And just as, at any moment, certain genes in the cell’s DNA
genome are allowed to be expressed (at varying rates) through enzyme proxies,
while other genes remain essentially repressed (dormant), certain Slipnet
nodes get “expressed” (at varying rates) through top-down codelet proxies,
while other nodes remain essentially repressed. In a cell, the total effect is a
highly coherent metabolism that emerges without any explicit top-down con-
trol; in Copycat, the effect is similar.
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Note that though Copycat runs on a serial computer and thus only one
codelet runs at a time, the system is roughly equivalent to one in which many
independent activities are taking place in parallel and at different speeds, since
codelets, like enzymes, work Jocally and to a large degree independently. The
speed at which an avenue is pursued is an a priori unpredictable statistical
consequence of the urgencies of the many diverse codelets pursuing that

avenue.
The Emergence of Fluidity in the Copycat Architecture

Commingling pressures — the crux of fluidity

One of the central goals of the Copycat architecture is to allow many
pressures to simultaneously coexist, competing and cooperating with one an-
other to drive the system in certain directions. The way this is done is by
converting pressures into flocks of very small agents (i.e., codelets), each having
some small probability of getting run. As was stated above, a codelet acts as a
proxy for several pressures, all to differing degrees. All these little proxies for
pressures are thrown into the Coderack, where they wait to be chosen. When-
ever a codelet is given the chance to run, the various pressures for which itisa
proxy make themselves slightly felt. Over time, the various pressures thus “push”
the overall pattern of exploration different amounts, depending on the urgen-
cies assigned to their codelets. In other words, the “causes” associated with the
different pressures get advanced in parallel, but at different speeds.

There is a definite resemblance to classical time-sharing on a serial ma-
chine, in which any number of independent processes can be run concurrently
by letting each oneruna little bit (i.e., giving ita “time slice”), then suspending
it and passing control to another process, and so forth, so that bit by bit, each
process eventually runs to completion. Classical time-sharing, incidentally,
allows one to assign to each process a different speed, either by controlling the
durations of its time slices or by controlling the frequency with which its time slices
are allowed to run. The latter way of regulating speed is similar to the method
used in Copycat; however, Copycat’s method is probabilistic rather than deter-
ministic (comments on why this is so follow in brief order).

This analogy with classical time-sharing is helpful but can also mislead. The
principal danger is that one might get the impression that there are pre-laid-out
processes to which time slices are probabilistically granted — more specifically,
that any codelet is essentially a time slice of some preordained process. This 1s

utterly wrong. In the Copycat architecture, the closest analogue to a classical

process is a pressure — but the analogy is certainly not close. A pressure is

nothing like a determinate sequence of actions; in very broad brushstrokes, a
conceptual pressure can be portrayed as a concept (or cluster of closely related
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concepts) trying to impose itself on a situation, and a workspace pressure as an
established viewpoint trying to entrench itself further while keeping rival
viewpoints out of the picture. Whereas classical processes are cleanly distinguish-
able from one another, this is not at all the case for pressures. A given codelet,
by running, can advance (or hinder) any number of pressures.

There is thus no way of conceptually breaking up a run into a set of distinct
foreordained processes each of which advances piecemeal by being given time
slices. The closest one comes to this is when a series of effector codelets’ actions
happen to dovetail so well that the codelets appear to have been parts of some
predetermined high-level construction process. However, what s deceptive here
1s that scattered amongst the actions constituting the visible “process”, a lot of
other codelets — certainly many scouts, and probably other effectors — have
played crucial but less visible roles. In any case, there was some degree of luck
because randomness played a critical role in bringing about this particular
sequence of events. In short, although some large-scale actions tend to look
planned in advance, that appearance is illusory; patterns in the processing are
all emergent.

A useful image here is that of the course of play in a basketball game.
Each player runs down the court, zigzagging back and forth, darting in and
out of the enemy team as well as their own team, maneuvering for position.
Any such move is simultaneously responding to a complex constellation of
pressures on the floor as well as slightly altering the constellation of pressures
on the floor. A move is thus fundamentally deeply ambiguous. Although the
crowd is mostly concerned with the sequence of players who have the ball,
and thus tends to see a localized, serial process unfolding, the players who
seldom or never have the ball nonetheless play pivotal roles, in that they mold
the globally-felt pressures that control both teams’ actions at all moments. A
tiny feint of the head or lunge to one side alters the probabilities of all sorts
of events happening on the court, both near and far. After a basket has been
scored, even though sports announcers and fans always try to account for the
structure of the event in clean, spatially local, temporally serial terms (thus
trying to impose a process on the event), in fact the event was in an essential
way distributed all over space and time, amongst all the players. The event
consisted of distributed, swiftly shifting pressures pushing for certain types of
plays and against others, and impositions of locality and seriality, though they
contain some truth, are merely ways of simplifying what happened for the sake
of human consumption. The critical point to hold onto here is the ambiguity
of any particular action en route to a basket; each action contributes to many
potential continuations and cannot be thought of as a piece of some unique
“process” coexisting with various other independent “processes” supposedly
taking place on the court.
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Much the same could be said for Copycat: an outside observer is free, after
a run is over, to “parse” the run in terms of specific, discrete processes, and to
attempt to impose such a vocabulary on the system’s behavior; however, that
parsing and labeling is not intrinsic to the system, and such interpretations are
in no way unique or absolute, any more than in a basketball game. In other
words, along sequence of codelet actions can add up to what could be perceived,
a posteriori and by an outsider, as a single coherent drive towards a particular
goal, but that is the outsider’s subjective interpretation.

The parallel terraced scan

One of the most important consequences of the commingling of multiple
pressures is the parallel terraced scan. The basic image is that of many “fingers of
exploration” simultaneously feeling out various potential pathways at different
speeds, thanks to the coexistence of pressures of different strengths. These
“fingers of exploration” are tentative probes made by scout codelets, rather than
actual events realized by effector codelets. In the Workspace, there is only one
actual viewpointatany given time. However, in the background, a host of nearby
variants of the actual viewpoint — virtual viewpoints — are constantly flickering
probabilistically. If any virtual viewpoint is found sufficiently promising by
scouts, then they create effector codelets that, when run, will attempt to realize
that alternative viewpoint in the Workspace. This entails a “fight” between the
incumbent structure and the upstart; the outcome is decided probabilistically,
with the weights being determined by the strength of the current structure as
opposed to the promise of the rival.

This is how the system’s actual viewpoint develops with time. There is
always a probabilistic “halo” of many potential directions being explored; the
most attractive of these tend to be the actualdirections chosen. Incidentally, this
aspect of Copycat reflects the psychologically important fact that conscious
experience is essentially unitary, although it is of course an outcome of many
parallel unconscious processes.

A metaphor for the parallel terraced scan is provided by the image of a
vast column of ants marching through a forest, with hordes of small scouts at
the head of the column making small random forays in all directions (although
exploring some directions more eagerly and deeply than others) and then
returning to report; the collective effect of these many “feelers” will then
determine the direction to be followed by the column as a whole. This is going
on at all moments, of course, so that the column is constantly adjusting its
pathway in slight ways.

The term “parallel terraced scan” comes from the fact that scouting
expeditionsare structured in a terraced way; that is, they are carried out in stages,

each stage contingent upon the success of the preceding one, and probing a
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little more deeply than the preceding one. The first stage is computationally
cheap, so the system can afford to have many first-stage scouts probing in all
sorts of directions, including quite unlikely directions. Succeeding stages are
less and less cheap; consequently the system can afford fewer and fewer of them,
which means it has to be increasingly selective about the directions it devotes
resources to looking in. Only after a pathway has been deeply explored and
found to be very promising are effector codelets created, which then will try to
actually swerve the whole system down that pathway.

The constellation of top-down pressures at any given time controls the
biases in the system’s exploratory behavior, and also plays a major role in
determining the actual direction the system will move in; ultimately, however,
top-down pressures, no matter how strong, must bow to the reality of the
situation itself, in the sense that prejudices alone cannot force inappropriate
concepts to fit to reality. Top-down pressures must adapt when the pathways they
have urged turn out to fail. The model is made explicitly to allow this kind of
intermingling of top-down and bottom-up processing.

Time-evolving biases

At the very start of a run, the Coderack contains exclusively bottom-up
similarity-scanners, which represent no situation-specific pressures. In fact, it is
their job to make small discoveries that will then start generating such pressures.
As these early codelets run, the Workspace starts to fill up with bonds and small
groups and, in response to these discoveries, certain nodes in the Slipnet are
activated. In this way, situation-specific pressures are generated and cause
top-down codelets to be spawned by concepts in the Slipnet. Thus top-down
codelets gradually come to dominate the Coderack.

At the outset of a run, the Slipnet is “neutral” (i.e., in a standard configu-
ration with a fixed set of concepts of low depth activated), meaning that there
are no situation-specific pressures. At this early stage, all observations made in
the Workspace are very local and superficial. Over the course of a run, the
Slipnet moves away from its initial neutrality and becomes more and more
biased toward certain organizing concepts — themes (highly activated deep
concepts, or constellations of several such concepts). Themes then guide
processing in many pervasive ways, such as determining the saliences of objects,
the strengths of bonds, the likelihood of various types of groups to be made,
and in general, the urgencies of all types of codelets.

It should not be imagined, incidentally, that a “neutral” Slipnet embodies
no biases whatsoever; it certainly does (think of the permanent inequality of
various nodes’ conceptual depths, for instance). The fact that at the outset, a
sameness group is likely to be spotted and reified faster than a successor group

of the same length, for instance, represents an initial bias favoring sameness
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over successorship. The important thing is that at the outset of arun, the system
is more open than at any other time to any possible organizing theme (or set of
themes); as processing takes place and perceptual discoveries of all sorts are
made, the system loses this naive, open-minded quality, as indeed it ought to,
and usually ends up being “closed-minded” — that is, strongly biased towards
the pursuit of some initially unsuspected avenue.

In the early stages of a run, almost all discoveries are on a very small, local
scale: a primitive object acquires a description, a bond is built, and so on.
Gradually, the scale of actions increases: small groups begin to appear, acquire
their own descriptions, and so on. In the later stages of a run, actions take place
on an even larger scale, often involving complex, hierarchically structured
objects. Thus, over time there is a clear progression, in processing, from locality
to globality.

Temperature as a regulator of open-mindedness

At the start of a run, the system is open—minded, and for good reason: it
knows nothing about the situation it is facing. It doesn’t matter all that much
which codelets run, since one wants many different directions to be explored;
hence decision-making can be fairly capricious. However, as swarms of scout
codelets and local effector codelets carry out their jobs, that status gradually
changes; in particular, as the system acquires more and more information, it
starts creating a coherent viewpoint and focusing in on organizing themes. The
more informed the system is, the more important it is that top-level decisions
not be capriciously made. For this reason, there is a variable that monitors the
stage of processing, and helps to convert the system from its initial largely
bottom-up, open-minded mode to a largely top-down, closed-minded one. This
variable is given the name temperature.

What controls the temperature is the degree of perceived order in the Work-
space. If, as at the beginning of every run, no structures have been built, then
the system sees essentially no order, which translates into a need for broad,
open—minded exploration; if, on the other hand, there is a highly coherent
viewpoint in the Workspace, then the last thing one wants is a lot of voices
clamoring for irrelevant actions in the Workspace. Thus, temperature is essen-
tially an inverse measure of the quality of structure in the Workspace: the more
structures there are, and the more coherent they are with one another (as
measured by their strengths), the lower the temperature. Note that although
the overall trend is for temperature to wind up low at the end of a run, a
monotonic drop in temperature is not typical; often, the system’s temperature
goes up and down many times during a run, reflecting the system’s uncertain
advances and retreats as it builds and destroys structures in its attempts to home

in on the best way to look at a situation.
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What the temperature itself controls is the degree of randomness used in
decision-making. Decisions of every sort are affected by the temperature — which
codelet to run next, which object to focus attention on, which of two rival
structures should win a fight, and so on. Considera codelet, for instance, trying
to decide where to devote its attention. Suppose that Workspace object A is
exactly twice as salient as object B. The codelet will thus tend to be more
attracted to A than to B. However, the precise discrepancy in attractive power
between A and B will depend on the temperature. At some mid-range tempera-
ture, the codelet will indeed be twice as likely to go for A as for B. However, at
very high temperatures, A will be hardly any more attractive than B to the
codelet. By contrast, at very low temperatures, the probability of choosing A over
B will be much greater than two to one. For another example, consider a codelet
trying to build a structure that is incompatible with a currently existing strong
structure. Under low-temperature conditions, the strong structure will tend to
be very stable (i.e., hard to dislodge), but if the temperature should happen to
rise, it will become increasingly susceptible to being swept away. In “desperate
times”, even the most huge and powerful structures and worldviews can topple.

The upshot of all this is that at the start of a run, the system explores
possibilities in a wild, scattershot way; however, as it builds up order in the
Workspace and simultaneously homes in on organizing themes in the Slipnet,
it becomes an increasingly conservative decision-maker, ever more determinis-
tic and serial in its style. Of course, there is no magic crossover point at which
nondeterministic parallel processing turns into deterministic serial processing;
there is simply a gradual tendency in that direction, controlled by the system’s
temperature. :

Note that the notion of temperature in Copycat differs from that in
simulated annealing, an optimization technique sometimes used in connection-
ist networks (Kirkpatrick, Gelatt, & Vecchi, 1983; Hinton & Sejnowski, 1983;
Smolensky, 1983). In simulated annealing, temperature is used exclusively as a
top-down randomness-controlling factor, its value falling monotonically accord-
ing to a predetermined, rigid “annealing schedule”. By contrast, in Copycat, the
value of the temperature reflects the current quality of the system’s under-
standing, so that temperature acts as a JSeedback mechanism that determines the
degree of randomness used by the system. Thus, the system itself controls the
degree to which it is willing to take risks.

Long after the concept of temperature had been conceived and imple-
mented in the program, it occurred to us that temperature could serve an extra,
unanticipated role: the final temperature in any run could give a rough indica-
tion of how good the program considered its answer to be (the lower the
temperature, of course, the more desirable the answer). The idea is simply that
the quality of an answer is closely correlated with the amount of strong, coherent
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structure underpinning that answer, and temperature is precisely an attempt to
measure that quantity. From the moment we realized this, we kept track of the
final temperatures of all runs, and those data provided some of the most
important insights into the program’s “personality”, as will be apparent when

we discuss in detail the results of runs.

Overall trends during a run

In most runs, despite local fluctuations here and there, there is a set of
overall tendencies characterizing how the system evolves in the course of time.
These tendencies, although they are all tightly linked together, can be roughly
associated with different parts of the architecture, as follows.

« In the Slipnet, thereisa general tendency for the initially activated
concepts to be conceptually shallow, and for concepts that get acti-
vated later to be increasingly deep- There is also a tendency to move
from 7o themes to themes (i.e., clusters of highly activated, closely
related, high-conceptual—depth concepts).

« In the Workspace, there is a general tendency to move from a state
of no structure to a state with much structure, and from a state having
many local, unrelated objects to a state characterized by few global,
coherent structures.

o As far as the processing is concerned, it generally exhibits, over
time, a gradual transition from pamllel style toward serialstyle, from
bottom-up mode to top-down mode, and from an initially nondeter-

ministic style toward a deterministic style.

The Intimate Relation between Randomness and Fluidity

It may seem deeply counterintuitive that randomness should play a central
role in a computational model of intelligence. However, careful analysis shows
that it is inevitable if one believes in any sort of parallel, emergent approach to

mind.

Biased randomness gives each pressure its fair share

A good starting point for such analysis is to consider the random choice
of codelets (biased according to their urgencies) from the Coderack. The key
notion, stressed in earlier sections, is that the urgency attached to any codelet
represents the estimated proper speed at which to advance the pressures for
which it is a proxy. Thus it would make no sense at all to treat higher urgencies

as higher priorities — that is, always to pick the highest-urgency codelets first. If
one were to do that, then lower-urgency codelets would never get run at all, so
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the effective speeds of the pressures they represent would all be zero, which
would totally defeat the notion of commingling pressures, the parallel terraced
scan, and temperature. .

A more detailed analysis is the following. Suppose we define a “grass-roots”
pressure as a pressure represented by a large swarm of low-urgency codelets,
and an “elite” pressure as one represented by a small coterie of high-urgency
codelets. Then a policy to select high-urgency codelets most of the time would
arbitrarily favor elite pressures. In fact, it would allow situations wherein any
number of grass-roots pressures could be entirely squelched by just one elite
pressure — even if the elite pressure constituted but a small fraction of the total
urgency (the sum of the urgencies of all the codelets in the Coderack at the .
time), as it most likely would. Such a policy would resultin a very distorted image
of the overall makeup of the Coderack (i.e., the distribution of urgencies among
various pressures). In summary, it is imperative that during a run, low-urgency
codelets get mixed in with higher-urgency codelets, and in the right proportion
— namely, in the proportions dictated by urgencies, no more and no less. As
was said earlier, only by using probabilities to choose codelets can the system
achieve (via statistics) a fairallocation of resources to each pressure, even when
the strengths of various pressures change as processing proceeds.

Randomness and asynchronous parallelism

One might well imagine that the need for such randomness (or biased
nondeterminism) is simply an artifact of this architecture’s having been de-
signed to run on a sequential machine; were it redesigned to run on parallel
hardware, then all randomness could be done away with. This turns out to be
not at all the case, however. To see why, we have to think carefully about what it
would mean for this architecture to run on parallel hardware. Suppose that
there were some large number of parallel processors to which tasks could be
assigned, and that each processor’s speed could be continuously varied. It is
certainly not the case that one could assign processes to processors in a one-to-one
manner, since, as has been stressed, there is no clear notion of “process” in this
architecture. Nor could one assign one pressureto each processor, since codelets
are not univalent as to the pressures that they represent. The only possibility
would be to assign a processor to every single codelet, letting it run at a speed
defined by that codelet’s urgency. (Note that this requires a very large number
of co-processors — hundreds, if not thousands. Moreover, since the codelet
population varies greatly over time, the number of processors in use at different
times will vary enormously. However, on a conceptual level, neither of those
poses a problem in principle.)

Now notice a crucial consequence of this style: since all the processors are
running at speeds that are completely independent of one another, they are
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effectively carrying out asynchronous computing, which means that relative to
one another, the instants at which they carry out actions in the (shared)
Workspace are totally decoupled — in short, entirely random relative to one
another. This is a general fact: asynchronous parallelism is inseparable from
processors’ actions being random relative to one another (as pointed out in
Hewitt, 1985). Thus parallelism provides no escape from the inherent random-
ness of this architecture. When it runs on serial hardware, some explicit random-
izing device is utilized; when it runs on parallel hardware, the randomness is
implicit, but no less random for that.

The earlier image of the swiftly-changing panorama of a basketball game
may help to make this necessary connection between asynchronous parallelism
and randomness more intuitive. Each player might well feel that the snap
decisions being made constantly ‘nside their own head are anything butrandom
— that, in fact, their decisions are rational responses to the situation. However,
from the point of view of other players, what any one player does is not predict-
able —a player"s mind is far too complex to be modeled, especially in real time.
Thus, because all the players on the court are complex, independent, asynchro-
nously-acting systems, each player’s actions necessarily have a random (i.e.,
unpredictable) quality from the point of view of all the other players. And
obviously, the more unpredictable a team seems to its opponents, the better.

A seeming paradox: Randomness in the service of intelligence

Even after absorbing all these arguments, onc¢ may still feel uneasy with
the proposition that greater intelligence can result from making random deci-
sions than from making systematic ones. Indeed, when the architecture is de-
scribed this way, it sounds nonsensical. Isn’t it always wiser to choose the better
action than to choose at random? However, as in so many discussions about mind
and its mechanisms, this appearance of nonsensicality is an illusion caused by
a confusion of levels.

Certainly it would seem extremely counterintuitive — in fact, downright
nonsensical — if someone suggested thata melody-composition program (say)
should choose its next note by throwing dice, even weighted dice. How could
any global coherence come from such a process? This objection is of course
totally valid — good melodies cannot be produced in that way (except in the
absurd sense of millions of monkeys plunking away on piano keyboards for
trillions of years and coming up with “Blue Moon” once in a blue moon). But

our architecture in no way advocates such a coarse type of decision-making

procedure!

The choice of nextnote in a melody is a top-level macro-decision, as opposed
to a low-level act of “micro-exploration”. The purpose of micro-exploration is to
efficiently explore the vast, foggy world of possibilities lying ahead without getting
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bogged down in a combinatorial explosion; for this purpose, randomness, being
equivalent to non-biasedness, is the most efficient method. Once the terrain has
been scouted out, much information has been gained, and in most cases some
macroscopic pathways have been found to be more promising than others.
Moreover — and this is critical — the more information that has been uncovered,
the more the temperature will have dropped — and the lower the temperature
is, the less randomness is used. In other words, the more confidently the system
believes, thanks to lots of efficient and fair micro-scouting in the fog, that it has
identified a particular promising pathway ahead, the more certain it is to make
the macro-decision of picking that pathway. Only when there is tight competition
is there much chance that the favorite will not win, and in such a case, it hardly
matters since even after careful exploration, the system is not persuaded that there
is a clear best route to follow. ‘

In short, in the Copycat architecture, hordes of random forays are em-
ployed on a microscopic level when there is a lot of fog ahead, and their purpose
is precisely to get an evenly-distributed sense of what lies out there in the fog
rather than simply plunging ahead blindly, at random. The foggier things are,
the more unbiased should be the scouting mission, hence the more randomness
is called for. To the extent that the scouting mission succeeds, the temperature
will fall, which in turn means that the well-informed macroscopic decision about
to be taken will be made non-randomly. Thus, randomness is used in the service
of, and not in opposition to, intelligent nonrandom choice. ‘

A subtle aspect of this architecture is that there are all shades between
complete randomness (much fog, high temperature) and complete determi-
nism (no fog, low temperature). This reflects the fact that one cannot draw a
clean, sharp line between micro-exploratory scouting forays and confident,
macroscopic decisions. For instance, a smallish, very local building or destruc-
tion operation carried out in the Workspace by an effector codelet working in
a mid-range temperature can be thought of as lying somewhere in between a
micro-exploratory foray and a well-informed macroscopic decision.

As a final point, it is interesting to note that non-metaphorical fluidity
— that is, the physical fluidity of liquids like water — is inextricably tied to
random microscopic actions. A liquid could not flow in the soft, gentle, fluid
way thatitdoes, were it not composed of tiny components whose micro-actions
are completely random relative to one another. This does not, of course, imply
that the top-level action of the fluid as a whole takes on any appearance of
randomness; quite the contrary! The flow of a liquid is one of the most
nonrandom phenomena of nature that we are familiar with. This does not
mean that it is by any means simple; it is simply familiar and natural-seeming.
Fluidity is an emergent quality, and to simulate it accurately requires an
underlying randomness.
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Copycat’s Performance: A Forest-level Overview

The statistically emergent robustness of Copycat

Now that the architecture of the Copycat program has been laid out, we
can take a tour through the program’s performance on a number of problems
in its letter-string microworld. As was discussed earlier, Copycat’s microworld
was designed to isolate, and thus to bring out very clearly, some of the essential
issues in high-level perception and analogy-making in general. The program’s
behavior on the problems presented here demonstrates how it deals with these
issues, how it responds to variations in pressures, and how it is able, starting
from exactly the same state on each new problem, to fluidly adapt to a range of
different situations.? (The program’s performance on a much larger set of
problems and some comparisons with people’s performance on the same
problems are given in Mitchell, 1993.)

On any given run on a.particular problem, the program settlesona specific
answer; however, since the program is permeated with nondeterminism, differ-
ent answers (to the same problem) are possible on different runs. The nonde-
terministic decisions the program makes (e.g., which codelet to run next, which
objects a codelet should act on, etc.) are all ata microscopic level, compared
with the macroscopic-level decision of what answer to produce on a given run.
Every run is different at the microscopic level, but statistics Jead to far more
deterministic behavior at the macroscopic level. For example, there are a huge
number of possible routes (at the microscopic level of individual codelets and
their actions) the program can take to arrive at the solution il to Problem 1,
and a large number of micro-biases tend to push the program down one of those
routes rather than down one of the huge number of possible routes to ijd. Thus
in this problem, at a macroscopic level, the program is very close to being
deterministic: it gets the answer #jl almost all the time.

The phenomenon of macroscopic determinism emerging from micro-
scopic nondeterminism is often demonstrated in science museums by means of
a contraption in which several thousand small balls are allowed to tumble down,
one by one, through a regular grid of horizontal pins that run between two
parallel vertical plexiglass sheets. Each ball, as it falls, bounces helter-skelter off
various pins, eventually winding up in one of some 920 or 30 adjacent equal-sized
bins forming a horizontal row at the bottom. As the number of balls that have

9. The current version of the Copycat program can deal only with problems whose initial change
involves a replacement of at most one letter (e.g., abc = abd, or aabc = aabd, of course the answer
can involve a change of more than one letter, as in aabc = aabd; ijkk = ijll ). Thisisa limitation
of the program as it now stands; in principle, the Jetter-string domain is much larger. But even
given this limitation, a very large number of interesting problems can be formulated, requiring
considerable mental fluidity. (For a good number of examples of such problems, see Hofstadter,
1984b or Mitchell, 1993.)
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fallen increases, the stacks of balls in the bins grow. However, not all bins are
equally likely destinations, so different stacks grow at different rates. In fact, the
heights of the stacks in the bins at the bottom gradually come to form an
excellent approximation to a perféct gaussian curve, with most of the balls
falling into the central bins, and very few into the edge bins. This reliable
buildup of the mathematically precise gaussian curve out of many unpre-
dictable, random events is fascinating to watch.

In Copycat, the set of bins corresponds to the set of different possible answers
to a problem, and the precise pathway an individual ball follows, probabilistically
bouncing left and right many times before “choosing” a bin at the bottom,
corresponds to the many stochastic micro-decisions made by the program (at the
level of individual codelets) during a single run. Given enough runs, a reliably
repeatable pattern of answer frequencies will emerge, just as a near-perfect
gaussian curve regularly emerges in the bins of a “gaussian pinball machine”.

Copycat’s “personality” is revealed through bar graphs

We present these patterns in the form of bar graphs, one for each problem,
giving the frequency of occurrence (representing surface appeal) and the average
end-of-run temperature (representing quality) for each differentanswer. For each
problem, a bar graph is given, summarizing 1,000 runs of Copycat on that
problem. The number 1,000 is somewhat arbitrary; after about 100 runs on each
problem, the basic statistics do not change much. The only difference is that as
more and more runs are done on a given problem, certain bizarre and improbable
“fringe” answers, such as ijj in Problem 1 (see Figure V-1), begin to appear very
occasionally; if 2,000 runs were done on Problem 1, the program would give
perhaps one or two other such answers, each once or twice. This allows the bar
graphs to make a very important point about Copycat: even though the program
has the potential to get strange and crazy-seeming answers, the mechanisms it has
allow it to steer clear of them almost all of the time. It is critical that the program
(as well as people) be allowed the potential to follow risky (and perhaps crazy)
pathways, in order for it to have the flexibility to follow insighiful pathways, but it
also has to avoid following bad pathways, at least most of the time.

In the bar graph of Figure V-1, each bar’s height gives the relative
frequency of the answer it corresponds to, and printed above each bar is the
actual number of times that answer was given. The average final temperature
appears below each bar. The frequency of a given answer can be thought of as
an indicator of how obvious or immediate that answer is, given the biases of the
program. For example, #l, produced 980 times, is much more immediate to the
program than ¢d, produced 19 times, which is in turn much more obvious than
the strange answer ijj, produced only once. (To get the latter answer, the

program decided to replace the rightmost letter by its predecessor rather than
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Problem: abc --> abd, ijk ——> ?
Total Runs: 1000

19 1
in | 13d l 133 |

Av.Tenp: 17 [Av.Temp: 23 fAv.Tenp: 48

Figure V-1. Bar graph summarizing 1, 000 runs of the Copycat program on the
analogy problem “abc => abd; ijk = ?".

its successor. This slippage is always possible in principle, since successor and
predecessor are linked in the Slipnet. However, as can be seen by the rarity of this
answer, it is extremely unlikely in this situation: under the pressures evoked by
this problem, successor and predecessor are almost always considered too distant
for a slippage to be made between them.)

Although the frequencies shown in Figure V-1 seem quite reasonable, it
is not intended that they should precisely reproduce the frequencies one would
find if this problem were posed to humans, since, as we said earlier, the program
is not meant to model all the domain-specific mechanisms people use in solving
these letter-string problems. Rather, what is interesting here is that the program
does have the potential to arrive at very strange answers (such as ijj, but also
many others), yet manages to steer clear of them almost all the time.

As we said earlier, the average final temperature of an answer can be
thought of as the program’s own assessment of that answer’s quality, with lower
temperatures meaning higher quality. For instance, the program assesses il
(average final temperature 17) to be of somewhat higher quality than #d
(temperature 23), and of much higher quality than ijj (temperature 48).

One can get a sense for what a given numerical value of temperature
represents by seeing how various sets of perceptual structures built by the program
affect the temperature. This will be illustrated in the next section, when a detailed
set of screen dumps from a run of Copycat is presented. Roughly speaking, an
average final temperature below 30 indicates that the program was able to build
a fairly strong, coherent set of structures — thatit had, in some sense, a reasonable
“understanding” of what was going on in the problem. Higher final temperatures
usually indicate that some structures were weak, or perhaps that there was no
coherent way of mapping the initial string onto the target string.

The program decides probabilistically when to stop running and produce

an answer, and although it is much more likely to stop when the temperature is

low, it sometimes stops before it has had an opportunity to build all appropriate
structures. For example, there are runs on Problem 1 in which the program




The Copycat Project 237

stops before the target string has been grouped as a whole; the answer is still
often l, but the final temperature is higher than it would have been if the
program had continued. This kind of run increases the average final tempera-
ture for this answer. The lowest possible temperature for answer gl is about 7,
which is about as low as the temperature ever gets.

Systematically studying the effects of variant problems

Systematic studies can be done in which a given problem is slightly altered
in various ways. Each such variant tampers with the pressures that the original
problem evokes, and one can expect effects of this to show up in the bar graph
for that problem. For instance, Problem 2, discussed above, is a variant of
Problem 1 in which the doubling of letters shifts the “stresses” in the strings abc
and #k; one might expect this to make the aa and the kk far more salient and
more similar to each other than the a and k were in Problem 1, thus pushing
towards a crosswise mapping in which the two double letters correspond.

In Figure V-2, ohe sees that despite the pressure towards a crosswise
mapping, the “Replace rightmost group by successor” answer (gl) is still the most
common answer and the “Replace rightmost letter by successor” answer (ykl) is
second, indicating the lingering appeal of the straightforward leftmost = leftmost,
rightmost = rightmostview, even here. However, the pressure is felt to some extent:
Jjkk makes a good showing and hjkk has some representatives too, as well as having
by far the lowest average temperature. (This is to be contrasted with the results
on Problem 1: note that in 1,000 runs, the program nevergave an answer involving
areplacement of the leftmost letter.) The answers on the fringe here include jkkk
(which is similar to jjkk, but results from grouping the two leftmost letters — a
far-fetched and, to most people, unappealing way of “parsing” the string); ¢jkd and
ydd (both based on the rule “Replace the rightmost letter by d”, but flexed in
different ways because of different bridges built from the ¢); ijkk (replacing all
¢’s by d’s); and djkk (replacing the i by a d instead of by its successor or
predecessor).

Another variant on Problem 1 is the following:

3. Suppose the letter-string abc were changed to abd; how would
you change the letter-string ki in “the same way”?

Here a literal application of the original rule (“Replace rightmost letter by
successor”) would yield kjj, which ignores an abstract similarity between abc

3. There is a problem with the way temperature is calculated in the program as it now stands. As
can be seen, the answer ijd has an average final temperature almost equal to that of il (even though
it is much less frequent), whereas most people feel it is a far worse answer. This, along with other
problems with the current program, is discussed in detail in Mitchell, 1993.
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Problem: aabc —-> aabd, ijkk -—> ?
612 Total Runs: 1000

9 6 3 3 1
1911 19x1 39kk hijkk Jkkk 19kd 1jdd 19kk | dikk
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Figure V-2. Bar graph summarizing 1,000 runs of the Copycat program on the
analogy problem “aabc = aabd; ijkk = 27,

and kji. An alternative many people prefer is lji (“Replace the leftmost letter by
its successor”), which is based on seeing both strings in terms of a successorship
fabric, in one string running to the right and in the other one to the left; thus
there is a slippage from the concept right to the concept left, which in turn gives
rise to the “cousin” slippage rightmost = leftmost. Another answer given by many
people is kjh (“Replace the rightmost letter by its predecessor”), in which one
string is seen as having a successorship fabric and the other as having a predeces-
sorship fabric (both viewed as moving in the same spatial direction), thus
involving a slippage of the concept successor into the concept predecessor.

As can be seen in Figure V-3, there are three answers that predominate,
with kjh being the most common (and having the lowest average final tempera-
ture), and kjj and Jji almost tying for second place (the latter being a bit less
common, but having a much lower average final temperature). The answer kjd
comes in a very distant fourth, and then there are two “fringe” answers with but
one instance apiece: dji (an implausible blend of insight and rigidity in which
the opposite spatial direction of the two successor groups abc and kji was seen,
but instead of the leftmost letter being replaced by its successor, it was replaced
by a d— and yet, notice the relatively low temperature on this answer, indicating
that a strong set of structures was built!), and kji (reflecting the literal-minded
rule “Replace ¢ by d”, where there are no ¢’s in kji), which has a very high
temperature of 89, indicating that on this run, almost no structures were built
before the program chanced, against very high odds, to stop.

How hidden concepts emerge from dormancy
Consider now the following problem, which involves a very different set
of pressures from those in the previous problems:

4. Suppose the letter-string abe were changed to abd; how would
you change the letter-string mrrjjj in “the same way”?
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Problem: abc ——> abd, kji --> ?
Total Runs: 1000
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Figure V-3. Bar graph summarizing 1,000 runs of the Copycat program on the
analogy problem “abc = abd; kji = ?”.

There is a seemingly reasonable, straightforward solution: mrrkkk. Most people
give this answer, reasoning that since abc’s rightmost letter was replaced by its
successor, and since mrrjjj’s rightmost “letter” is actually a group of j’s, one
should replace all the j’s by k’s.. Another possibility is to take the phrase
“rightmost letter” literally, thus replacing only the rightmost j by k, giving
mrrjjk. However, neither answer is very satisfying, since neither takes into
account the salient fact that abc is an alphabetic sequence (i.e., a successor
group). This fabric of abc is an appealing and seemingly central aspect of the
string, so one would like to use it in making the analogy, but there is no obvious
way to do so. No such fabric seems to weave mrrjjj together. So either (like most
people) one settles for mrrkkk (or possibly mrrjjk), or one looks more deeply.
But where to look, when there are so many possibilities?

The interest of this problem is that there happens to be an aspect of mrrjjj
lurking beneath the surface that, once recognized, yields what many people feel
is a deeply satisfying answer. If one ignores the letters in mrrjjj and looks instead
at group lengths, the desired successorship fabric is found: the lengths of groups
increase as “1-2-3". Once this hidden connection between abc and mrrjjj is
discovered, the rule describing the change abc = abd can be adapted to apply
to mrryjjj as “Replace the length of the rightmost group by its successor”, yielding
“1-2-4" at the abstract level, or, more concretely, mrrjjjj.

Thus this problem demonstrates how a previously irrelevant, unnoticed
aspect of a situation can emerge as relevant in response to pressures. The crucial
point is that the process of perception is not just about deciding which clearly
apparent aspects of a situation should be ignored and which should be taken
into account; it is also about the question of how aspects that were initially
considered to be irrelevant — or rather, that were initially so far out of sight
that they were not even recognized as being irrelevant! — can become apparent
and relevant in response to pressures that emerge as the understanding process

is taking place.
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Sometimes, given certain pressures, a concept that one initially had no idea
was germane to the situation will emerge seemingly from nowhere and turn out to
be exactlywhatwas needed. In such cases, however, one should not feel upset about
not having suspected its relevance at the outset. In general, far-out ideas (or even
ideas slightly pastone’s defaults) ought not continually occur to people for no good
reason; in fact, a person to whom this happens is classified as crazy or crackpot.

Time and cognitive resources being limited, it is vital to resist nonstandard
ways of looking at situations without strong pressure to do so. You don’t check
the street sign at the corner, every time you go outdoors, to reassure yourself
that your street’s name hasn’t been changed. You don’t worry, every time you
sit down for a meal, that perhaps someone has filled the salt shaker with sugar.
You don’t worry, every time you start your car, that someone might have stuck
a potato in its tailpipe or attached a bomb to its chassis. However, there are
pressures— such as receiving a telephone threat on your life — that would make
such a normally unreasonable suspicion start to seem reasonable. (These ideas
overlap with Kahneman & Miller’s 1986 treatment of counterfactuals, and are
also closely related to the frame problem in artificial intelligence, as discussed
in McCarthy & Hayes, 1969.)

Not only is pressure needed to evoke a dormant concept in trying to make
sense of a situation, but the concepts brought in are often clearly related to the
source of the pressure. For example, when one looks carefully at Problem 4 (as
we will do in the next main section), one can see how certain aspects of it create
pressures that, acting in concert, stand a decent chance of evoking the concept
of group length. Some critical aspects of the story (not in any particular order)
are these: (1) once successor relations have been noticed in abc, there arises a
top-down pressure to look for them in mrrjjj as well; (2) once the rr and jjj
sameness groups have been perceived in mrrjjj, the normally dormant concept
length becomes weakly active and lingers in the background; (3) the perception
of these sameness groups leads to top-down pressure to perceive other parts of
the same string as sameness groups as well, and the only way this can be done
is the unlikely possibility of perceiving the m as a sameness group consisting of
only one letter; and (4) after standard concepts have failed to yield progress
in making sense of the situation at hand, resistance to bringing in nonstandard
concepts decreases.

People occasionally give the answer mrrkkkk, replacing both the letter
category and the group length of the rightmost group by their successors (kand
4, respectively). Despite its interest, this answer confounds aspects of the two
situations. What counts in establishing the similarity of abc and mrrjjj is their
shared successorship fabric. In mrrjjj, that fabric has nothing to do with the
specific letters m, r, and j; the letter sequence m—7—j is merely acting asa medium
in which the numerical sequence “1-2-3” can be expressed. It is thus misguided

i
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705 Problem: abc —> abd, mrrjjj -—> ?
Total Runs: 1000
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Figure V-4. Bar graph summarizing 1,000 runs of the Copycat program on the
analogy problem “abc = abd; mrrjjj = 2”4

to focus on the alphabetic level of mrrjjj when one has just established that the
essence of that string, in this context, is not its letters but its higherlevel
numerical structure. If the relations between lengths are perceived, then the
answer at the level of lengths is 1-2—4. Translated back into the language of the
carriers, this yields mrrjjjj. Additionally converting the four j’s into k’s is gilding
the lily: it simply blends the alphabetic view with the numerical view in an
inappropriate manner.

People have also proposed answers such as mrryyyy, where the three j’s are
replaced by four copies of an arbitrary letter — here, y. The reasoning is that
since the successorship fabric in mrrjjj has nothing to do with the specific letters
m, r, and j, it doesn’t matter which letter-value is used to replace the j’s. Such
reasoning 1s too sophisticated for the current version of Copycat, which does
not have the concept “arbitrary letter” — but even if Copycat could produce
problem. The letters m, r, and jserve as the medium for expressing the message
“1-2-3”, and we feel the most elegant solution is one that preserves that medium
in expressing the modified message “1-2-4”. Otherwise, why wouldn’t an
answer involving fotal replacement of the medium, such as uggyyyy, be just as
good as, if not better than, mrryyyy?

As can be seen in Figure V-4, by far the most common answer is the
straightforward mrrkkk, with mrrjjk coming in a fairly distant second. For
Copycat, these are the two most immediate answers; however, the average final
temperatures associated with them are fairly high, because of the lack of any
coherent structure tying together the target string as a whole.

Next come two answers with roughly equal frequencies: mrrjkk, a rather
silly answer that comes from grouping only the rightmost two j’s in mrrjjj and
viewing this group as the object to be replaced; and mrrjjjj. The average final

4. The differences between the frequencies given in this figure and those given for the same
problem in Mitchell & Hofstadter, 1990b are due to several improvements in the program — in
particular, improvements in the way letter-groups and bridges are constructed.
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temperature associated with this answer is much lower than that of the other
answers, which shows that the program assesses it to be the most satisfying
answer, though far from the most immediate. As in many aspects of real life,
the immediacy or obviousness of a solution is by no means perfectly correlated
with its quality. The other two answers produced in this series of runs, mrrddd
and mrrjjd, come from replacing either a letter or a group with d’s, and are
on the fringes.

In Problem 4, the successorship fabric is between group lengths rather
than between letters, and is thus not immediately apparent. A simple variant on
Problem 4 involves a successorship fabric both at the level of letters and at the
level of lengths:

5. Suppose the letter-string abc were changed to abd; how would
you change the letter-string rssttt in “the same way’?

The strong pressures evoked in Problem 4 by the lack of any alphabetical
fabric are missing in this variant, and the effect on Copycat can be seen in the bar
graph given in Figure V-5: the program gave the length answer rsstttt only once in
1,000 runs (as contrasted with 39 instances of mrrjjjj in Problem 4). In Problem
5, the program is much more satisfied with the letter-level answer (rssuuu), which
dominates and has a relatively low average final temperature. The other answers
are similar to the answers given in the previous problem (plus there are a few
additional answers based on strange groupings of the target string) .

Paradigm shiftsin a microworld
A different set of issues comes up in the following problem:

6. Suppose the letter-string abc were changed to abd; how would
you change the letter-string xyz in “the same way’?

Naturally, the focus is on the letter z. One immediately feels challenged by
its lack of successor — or more precisely, by the lack of a successor to Platonic z,
the abstract concept (as opposed to the instance thereof found inside the string
xyz). Many people, eager to construct a successor to Platonic z, invoke the
commonplace notion of circularity, thus conceiving of a as the successor of z,
much as January can be considered the successor of December, the digit ‘0’ the
successor of ‘9’, an ace the successor of a king, or, In music, the note A the
successor of G. This would yield xya.

Invoking circularity in this way to deal with Problem 6 is a small type of
creative leap, and not to be looked down upon. However, the general notion of

5. The current version of Copycat is not able to create two simultaneous bonds between two given
objects (e.g., both the alphabetical and numerical successorship bonds between r and ss), s0 the
program is at present unable to get what many people consider to be the best answer — namely,
rssuuuu.

I
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731 Problem: abc -—> abd, rssttt --> ?
Total Runs: 1000
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Figure V-5. Bar graph summarizing 1,000 runs of the Copycat program on the
analogy problem “abc = abd; rsstit = ?”.

circularity is not available to the program, as it is to people, for borrowing and
insertion into the alphabet world. In fact, for important reasons, it is strictly
stipulated that Copycat’s alphabet is linear and just stops dead at z, immutably.
We deliberately set this roadblock, because one of our main goals from the very
conception of the project was to model the process whereby people deal with
impasses.

In response to the 2’s lack of successor, quite a variety of thoughts can and
do occur to people, such as: replace the z by nothing at all, thus yielding the
answer xy. Or replace the z by the literal letter d, yielding answer xyd. (In other
circumstances, such a resort to literality would be considered a rigid-minded
and rather crude maneuver, but here it suddenly appears quite fluid and
certainly reasonable.) Other answers, too, are possible, such as xyz itself (since
the z cannot move farther along, just leave it alone); xyy (since you can’t take
the successor of the z, why not take its predecessor; which seems like second best?);
xzz (since you can'’t take the successor of the zitself, why not take the successor
of the letter sitting next to it?); and many others.

However, there is one particular way of looking at things that, to many
people, seems like a genuine insight, whether or not they come up with it
themselves. Essentially this is the idea that abc and xyz are “mirror images” of
each other, each one being “wedged” against its own end of the alphabet. This
would imply that the z in xyz corresponds not to the ¢ but to the a in abc, and
that it is the x rather than the z that corresponds to the ¢. (Of course, the b
and the y are each other’s counterparts as well.) Underlying these object
correspondences (i.e., bridges) is a set of three conceptually parallel slippages:
alphabetic-first = alphabetic-last, rightmost = leftmost, and successor = predecessor.
Under the profound conceptual reversal represented by these slippages, the
raw rule flexes exactly as it did in Problem 2 — namely, into replace the leftmost
letter by its alphabetic predecessor. This yields the answer wyz, which many people
(including the authors) consider elegant and superior to all the other answers
proposed above. More than any other answer, it seems to result from doing the

same thing to xyz as was done to abc.
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Note how similar and yet how different Problems 2 and 6 are. The key idea
in both of them is to effect a double reversal (i.e., to reverse one’s perception
of the target string both spatially and alphabetically). However, it seems consid-
erably easier for people to come up with this insight in Problem 2, even though
in that problem there is no “snag”, as there is in Problem 6, serving to force a
search for radical ideas. The very same insight is harder to come by in Problem
6 because the cues are subtler; the resemblance between a and z lurks far
beneath the surface, whereas the resemblance between aa and kk is quite
immediate.

In a sense, answer wyz to Problem 6 seems like a miniature “conceptual
revolution” or “paradigm shift” (Kuhn, 1970), whereas answer hjkk to Problem
2 seems elegant but not nearly as radical. Any model of mental fluidity and
creativity must faithfully reflect this notion of distinct “levels of subtlety”. We
will return to these issues of snags, cues, radical perceptual shifts, and levels of
subtlety in the next main section, where we discuss the way in which Copycat
succeeds, at least occasionally, in carrying out this miniature paradigm shift.

As can be seen in Figure V-6, the most common answer by far is xyd, for
which the program decides that if it can’t replace the rightmost letter by its
successor, the next best thing is to replace it by a d. This is also an answer that
people frequently give when told the xya avenue is barred.

A distant second in frequency, but the answer with the lowest average final
temperature, is wyz, which, as was said above, is based on simultaneous spatial
and alphabetic reversal in perception of the target string. This discrepancy
between rank-order by obviousness and rank-order by quality is characteristic
of problems where creative insight is needed. Clearly, brilliance will distinguish
itself from mediocrity only in situations where deep ideas are elusive.

To bring about pressures that get the idea of the double reversal to bubble
up, radical measures must be taken upon encountering the “z-snag” (the
momentwhen the attempt to take the successor of z fails). These include sharply
focusing attention upon the trouble spot, and raising the temperature from its
rather low value just before the z-snag is hit to its maximum possible value of
100, opening up a far wider range of possible avenues of exploration. Only with
the special combination of a sharp focus of attention and an unusually “broad-
minded” attitude could wyz ever be found. (We will discuss all this in more detail
in the next section.)

The next answer, yyz, reflects a view that sees the two strings as mapping to
each other in a crosswise fashion, but ignores their opposite alphabetic fabrics;
thus, while it considers the leftmost letter as the proper one in xyz to be changed,

it clings to the notion of replacing it by its successor; since the letter changed in
abc was replaced by its successor. (It is Problem 6’s analogue to the answer Jikk
in Problem 2.) Although this view seems somewhat inconsistent, like a good
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Problem: abc —> abd, xyz —> ?
Total Runs: 1000
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Figure V-6. Bar graph summarizing 1,000 runs of the Copycat program on the
analogy problem “abc = abd; xyz = ?”.

idea carried out only halfway, people very often come up with it. Indeed, such -
blends and half-completed trains of thought are very characteristic of human
cognition (Hofstadter & Moser, 1989 gives examples of many types of cognitive
blends and discusses their origin). '

The other four answers are much farther out on the low-frequency fringes.
The answer dyz (much like dji in Problem 3) is a highly implausible blend of
insight and simple-mindedness, the insight being the subtle perception of the
abstract symmetry linking abc and xyz, and the simple-mindedness being the
extremely concrete and unimaginative way of conceiving the abc = abd change.
Amusingly, this answer is self-descriptive, in that dyz can be pronounced “dizzy”.
Indeed, some people find this answer so dizzy in its style of thought that it evokes
laughter. In Hofstadter et al. (1989), this and several other Copycat analogies
are mapped onto real-world jokes, and are thereby used to suggest a theory of
“slippage humor”, one of whose tenets is that there is a continuum running
from sensible through “sloppy” answers and winding up in “dizzy” answers,
where “sloppy” and “dizzy” can be given semi-precise definitions in terms of the
degree of consistency with which conceptual slippages are carried out.

The answer xyy allows that the two strings are to be perceived in opposite
alphabetic directions (thus a successor = predecessor slippage), yet refuses to give
up the idea that the strings have the same spatial direction; it thus insists on
changing the rightmost letter, as was done to abe. It is amusing to note that ijj
— Problem 1’s analogue to this answer® — was produced one time in 1,000 runs,
even without the pressure of a snag.

6. Itisironic that a claim of analogousness of answers to different Copycat problems (such as the
offhand remark made in the text that ¢jj in Problem 1 is “the analogue” to xyy in Problem 6) comes
across as objective and unproblematic to most people, despite the fact that many people express
doubt about the notion of “rightness” or “wrongness” of letter-string analogies. The fact is, most
people do have a strong intuitive sense of right and wrong analogies — it’s just that when the
psychological context is “Solve this analogy puzzle”, they put their guard up and become wary of
any claims, whereas when the context is “commentary on our program’s behavior”, they lower their
guard and go with their intuitions, without even realizing the change in their attitude.
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The answer xyz, whose very high temperature of 74 indicates that the
program did not “like” it at all, comes from interpreting the abc = abd change
as “Replace cby d”. (This is not nearly as clever as positing that the z might serve
as its own successor, which is an entirely different way of justifying this same
answer, and one that people fairly often suggest. In fact, when xya is barred, xyzis
what people come up with most often.) Note that ijk, the analogous answer® to
Problem 1, was never produced. It takes the “desperation” caused by the z-snag to
allow such strange ideas any chance at all.

Finally, answer yzz is a peculiar, almost pathological, variant of the above-
discussed answer yyz, in which the x and y in xyz are grouped together as one
object, which is then replaced as a wholeby its “successor” (the successor of each
letter in the group). Luckily, it was produced only once in 1,000 runs, and was
considered a poor answer.

In Problem 6, pressure for a crosswise mapping (leading to the answer wyz)
comes both from the existence of an impasse and from the possibility of an
appealing way out of that impasse — namely, a high-quality bridge linking
instances of the two “distinguished” Platonic letters, a and z. Suppose that the
impasse was retained while the appeal of the “escape route” was greatly reduced
— what would be the effect on Copycat’s behavior? The following variant
explores that question.

7. Suppose the letter-string rst were changed to rsu; how would
you change the letter-string xyz in “the same way"?

As Figure V-7 shows, wyz was produced on only 1 percent of the runs,
whereas in Problem 6 it was given on almost 14 percent of the runs. Here, there
is very little to suggest building a crosswise bridge, because the r and z have
almost nothing in common, aside from the rather irrelevant fact that the r 1s
leftmost in its string and the zrightmost in its string — hardly a powerful reason
to make an r—z bridge.

For some perspective, compare this to Problem 1. How much appeal is
there to the idea of mapping the leftmost letter of abc onto the rightmost letter
of ijk? Such a crosswise a-k bridge would result either in the answer hjk
(characterized at the beginning of this article as “unmotivated fluidity”), or
possibly in jjk or djk. However, in 1,000 runs on Problem 1, Copycat never
produced any of those answers, nor have we ever run into a human who has
suggested any of them as an answer to Problem 1. (Actually, one person once
did propose hjk in response to Problem 1, but this was under the influence of
having just seen the wyz answer to Problem 6.) In colloquial terms, answers to

Problem 1 based on a crosswise mapping seem completely “off the wall”.
In Problem 7, of course, things are different, because there is, after all, a
snag, and hence a kind of “desperation”. The various emergency measures —
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Figure V-7. Bar graph summarizing 1,000 runs of the Copycat program on the
analogy problem “rst = rsu; xyz = 2",

especially the persistent high temperature — make the normally unappealing
r—z bridge a bit more tempting, and so, once in a while, it gets built. From that
point on, the whole paradigm shift goes through exactly as in Problem 6, and
wyz is the outcome.

In some sense, Prol?lem 7 lies halfway between Problems 1 and 6, so answer
wyz in Problem 7 represents an intermediate stage between unmotivated and
motivated fluidity. It is most gratifying to us that Copycat responds to the
different constellations of pressures in these problems in much the way that our
intuition feels it ought to.

Families of problems as a “miniature Turing Test”

It cannot be overestimated how critical we feel this method of probing
Copycat through various families of subtly related problems is. When we began
running Copycat on a large number of problems, we had no clear idea of what
its performance would be, and we were, frankly, somewhat nervous. To us, the
experience of watching Copycat reacting to each new problem had the feel of
a kind of “miniature Turing Test”, in the sense that each new problem posed to
Copycat was like a question and answer in the Turing Test that would inevitably
bring out some new and unanticipated aspect of the program’s personality (this
analogy to the Turing Test is further discussed in French, 1995; see also the
Epilogue of this book). Copycat’s mechanisms were truly put to the test by the
families of problems we challenged it with, and by and large it came through
with flying colors. A thorough discussion of those tests is found in Chapters 4
and 5 of Mitchell (1993).

The bar graphs just presented suggest the range of Copycat’s abilities, and
show how diverse constellations of pressures affect its behavior. They show the
degree to which the program exhibits rudimentary fluid concepts able to adapt
to different situations in a microworld that, though idealized, captures much of
the essence of real-world analogy-making. They also reveal, by displaying bad
analogies Copycat makes, some of the program’s flaws and weaknesses. But they
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also show that though Copycat has the potential to get farfetched answers — a
potential essential for flexibility — it still manages to avoid them almost all the
time, which shows its robustness. _

It is important to emphasize once again that our goal is not to model
specifically how people solve these letter-string analogy problems (it is clear
that the microworld involves only a very small fraction of what people know
about letters and might use in solving these problems), but rather to propose
and model mechanisms for fluid concepts and analogy-making in general.
These mechanisms, described earlier on, will be illustrated in detail in the next
section, which follows the temporal progression of Copycat as it solves two
problems. First we take a particular run of the program on Problem 4 and
present it through a series of screen dumps; then we move to Problem 6 and
discuss the abstract pathway followed by almost all runs that lead to answer wyz.

— i

Copycat’s Performance: A Tree-level Close-up

A problem where perception plays a crucial role is chosen as a focus
We now illustrate the mechanisms described in this article by presenting
. a detailed set of screen dumps from a single run of Copycat on Problem 4. As
was discussed above, this problem has a seemingly reasonable, straightforward
solution, mrrkkk, but neither this answer nor the more literal mrrjjk is very
satisfying, since neither reflects an underlying successorship structure in mrrjjj
analogous to that in abec. Such a successorship fabric can be found only if |
relationships between group lengths are perceived in mrrjjj. But how can the
notion of group length, which in most problems remains essentially dormant,
come to be seen as relevant by Copycat?

Length is certainly in the halo of the concept group, as are other concepts,
such as letter category (e.g., j for the group jjj), string position (e.g., rightmost), and
group fabric (e.g., sameness). Some of these concepts are more closely associated
with group than others; in the absence of pressure, the notion of length tends
to be fairly far away from group in conceptual space. Thus in perceiving a group
such as rr, one is virtually certain to notice its letter category (namely, r), but
not very likely to notice, or at least attach importance to, its length (namely,
2). However, since the concept length is in group’s halo, there is some chance
that lengths will be noticed and used in trying to make sense of the problem.
One might, for instance, consciously notice a group’s length at some point,
but if this doesn’t turn out useful, length’s relevance will diminish after a short
while. (This might happen in the variant problem “abc = abd; mrrrrjj = ?7.)
This dynamic aspect of relevance is very important: even if a new concept is at
some point brought in as relevant, it is counterproductive to continue spend-




The Copycat Project 249

ing much of one’s time exploring avenues involving that conceptif none seems

promising.

The story in quick strokes

program is nondeterministic, there are many possible routes to any given
answer). The input consists of three “raw” strings (here, abc, abd, and mrrjjj)
with no preattached bonds or preformed groups; it is thus left to the program
to build up perceptual structures constituting its understanding of the problem
in terms of concepts it deems relevant.

On most runs, the groups rr and jjj get built (the program tends to see
sameness groups quite fast). Each group’s letter category (rand j, respectively)
is noted, as the concept letter category is relevant by default. Although there is
some chance for length to be noticed when a group is made, it is low, as length
is only weakly associated with group. Once rr and jjj are made, sameness group
becomes very relevant, which creates top-down pressure to describe other
objects, especially in the same string, as sameness groups, if possible. The only
way to do this here is to describe the m as a sameness group having just one
member. But this is resisted by a strong opposing pressure: a single-member
group is an intrinsically weak and far-fetched construct. It would be disastrous
if Copycat were willing to bring in unlikely notions such as single-member
groups without strong pressure: it would then waste huge amounts of time
exploring ridiculous avenues in every problem. However, the prior existence of
two other strong sameness groups in the same string, coupled with the system’s
unhappiness at its failure to incorporate the lone m into any large, coherent
structure (revealed by a persisting high temperature), pushes against this
intrinsic resistance.

These opposing pressures fight; the outcome is decided only as a statistical
result of probabilistic decisions made by a large number of codelets. If the m
chances to be perceived as a single-letter sameness group, that group’s length
will very likely be noticed (single-letter groups are noteworthy precisely because
of their abnormal length), making length more relevant in general, and thus
increasing the probability of noticing the other two groups’ lengths. Moreover,
length, once brought into the picture, has a good chance of staying relevant,
since descriptions based on it turn out to be useful. (Without reinforcement, a
node’s activation decays over time. Thus, for instance, had the target string been
mrrrrjj, length might get brought in at some point, but it would not turn out
useful, so it would likely fade back into obscurity.)

In mrrjjj, once lengths are seen, the (numerical) successor relations
among them might be spotted by bottom-up codelets, ever-present in the

Coderack, continually seeking new relations in the Workspace. (Note' that such
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spontaneous bottom-up noticing could happen only in a parallel architecture
where many types of properties can be continually being looked for at once
without a need for explicit prompting.) Another way, perhaps more likely, that
the noticing of successor relations in mrrjjj could occur is through top-down
pressure caused by the already-seen successor relations in abe. In any case, as
soon as the numerical successorship relations are seen and a much more
satisfying view of mrrjjj begins to emerge, interest in the groups’ letter catego-
ries fades and lengthbecomes their most salient aspect. Thus the crux of finding
this solution lies in the triggering of the concept length.

Screen dumps tell the story in detail
Figure V-8 is a series of screen dumps from a run of Copycat, showing one

way it arrives at the answer mrrjjjj (note that this answer is not very typical:
according to Figure V-4, this answer is given only about 4 percent of the time).

i
I
{
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1. The problem is presented. Temperature,
shown on a “thermometer” (at the left), is at
its maximum of 100, since no structures have
yet been built. At the bottom, some Slipnet
nodes are displayed. (Note: links are not
shown. Also, due to limited space, many
nodes are not shown, e.g., those for a, b, etc.)
A black square represents a node’s current
activation level (the numerical value, be-
tween 0 and 100, is shown above the square).

Nodes here displayed include leftmost,
middle, and rightmost (the possible string posi-
tions of objects in the Workspace); first and
last (the distinguished alphabetic positions of
Platonic letters a and z2); left and right (the
possible directions for bonds and groups);
identity and opposite (two of the possible rela-
tions between concepts); same, predecessor,
and successor (the possible bond categories for
bonds between Workspace objects); predeces-
sor group, successor group, and copy-group ! (the
various group categories); letter and group (the
possible object categories for Workspace ob-
jects); and in row 3, nodes representing
these various categories of descriptions, in-
cluding length.

Every letter comes with some preattached
descriptions: its letter category (e.g., m), its
string position (leftmost, middle, rightmost, or
none — e.g., the fourth letter in mrrjjj has
no string-position description), and its object
category (letter, as opposed to group). These
nodes start out highly activated.
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2. The 30 codelets so far run have begun
exploring many possible structures. Dotted
lines and arcs represent structures in early
stages of consideration; dashed lines and arcs
represent structures in more serious stages
of consideration; finally, solid lines and arcs
represent structures actually built, which can
thus influence temperature as well as the
building of other structures. Various bonds
and bridges between letters are being consid-
ered (eg., the dotted a—j bridge, which is
based on the relatively long leftmost—rightmost
Slipnet link; being implausible, it won’t be
pursued much further).

Bridges connecting letters in abc with
their counterparts in abd have been built by
bottom-up codelets, as has a j—j sameness
bond at the right end of mrrjjj; this latter
discovery activated the node same, resulting
in top-down pressure (i.e., new codelets) to
scek instances of sameness elsewhere.

Some nodes have become lightly acti-
vated via spreading activation (e.g., the node
first, via activation from the node a [not
shown]). The slight activation of length
comes from its weak association with letter
category (letters and numbers form linear se-
quences and are thus similar; numbers are
associated with length). The temperature has
fallen in response to the structures so far
built. It should be pointed out that many
fleeting explorations are constantly occur-
ring (e.g., “Are therc any relations of interest
between the mand its neighbor r?”), but they
are not visible here.

1. Note that the term copy-group, in this set of screen dumps and captions, means sameness group,
in the terminology of the text.

s
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3. The successorship fabric of abc has been
observed, and two rival groups based onitare
being considered: bcand abc. Although the
former got off to an early lead (it is dashed
while the latter is only dotted), the latter,
being intrinsically a stronger structure, has a
higher chance of actually getting built.

Exploration of the crosswise a—j bridge
was aborted, since it was (probabilistically)
judged to be too weak to merit further con-
sideration. A more plausible ¢—jbridge has
been built (jagged vertical line); its reason
for existence (namely, both letters are right-
most in their respective strings) is given be-
neath it, in the form of an identity mapping.

Since successor and sameness bonds have
been built, these nodes are highly active; they
in turn have spread activation to successor
group and copy-group (i.e., sameness group),
which creates top-down pressure to look for
such groups. Indeed, a jjj copy-group is be-
ing strongly considered (dashed box). Also,
since first was active, alphabetic position be-
came highly active (a probabilistic event),
making alphabetic-position descriptions
likely to be considered.

Replace lotter-categery of rmost letter by successor

s
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4. Groups abc and jjj have been built (the
bonds between their letters still exist, but for
the purposes of graphical simplicity are no
longer being displayed). An rr copy-group is
being considered. The already-built copy-
group jjj strongly supports this potential
move, which accelerates it, in the sense that
codelets investigating the potential structure
will be assigned higher urgency values.
Meanwhile, a rule (shown at the top of the
screen) has been constructed to describe
how abc changed. The current version of
Copycat assumes that the example change
involved the replacement of exactly one let-
ter, so rule-building codelets fill in the tem-
plate “Replace ___ by ___", choosing
probabilistically from descriptions that the
program has attached to the changed letter
and its replacement, with a probabilistic bias
toward choosing more abstract descriptions
(e.g., usually preferring rightmost letter to ).
Since the nodes firstand alphabetic position
didn’t turn out useful, they have faded. Also,
although length received additional activa-
tion from group, it is still not very activated,
and so lengths are still unlikely to be noticed.
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5. Now, some 225 codelets into the run, the
letter-to-letter c—j bridge has been defeated
by the stronger letter-to-group c—J bridge,
although the former possibility still lurks in
the background. Meanwhile, an rr copy-
group has been built whose length (namely,
2) happened to be noticed (a probabilistic
event); therefore, a “2”, along with the
group’s letter category (namely, ), is dis-
played just above the group. Length is now
fully active, and for this reason the “2” is a
salient Workspace object (indicated by bold-
face).

A new rule, “Replace the letter category
of the rightmost letter by d”, has replaced the
old one at the top of the screen. Although
this rule is weaker than the previous one,
fights between rival structures (including
rules) are decided probabilistically, and this
one simply happened to win. However, its
weakness has caused the temperature to go
up.

If the program were to stop now (which is
quite unlikely, since a key factor in the pro-
gram’s probabilistic decision when to stop is
the temperature, which is now quite high),
the rule would be adapted for application to
the string mrrjjj as “Replace the letter cate-
gory of the rightmost group by d” (the c-J
bridge establishes that the role of letterin abc
is played by group in mrrjjj), yielding the
answer mrrddd (an answer that Copycat does
indeed produce, on rare occasions).
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6. The previous, stronger rule has been re-
stored (again the result of a fight having a
probabilistic outcome), but at the same time,
the strong c—J bridge also happened to get
defeated by its weaker rival, the ¢—j bridge.
As a consequence, if the program were to
stop at this point, its answer would be mrrjjk.
This, incidentally, would also have been the
answer in screen dump #4.

In the Slipnet, the activation of length has
decayed a good deal, since the length de-
scription given to rr wasn’t found to be use-
ful. In the Workspace, the diminished
salience of the rr’s length description “2” is
represented by the fact that the “2” is no
longer in boldface.

The temperature is still fairly high, since
the program is having a hard time making a
single, coherent structure out of mrrjjj,
something that it did easily with abc. That
continuing difficulty, combined with strong
top-down pressure from the two copy-groups
that have been built inside mrrjjj, makes it
now somewhat tempting for the system to
flirt with the a priori extremely unlikely idea
of making a single-letter copy-group (this
flirtation is represented by the dashed rec-
tangle around the letter m).
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7. As a result of these combined pressures,
the a priori extremely unlikely single-letter
copy-group m happened to get built, and its
length of 1, being very noteworthy, has been
attached to the group as a description. A
successorship bond between that “1” and its
right-neighbor “2” has already been builg; all
of this is helping length to stay active. A con-
sistent trio of letter = group bridges has now
been made, and as a result of these promis-
ing new structures, the temperature has
fallen to the relatively low value of 36, which
in return helps to lock in this emerging view.

If the program were to haltin this screen
dump or in the following one, it would pro-
duce the answer mrrkkk, which is its most
frequent answer.

8. As a result of length’s continued activity,
length descriptions have been attached to
the remaining two groups in the problem
(jjj and abc), and a successorship bond
between the “2” and the “3” (for which there
is much top-down pressure coming from
both abc and the emerging view of mrrjjj) is
being considered (dashed arc). Letter category
has decayed, indicating that it hasn’t lately
been of use in building structures.
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9. The “2”-“3” bond was built, whereupon a
very abstract, high-level numerical successor
group involving the group lengths in mrrjjj
was perceived (large solid rectangle sur-
rounding the three copy-groups). Also, a
bridge (dotted vertical line to the right of the
two strings) is being considered between
strings abc and mrrjjj in their entireties.
Ironically, just as these sophisticated ideas
seem to be converging toward a highly in-
sightful answer, a small renegade codelet,
totally unaware of the global momentum,
has had some good luck: its bid to knock
down the ¢/ bridge and replace it with a ¢—j
bridge was accepted. Of course, this is a
setback on the global level. If the program
were forced to stop at this point, it would
answer mrrjjk — the same rather dull answer
as it would have given in screen dumps #6
and #4. However, at either of those stages,
that answer would have been far more excus-
able than it is now, since the program hadn’t
yet made the subtle discoveries it has now
made about the structure of mrrjjj. It would
seem a shame for the program to have gotten
this far and then to “drop the ball” and
answer in a relatively primitive way. How-

ever, 31 is a high enough temperature that
there is a good chance that the program
will get back on track and be allowed to
explore the more abstract avenue to its
logical conclusion.
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10. Indeed, the aberrant bridge from the ¢
was quickly destroyed and replaced by a re-
built ¢—J bridge, in keeping with the emerg-
ing sophisticated view. Also, the high-level
bridge between abc and mrrjjj as wholes,
which in the previous screen dump was
merely a dotted candidate, has now been
promoted through the dashed state and ac-
tually built. Its six component concept-map-
pings, including identity mappings (such as
right = right, meaning that both strings are
seen as flowing rightwards) as well as concep-
tual slippages (such as letter category = length,
meaning that letters are mapped onto num-
bers — specifically, onto group lengths), are
listed in the middle of the screen, somewhat
obscuring the bridge itself.

The original rule has been translated, ac-
cording to the slippages, for application to
the target string mrrjjj. The translated rule,
“Replace the length of the rightmost group
by its successor”, appears just above the Slip-
net, and the answer mrrjjjj at the right. The
very low final temperature of 11 reflects the
program’s unusually high degree of satisfac-
tion with this answer.
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Although the preceding run may look quite smooth, there were many [
struggles involved in coming up with this answer: it was hard not only to make t
a single-letter group, but also to bring the notion of length into the picture, to ,
allow it to persist long enough to trigger the noticing of all three group lengths, I
and to build bonds between the group lengths. The program, like people, ;
usually gives up before all these hurdles can be overcome, and gives one of the |
more obvious answers. Arriving at the deeper answer mrrjjjj requires not only 1
the insights brought about by the strong pressures in the problem, but also a
large degree of patience and persistence in the face of uncertainty. |

The moral of all this is that in a complex world (even one with the limited
complexity of Copycat’s microworld), one never knows in advance what con- l
cepts may turn out to be relevantin a given situation. This dilemma underscores »
the point made earlier: it is imperative not only to avoid dogmatically open-
minded search strategies, which entertain all possibilities equally seriously, but
also to avoid dogmatically closed-minded search strategies, which in an ironclad
way rule out certain possibilities a priori. Copycat opts for a middle way, in which
it quite literally takes calculated risks all the time — but the degree of risk-taking
is carefully controlled. Of course, taking risks by definition opens up the

. potential for disaster — and indeed, disaster occurs once in a while (as was
evidenced by some of the far-fetched answers displayed earlier). But this is the
price that must be paid for flexibility and the potential for creativity.

People, too, occasionally explore and even favor peculiar routes. Copycat, like
people, has to have the potential to concoct strange and unlikely solutions in order
to be able to discover subtle and elegant ones like mrrjjjj. To rigidly close off any
routes a priori would necessarily remove critical aspects of Copycat’s flexibility. On
the other hand, the fact that Copycat so rarely produces strange answers demonstrates
that its mechanisms manage to strike an effective balance between open-mindedness
and closed-mindedness, imbuing it with both flexibility and robustness.

Hopefully, these screen dumps have made clearer the fundamental roles
of nondeterminism, parallelism, non-centralized and simple perceptual agents
(i.e., codelets), the interaction of bottom-up and top-down pressures, and the
reliance on statistically emergent (rather than explicitly programmed) high- |
level behavior. Large, global, deterministic decisions are never made (except |
perhaps towards the end of a run). The system relies instead on the accumu-
lation of small, local, nondeterministic decisions, none of which alone is

particularly important for the final outcome of the run. As could be seen in
the screen dumps, large-scale effects occur only through the statistics of the
lower levels: the ubiquitous notion of a “pressure” in the system is really a
shorthand for the statistical effects over time of a large number of actions
carried out by codelets, on the one hand, and of activation patterns of nodes
in the Slipnet, on the other.
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As was seen in the screen dumps, as structures are formed and a global
interpretation coalesces, the system gradually makes a transition (via gradually
falling temperature) from being quite parallel, random, and dominated by
bottom-up forces to being more serial, deterministic, and dominated by top-
down forces. We believe that such a transition is characteristic of high-level
perception in general. :

The importance of such a transition in degree of risk-taking was confirmed
by two experiments we performed on the model (described in Mitchell, 1993).
Temperature was clamped throughout a run, in one experiment at a very high
value and in the other at a very low value. In each experiment, 1,000 runs were
made. In neither test did the hobbled Copycat ever come up with the answer
mrrjjjj — not even once.

Micro-anatomy of a paradigm shift

We now turn our attention from Problem 4 to Problem 6, and give a sketch
of how Copycat can, onroccasion, come up with the answer wyz. It turns out to
be a surprisingly intricate little tale. The reason for this is that it is an attempt
to show in slow motion how a human mind, under severe pressure, can totally
transform its perception of a situation in a blinding flash (colloquially termed
the “Aha!” phenomenon). Since such paradigm shifts are often found at the
core of deeply creative acts, one should expect their microstructure to be very
complex (otherwise, the mystery of creativity would long ago have been re-
vealed and put on a mass-produced microchip). Indeed, the challenge of getting
Copycat to produce wyz properly — faithfully to what we believe really goes on
in a2 human mind at the most informative subcognitive level of description —
has, from the very outset, been the central inspiration in guiding the develop-
ment of the Copycat architecture.

The very cursory justification for wyz given in the previous section lies at
far too high and coarse-grained a level to be informative about the mental
mechanisms responsible for paradigm shifts. The following detailed story, by
contrast, evolved hand in hand with the architecture itself, and is intended not
only as a description of Copycat, but hopefully as an accurate description of the
underpinnings of a typical paradigm shift in a human mind. (An annotated

series of screen dumps of a particular run on Problem 6 is given in Mitchell &
Hofstadter, 1990a.)

Emergency measures convert a serious snag into a set of exploratory pressures

Things start out essentially analogously to a typical run on Problem 1, in
terms of bonding, grouping, bridge-building, and such — that is, both source
and target strings come quite quickly to be perceived as successor groups, and
the raw rule “Replace rightmost letter by its successor” is effortlessly produced.
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Everything thus proceeds pretty smoothly up to the point of trying to take the
successor of z, which is impossible. This serious snag causes several coordinated

“emergency measures” to be taken:

e the physical trouble spot — here, the instance of z in the Workspace
— is highlighted, in the sense that its salience is suddenly pumped
up so high that, to codelets, it becomes the most attractive object
in the entire Workspace;

o the conceptual trouble spot — here, the node zin the Slipnet —1is
highlighted, in the sense that a huge jolt of activation is pumped
into it, and as a consequence, its halo broadens and intensifies,
meaning that related concepts are more likely to be considered,
at least fleetingly;

« the temperature is pumped up to its maximum value of 100 and
temporarily clamped there, thus encouraging a broader and more
open-minded search;

« the high temperature enables previously dormant “breaker”
codelets to run, whose purpose is to arbitrarily break structures
that they find in the Workspace, thus reducing the system’s attach-
ment to a viewpoint already established as being problematic.

Note the generality of these “impasse-handling” mechanisms: they have
nothing to do with this snag itself, with the particular problem, with the
alphabetic domain, or even with analogy—making! The reason for thisis of course
that running into an impasse is a critical and common event that any cognitive
system must be capable of dealing with. To be sure, no set of mechanisms can
be guaranteed to resolve all snags (otherwise we would be dealing with omnis-
cience, not intelligence). The best that can be hoped for is that the impasse
itself can be “read” as a source of cues — possibly very subtle ones — that may
launch tentative forays down promising new avenues. A “cue”, in the Copycat
architecture, is essentially the creation of a pressure that pushes for exploration
along a certain direction. Thus the idea of interpreting the snag as a sowrce of
pressures is the philosophy behind the four mechanisms above, especially the
first two.

Although these emergency measures are not powerful enough to guide
Copycat to coming up with wyzall that often, when it does get there, it does 50
essentially according to the following scenario.

The spotlight focused on Platonic z has the effect of making all concepts
in z's halo — including the closely-related concept alphabetic-last — somewhat
more likely to be looked at by description-building codelets. The probability is
thus significantly increased that the instance of z in the Workspace will get
explicitly described as alphabetic-last.
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Note that in most problems — even ones that involve one or more
instances of the letter z — there is little or no reason to pay attention to the
notion alphabetic-last, and therefore, this conceptually deep neighbor of Platonic
z usually remains — and should remain — dormant (as it did in Problems 1-5).
After all, as was brought out in the discussion of Problem 4, itis extremely crucial
to avoid cluttering up the processing with all sorts of extraneous interfering
notions, no matter how conceptually deep they may be. But now, under the
emergency measures, unusual avenues are more likely to atleast be “sniffed out”
a short ways.

If the description alphabetic-last does indeed get attached to the z, which is
a dicey matter, then a further boost is given to the node alphabetic-last, as the
system has deemed it potentially relevant. So now that alphabetic-last (part of the
halo of Platonic z) has been lifted considerably out of dormancy, concepts in
its halo will in turn receive more activation, which means codelets will tend to
pay more attention to them (probabilistically speaking). One such neighbor-
concept is alphabetic-first, which is now briefly given the chance to show its
relevance. Obviously, if there were no instance of ain the problem, alphabetic-first
would be found to be completely irrelevant and would soon decay back to
dormancy, but since there is an a inside abe, it has a fair chance of getting
explicitly described as alphabetic-first, in much the same way as the z in xyz got
described as alphabetic-last.

If both these descriptions get attached — and that is a big “if” — then
both letters become even more salient than before; in fact, they almost cry out
to be mapped onto each other — not because the system can anticipate the
great insight that such a mapping will bring, but simply because both letters
are so salient! Once the system tries it out, however, the great appeal of the
tentative mapping instantly becomes apparent. Specifically, a pair of concep-
tual slippages are entailed in the act of “equating” the a with the z (i.e., building
an a-z bridge): alphabetic-first = alphabetic-last, and leftmost = rightmost.

Houw resistance to a deep slippage is overcome — a tricky matter

Although normally the deep slippage of alphabetic-first into alphabetic-last
would be quite valiantly resisted (recall the motto given earlier, “Deep stuff
doesn’t slip in good analogies”), here a special circumstance renders it a bit
more probable: the companion would-be slippage rightmost => leftmost is of the
same type — in particular, each of these slippages involves slipping a concept
representing an extremity into its opposite concept. These two would-be slip-
pages are thus conceptually parallel, so that each one on its own reinforces the

other’s plausibility. This fact helps to overcome the usual resistance to a deep
slippage. (Incidentally, this is the kind of subtlety that was not apparent to us
before the computer implementation was largely in place; only at that point
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were Copycat's flailings and failures able to give us pointers as to what kinds of
additional mechanisms were needed.)

Another fact that helps overcome the usual resistance to the deep slippage
in this bridge is that any two slippages, whether parallel or not, provide more
Justification for building a bridge than either one alone would. Altogether,
then, there is a fairly good chance that this bridge, once tentatively suggested,
will actually get built. Once this critical step has taken place, essentially it’s all
downhill from there. This is why we have paid particularly close attention to the
pathway via which such a bridge can emerge.

Locking-in of a new view
The first thing that is likely to happen as a result of an a—z bridge getting
builtis that the temperature will get unclamped from its value of 100. In general,
what unclamps the temperature is the construction of any strong structure
different from those that led up to the snag — in other words, a sign that an
alternative way of looking at things may be emerging — and this bridge is a
perfect example of such a structure. Like most actions in Copycat, the unclamp-
ing of temperature is probabilistic. In this case, the stronger the novel structure
is, the more likely it is to trigger the unclamping. Since the a—z bridge is both
novel and very strong, unclamping is virtually assured, which means that the
temperature falls drastically right after the bridge is built. And when the
temperature falls, decisions tend to get more deterministic, which means that
the emerging new view will tend to get supported. In short, there is a powerful
kind of locking-in effect that is triggered by the discovery of an a—z bridge. This
is a critical effect.

Another aspect of locking-in is the following idea. The building of this first
bridge involving the simultaneous slippage of two concepts into their opposites
sends a burst of activation into the very deep concept opposite; as a result, all
pairs of concepts connected via links labeled opposite are drawn much closer
together, facilitating the slippage of one into the other. Such slippages will still
not happen without reason, of course, but now they will be much easier to make
than in ordinary circumstances. Thus in a sense, making one bridge based on
conceptual opposites sets a tone making it easier to make more of them. The
emerging theme of the concept opposite can fairly be characterized as a kind of
“bandwagon”.

Given all this, one of the most likely immediate consequences of the
crosswise a—z bridge is the building of the “mirror” crosswise bridge connecting
the cwith the x. It, too, depends on the slippage between leftmost and rightmost,
and is thus facilitated; in addition, once built, it strongly reinforces the emerging
relevance of the concept opposite. Moreover, the temperature will fall signifi-
cantly because this bridge, too, will be very strong. Thanks to all of this, the
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locking-in effect may by now be so strong that it will be hard to stop the
momentum towards building a completely new view of the situation.

The reversals taking place become a near-stampede at this point, with
significant pressure emerging to flip the direction of the fabric of the group xyz
from rightwards to leftwards, which means also that the perceived fabric itself
would switch from successor to predecessor. Thus at this point, Copycat has carried
out both a spatial and an alphabetical reversal of its vision of xyz. The paradigm
shift has been completed. At this point, Copycat is ready to translate the raw
rule, and, as was said above, the result is the new rule replace the leftmost letter by
its alphabetic predecessor, which yields the answer wyz.

It must be stressed that all the multifarious activity just described — shifting
degrees of activation of various key concepts; deep slippages; interrelated spatial
and conceptual reversals — all this takes place in a flash in a human mind. There
is no hope of making out all the details of this paradigm shift (or any other) in
one’s own mind through mere introspection: In fact, it has taken the authors
several years to settle on the above account, which represents our current best
stab at the true story’s intimate details.

How hard is it to make this paradigm shift?

As was pointed out a moment ago, the motto “Deep stuff doesn’t slip in
good analsogies” is violated by the answer wyz, in that alphabetic-first is a deep
concept and yet is allowed to slip into alphabetic-last here. This is one reason that
malkes it so hard for many people to discover it on their own. Yet many people,
when they are shown this answer, appreciate its elegance and find it very
satisfying. Problem 6 is thus a circumstance where a constellation of pressures
can occasionally overcome the powerful natural resistance expressed by the
motto; in fact, making such a daring move results in what many people consider
to be a deep and insightful analogy.

There isan importantirony here. In particular, even though slippages tend
to be (and should be) resisted in proportion to their depth, once a very deep
slippage has been made, then it tends to be (and should be) respected in
proportion to its depth. We consider this to be characteristic of creative break-
throughs in general. More specifically, we consider the process of arriving at
answer wyz to be very similar, on an abstract level, to the process whereby a
tull-scale conceptual revolution takes place in science (Kuhn, 1970).

Now we come back to the point raised in our earlier discussion of Problem
6 about “levels of subtlety” of answers. Specifically, we claimed above that,
because finding the answer wyz to Problem 6 is far subtler for people than finding
the similar answer hjkk to Problem 2, any model of mental fluidity should respect
this difference in levels of subtlety. Yet when one compares the bar graphs for

these nrahlems one Becnvars thar ymm wng fonred v meva ~ften than hibk was
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found (a ratio of 137 to 47, when both problems were run 1,000 times). This
seems to completely contradict the claim that the former answer is subtler than
the latter. How can one account for this unexpected ratio?

There are two basic factors that explain it. The first has to do with the fact
that there was a snag in one problem and no snag in the other. In attacking
Problem 6, Copycat was forced to look for solutions other than taking the
successor of the rightmost letter, because that route turned out to be impossible.
By contrast, all sorts of superficially attractive routes led directly to solutions in
Problem 2. There was no snag that prevented any attractive route from being
taken all the way to its natural conclusion. Had all or most of the easy routes
been barred, then of course hjkk would have constituted a much larger percent-
age of the answers found.

The second factor is that the average length of time taken to find various
solutions (measured in terms of number of codelets run) is a key notion. This
fact is not apparent, because average run-lengths are unfortunatelv not repre-
sented in the bar graphs. When Copycat came up with hjkk in Problem 2, it was
essentially always a relatively direct process involving no backtracking or getting
stuck for a while in a loop. To be specific, the average number of codelets taken
to get hjkk was 899. By contrast, the average number of codelets taken to get wyz
was 3,982 — over four times as long. The reason for this is that in most runs,
the program came back time and time again to the standard way of looking at
xyz, and thus hit the snag over and over again: it was stuck in a kind of rut. This
mleans that on runs where Copycat was lucky enough to come across the double
reversal, by the time it did so it had usually tried out all sorts of other pathways
in vain beforehand. In this sense of time needed to make the discovery, wyz was an
extremely elusive answer for the program, whereas hjkk was not at all elusive.
In sum, wyz was indeed far subtler for Copycat than hjkk was, as ought to have
been the case.

Conclusion: The Generality of Copycat’s Mechanisms

The crucial question of scaling-up

As was stated at the outset, the Copycat project was never conceived of as
being dependent in any essential way on specific aspects of its small domain,
nor even on specific aspects of analogy-making per se. Rather, the central aim
was to model the emergence of insightful cognition from fluid concepts,
focusing on how slippages can be engendered by pressures.

One of the key questions about the architecture, therefore, is whether it
truly is independent of the small domain and the small problems on which it
now works. It would certainly be invalidated if it could be shown to depend on
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few instances of those concepts that appear in a typical problem. However, from
the very conception of the project, every attempt has been made to ensure that
Copycat would not succumb to a combinatorial explosion if the domain were
enlarged or the problems became bigger. In some sense, Copycat is a caricature
of genuine analogy-making. The question is, what makes a caricature faithful?
What is the proper way to construct a cognitive model that will scale up?

Shades of gray and the mind’s eye

Real cognition of course occurs in the essentially boundless real world, not
in a tiny artificial world. This fact seems to offer the following choice to
would-be “cognition architects™ either have humans scale down all situations
by hand in advance into a small set of sharp-edged formal data-structures, so
that a brute-force architecture can work, or else let the computer effectively do
it instead — that is, use a heuristic-based architecture that at the outset of every
run makes a sharp and irreversible cut between concepts, pathways, and meth-
ods of attack that might eventually be brought to bear during that run, and ones
that might not. There seems to be no middle ground between these two types
of strategy, because either you must be willing to give every approach a chance
(the brute-force approach), or you must choose some approaches while a prior
ﬁftering others out (the “heuristic-chop” approach).

The only way out would seem to involve a notion of “shadedness”, in which
concepts, facts, methods of attack, objects, and so on, rather than being ruled
“out” or “in” in a black-and-white way, would be present in shades of gray — in
fact, shades of gray that change over time. At first glance, this seems impossible.
How can a concept be invoked only partially? How can a fact be neither fully
ignored nor fully paid attention to? How can a method of attack be merely “sort
of” used? How can an object fall somewhere in between being considered “in
the situation” and being considered “not in the situation™

Since we believe that these “shades of gray” questions lie at the crux of the
modeling of mind, they merit further discussion. A special fluid quality of
human cognition is that often, solutions to a problem — especially the most
ingenious ones, but even many ordinary ones — seem to come from far outside
the problem as conceived of originally. This is because problems — or more
generally, situations— in the real world do not have sharp definitions; when one
is in, or hears about, a complex situation, one typically pays no conscious
attention to the question of what counts as “in” the situation and what counts
as “out” of it. Such matters are almost alwavs vague, implicit, and intuitive.
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choose where to have the mind’s eye “look”. When one directs one’s gaze at what
one feels is the situation’s core, only a few centrally located things will come into
clear focus, with more tangential things being less and less clear, and then at the
peripheries there will be lots of things of which one is only dimly aware. Finally,
whatever lies beyond the field of vision seems by definition to be outside of the
situation altogether. Thus “things” in the mind’s eye are definitely shaded, both in
terms of how clear they are, and in terms of how aware one is of them.

The very vague term “thing” was used deliberately above, with the intent
of including both abstract Platonic concepts and concrete specific individuals — in
fact, to blur the two notions, since there is no hard-and-fast distinction between
them. To make this clearer, think for a moment of the very complex situation
that the Watergate affair was. As you do this, you will notice (if you followed
Watergate at all) that all sorts of different events, people, and themes float into
your mind with different degrees of clarity and intensity. To make this even more
concrete, turn your mind’s eye’s gaze to the Senate Select Committee, and try
to imagine each different senator on that committee. Certainly, if you watched
the hearings on television, some will emerge vividly while others will remain
murky. Not just Platonic abstractions like “senator” are involved, but many indi-
vidual senators have different degrees of mental presence as you attempt to
“replay” those hearings in your mind. Needless to say, the memory of anyone
who watched the Watergate hearings on television is filled to the brim both with
Platonic concepts of various degrees of abstractness (ranging from “impeach-
ment” to “coverup” to “counsel” to “testimony” to “paper shredder”) and with
specific events, péople, and objects at many levels of complexity (ranging from
the “Saturday night massacre” to the Supreme Court, from Maureen Dean to
the infamous 18 -minute gap, and all the way down to the phrase “expletive
deleted” and even Sam Ervin’s gavel, with which every session of the committee
was rapped to order). When one conjures up one’s memories of Watergate, all
of these “things” have differential degrees of mental presence, which change as
one’s mind’s eye scans the “scene”.

Note that in the preceding paragraph, all the “things” mentioned were
carefully chosen so that readers — at least readers who remember Watergate
reasonably well — would give them unthinking acceptance as genuine “parts”
of Watergate. However, now consider the following “things”™ England, France,
communism, socialism, the Viet Nam War, the Six-Day War, the Washington
Monument, the New York Times, Spiro Agnew, Edward Kennedy, Howard Cosell,
Jimmv Hoffa. Frank Sinatra, Ronald Reagan, the AFL-CIO, General Electric,
- 1 {lniversity heliconters, Kevs.

e
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to try to draw a sharp line. One is forced to accept the fact that for a model of
a mind to be at all realistic, it must be capable of imbuing all concrete objects
and individuals, as well as all abstract Platonic concepts, with shaded degrees of
mental presence — and of course, those degrees of presence must be capable
of changing over time.

Like a real eye, the mind’s eye can be attracted by something glinting in the
‘peripheries, and shift its gaze. When it does so, things that were formerly out of
sight altogether now enter the visual field. By a series of such shifts, “things” that
were totally outside of the situation’s initial representation can eventually wind
up at the very center of attention. This brings us back, finally, to that special fluid
quality of human thought whereby initially unsuspected notions occasionally wind
up being central to one’s resolution of a problem, and reveals how intimately such
fluidity is linked with the various “shades of gray” questions given above.

Copycat’s shaded exploration strategy

Let us thus return to the list of “shades of gray” questions: How can a
conceptabe invoked only partially? How can a fact be neither fully ignored nor
fully paid attention to? How can a method of attack be merely “sort of " usedr
How can an object fall somewhere in between being considered “in the situ-
ation” and being considered “not in the situation”? These questions were not
asked merely rhetorically; in fact, it was precisely to respond to the challenges
that they raise that the probabilistic architecture of Copycat was designed.

Copycat’s architecture has in common with brute-force architectures the fact
that every possible concept, fact, method, object, and so on is in principle available
at all times;7 on the other hand, it has in common with heuristic-chop architec-
tures the fact that out of all available concepts, facts, methods, objects, and so on,
only a few will get very intensely drawn in at any given moment, with most being
essentially dormant and an intermediate number having a status somewhere in
between. In other words, virtually all aspects of the Copycat architecture are
riddled by shades of gray instead of by hard-edged, black-and-white cutoffs. In
particular, activation (with continuous values rather than a binary on/off distinc-
tion) is a mechanism that gives rise to shadedness in the Slipnet, while salienceand
urgencyserve similar purposes in the Workspace and Coderack, respectively. These
are just three of a whole family of related “shades-of-gray mechanisms” whose
entire raison d étreis to defeat the scaling-up problem.

7. Note that the claim is not that every single concept imaginable to humans is available, butsimply
that 21l concepts wwithin the svstem’s dor-=ant repertoire are in princiole oo
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An architecture thus pervaded by shades of gray has the very attractive
property that although no concept or object or pathway of exploration is ever
strictlyor fullyruled out, only a handful of them are at any time seriously involved.
At any given moment, therefore, the system is focusing its attention on justa
small set of concepts, objects, and pathways of exploration. However, this
ssearchlight of attention” can easily shift under the influence of new informa-
tion and pressures, allowing a priorivery unlikely concepts, objects, or pathways
of exploration to enter the picture as serious contenders.

The chart below summarizes the various mechanisms in the Copycat
architecture that incorporate shades of gray in different ways. In it, the term
“shaded” should be understood as representing the opposite of a binary,
black /white distinction; it often means that one or more real numbers are
attached to each entity of the sort mentioned, as opposed to there being an
on/ off distinction. The term “dynamic” means that the degree of presence —

the “shade”, so to speak — can change with time.

Shades of gray in the Slipnet
. shaded, dynamic presence of Platonic concepts (via dynamic

e

activation levels)

. shaded, dynamic conceptual proximities (via dynamic link-
lengths)

. shaded, dynamic spreading of activation to neighbor concepts
(giving rise to “conceptual halos™)

« shaded conceptual depths of nodes

. shaded decay rates of concepts (determined by conceptual
depths“)

« shaded, dynamic emergence of abstract themes (stable activa-
tion patterns of interrelated conceptually deep nodes)

Shades of gray in the Workspace

. shaded, dynamic number of descriptions for any object

. shaded, dynamic importance of each object (via activation levels
of descriptors in Slipnet)

. shaded, dynamic unhappiness of each object (determined by
degree of integration into larger structures)

« shaded, dynamic presence of objects (via dynamic salience
levels)

. shaded, dynamic tentativity of structures (via dynamic
strengths)
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« shaded, dynamic emergence of pressures (via urgencies of
codelets and shifting population of Coderack)

+ shaded, dynamic degree of willingness to take risks (via tem-
perature)

« shaded, dynamic mixture of deterministic and nondeterminis-
tic modes of exploration

+ shaded, dynamic mixture of parallel and serial modes of explo-
ration

« shaded, dynamic mixture of bottom-up and top-down processing

There is one further aspect of shadedness in Copycat that is not localized in
a single component of the architecture, and is somewhat subtler. This has to do
with the fact that, over time, higher-level structures emerge, each of which brings
in new and unanticipated concepts, and also opens up new and unanticipated
avenues of approach. In otherwords, asarun proceeds, the field of vision broadens
out to incorporate new possibilities, and this phenomenon feeds on itself: each new
object or structure is subject to the same perceptual processes and chunking
mechanisms that gave rise to it. Thus there is a spiral of rising complexity, which
brings new items of ever-greater abstraction into the picture “from nowhere”, in a
sense. This process imbues the Copycat architecture with a type of fundamental
unpredi{ctability or “openness” (Hewitt, 1985) thatis not possible in an architecture
with frozen representations. The ingredients of this dynamic unpredictability form
an important addendum to the list of shades of gray given above.

’ Dynamic emergence of unpredictable objects and pathways

« creation of unanticipated higher-level perceptual objects and
structures

« emergence of a priori unpredictable potential pathways of ex-
ploration (x’?ia creation of novel structures at increasing levels of
abstraction)

» creation of large-scale viewpoints

« competition between rival high-level structures

By design, none of the mechanisms in the lists presented above has
anything in the least to do with the size of the situations that Copycat is currently
able to deal with, or with the current size of Copycat’s Platonic conceptual
repertoire. Note, moreover, that none of them has anything whatsoever to do
with the subject matter of the Copycat domain, or even with the task of
analogy-making per se. Yet these mechanisms and their emergent consequences
— especially commingling pressures and the parallel terraced scan — are what
Copycat is ¢ruly about. This is the underpinning of our belief in the cognitive
generality of the Copycat architecture.



