
Review of

L. D. Davis,

Handbook of Genetic Algorithms.
New York: Van Nostrand Reinhold, 1991.

Melanie Mitchell

Santa Fe Institute
1399 Hyde Park Road
Santa Fe, NM 87501

Email: mm@santafe.edu

Mimicking biological evolution and harnessing its power for adaptation are problems
that have intrigued computer scientists for at least four decades. Genetic algorithms (GAs),
invented by John Holland in the 1960s, are the most widely used approaches to computa-
tional evolution. In his book Adaptation in Natural and Artificial Systems (Holland, 1992,
also reviewed in this issue), Holland presented GAs in a general theoretical framework for
adaptation in nature. Holland’s motivation was largely scientific— he was attempting to
understand and link diverse types of natural phenomena—but he also proposed potential
engineering applications of GAs. Since the publication of Holland’s book, the field of GAs
has grown into a significant sub-area of artificial intelligence and machine learning. Nowa-
days one can find several international conferences each year as well as a number of journals
devoted to GAs and other “evolutionary computation” approaches. Research on GAs has
spread from computer science to engineering and, more recently, to fields such as molecular
biology, immunology, economics, and physics.

One result of this growth in interest has been a division of the field of GAs into several
subspecies. One major division is between research on GAs as engineering tools and research
on GAs as scientific models of evolutionary processes. This split roughly parallels the split
of artificial intelligence research into work on engineering tools and work on models of cogni-
tion. In the GA world, in spite of some overlap between these two groups, it is usually clear
which camp a particular project falls into. In scanning proceedings of the International Con-
ference on Genetic Algorithms (e.g., Goodman, 1997) or the Parallel Problem Solving from
Nature conference (e.g., Voigt, 1996), one finds that most papers have a distinct engineering
bent. GA evolutionary modelers tend to publish instead in the Artificial Life and European
Artificial Life conference proceedings, in the Simulation of Adaptive Behavior conference
proceedings, or in journals such as Adaptive Behavior or Biological Cybernetics. A third
group concentrates on the theory of GAs, usually apart from any particular application or
model. These theorists tend to publish in the Foundations of Genetic Algorithms conference
proceedings or in special issues of journals such as Annals of Mathematics and Artificial
Intelligence. There is less communication among the various groups than one might hope
for.

Lawrence Davis’ book, Handbook of Genetic Algorithms, is squarely in the engineering
camp. Davis, formally of Bolt, Beranek, and Newman, Inc. and Texas Instruments, is the
founder and current president of Tica Associates, a consulting firm that assists industrial and
government clients in applying GAs to various problems. Davis’ main interest is in applying
GAs to real-world problems, not in using GAs to learn more about natural systems.

1



Handbook of Genetic Algorithms strongly reflects this motivation. It is a practical guide
for people who want to apply GAs to real problems. Beyond a simple statement of Holland’s
“Schema Theorem”, there is no attempt to present or develop any theory of GAs or to make
any claims about GAs as models of evolution. In fact, Davis’ philosophy is to move far
away from biological realism. For example, he recommends using numerical representations
and hybrid search methods, and he advocates keeping explicit statistics on the success of
crossover and mutation in order to adaptively vary their rates. Early on, Davis dismisses
the GA’s use to date as a biological model, saying,

You should know that, although the findings of evolutionary biologists in-
spired the field of genetic algorithms in its early years, and although the findings
of biologists and geneticists continue to influence the field somewhat, this influ-
ence is for the most part unidirectional. I know of no genetic algorithm applica-
tion in the area of genetics, nor, to my knowledge, have the findings in our field
impacted the theories of biologists. (p. 3)

This statement is a bit outdated, since there is now a growing literature of GA applications in
molecular genetics (e.g., DNA fragment assembly, Cedeno & Vemuri, 1993; Parsons, Forrest,
& Burks, 1993) and in human genetics (e.g., clustering of genetic traits for predicting disease,
Congdon, Sing, & Reilly, 1993); but Davis is correct in saying that theoretical biology has not
to date been widely influenced by findings in GAs. My suspicion is that this will change as
modelers incorporate more biologically realistic elements into their GAs such as endogenous
rather than explicit fitness, diploidy, co-evolution, and interactions between evolution and
learning. There is already some interest in GA-like models in the theoretical population
genetics literature (e.g., Bergman & Feldman, 1992) and in the ecology literature (e.g.,
Koza, Rice, & Roughgarden, 1992).

The Handbook of Genetic Algorithms is meant to give just enough information about
GAs to help an interested scientist or engineer apply them to a particular problem. The
book does not give a history of computational evolution or a review of past and current
research such as that given in various GA textbooks (Goldberg, 1989, Michalewicz, 1992,
Fogel, 1995, Schwefel, 1995, Bäck, 1996, Mitchell, 1996). Instead, Davis’ book consists of
two main parts: a 100-page tutorial written by Davis, giving his admittedly idiosyncratic
approach to GAs, and thirteen chapters (“case studies”) by various authors describing real-
world GA applications. There is also a short third part that describes two GA software
packages—GENESIS (in C) and OOGA (in Common Lisp with CLOS)—available for order.
An order form is provided in the book.

The tutorial in Part 1 is based on Davis’ philosophy of GAs, which emphasizes carefully
tailoring a GA to each application rather than attempting to develop a robust, general
purpose algorithm that performs well on a range of problems. Davis asserts that the latter
approach “is a goal orthogonal to that of producing the best optimization algorithms for
a particular problem.” (p. 64.) He makes the important point that while GAs are robust
weak methods—they work reasonably well across a range of problems and are robust in
the presence of noisy evaluations—they are almost never the best optimization method for
any particular problem. Davis’ approach is to tailor the GA to the problem at hand, to

2



incorporate domain knowledge into the GA as much as possible, and to hybridize the GA
with other optimization methods that work well. Assuming that there is a method currently
in use for a given problem and the GA is to be hybridized to improve the current method,
Davis gives three principals of hybridization:

1. Use the current encoding. That is, represent candidate solutions in the same way
that they are represented under the current method. For example, suppose that the
problem is to find weights for a neural network that will perform a classification task,
and that back-propagation starting from random weights is the current method. Then
a candidate solution should be encoded as it is for back-propagation: as a real-valued
weight vector. Davis points out that until recently most GA practitioners have used
bit-string representations to represent candidate solutions, largely because the theory
of GAs as developed by Holland and others relies on such representations. But Davis
finds such representations unnatural and unnecessary in most cases. In the neural-
network example, a real-valued weight vector is a more natural representation for the
problem, or at least is a more widely used and understood representation.

2. Hybridize where possible. That is, combine useful features of the current algorithm
with the GA wherever possible. For the neural-network example, one might hybridize
back-propagation with the GA by using back-propagation until no more improvements
are found, and then using the GA on a population of mutants of the current weight
vector in order to make bigger jumps in the search space via crossover.

3. Adapt the genetic operators to the problem. That is, invent new forms of mutation
and crossover that are appropriate to the problem’s natural encoding. For example,
mutation on real-valued weight vectors might consist of randomly incrementing or
decrementing particular weights. Likewise, crossover might consist of producing two
offspring from two parents by exchanging sets of weights that are on the incoming links
to a given node. An alternative crossover scheme might average the corresponding
weights of the parents.

The expectation is that, with these guidelines, the hybrid algorithm will perform better than
the current algorithm or the GA alone. Such adaptations of the GA to a particular problem
and other to optimization methods are, according to Davis, the art of real-world application
of GAs.

In the tutorial section, Davis guides the reader through his approach to GAs with a
friendly and conversational tone. The tutorial starts with a description of the simplest GA,
and in each subsequent chapter the simple version is augmented with a number of more
sophisticated strategies. The effect of each new strategy is illustrated by graphing the new
GA’s performance (fitness versus number of evaluations) on the same numerical optimization
problem called “binary f6”. Each new strategy is shown to yield improved performance on
that problem.

The simplest GA uses fitness-proportionate selection, single-point crossover, and single-
point mutation. This is similar to the original GA proposed by Holland (1992). Subsequent
versions include the following revisions:

3



• Linear normalization: Fitness rank rather than absolute fitness determines the number
of expected offspring of an individual.

• Elitism: The best individual in the population is always saved in the next generation.

• Steady-state reproduction: Only one or two individuals in the population are replaced
at a time.

• Uniform crossover: Rather than choosing a single point at which to cross the parents,
each gene in the offspring is chosen randomly from one or the other parent.

• Fitness-based selection of operators: Each operator (e.g., crossover and mutation) has
a “fitness” value associated with it and its rate of application depends on its fitness.

• Interpolating operator fitnesses: The fitness of each operator is interpolated during a
run (e.g., crossover fitness starts high and is reduced while mutation fitness starts low
and is increased).

• Adapting operator fitnesses: Statistics are kept on the performance of each operator
to determine the extent to which it is, on average, generating improvements in the
population. The operator’s fitness (and thus its rate of application) is periodically
modified during a run according to these statistics.

Davis also discusses a number of techniques for “order-based” GAs—a version of the GA
for combinatorial optimization problems such as the Traveling Salesman Problem, where the
GA’s task is to find an optimal ordering of elements.

All of these ideas have been discussed in various places in the GA literature (fitness-based
selection of operators and adapting operator fitnesses are Davis’ original contributions).
However, there is no general consensus as to when these modifications to the original GA
will produce better performance. Davis does not discuss that issue in the tutorial; he merely
demonstrates the extent to which each of these modifications improves GA performance on
the particular optimization problem binary f6. There is not much attempt to argue that
improved performance on binary f6 is a good indication of improved performance in general,
so the reliance on binary f6 as the only illustration of the effects of these modifications
may be misleading. However, Davis is not attempting to prove that these modifications
will always improve the GA’s performance; he is only stating that, in his experience, they
tend to yield improvements. Most of the advice in the book has this quality. There are
no formal or rigorous arguments given to show that a particular suggestion will work well;
Davis’ advice comes from his experience in the field rather than from any theoretical or even
systematic empirical evidence. The tutorial does not attempt to give any detailed guidelines
for the types of problems on which GAs will work well or will perform better than other
search methods. Fair enough, since there is currently no rigorous understanding of this
in the GA research community. (It must be said that similar theoretical problems plague
methods such as neural networks and simulated annealing.) The question of how to best use
GAs is currently being addressed by a number of theorists (e.g., see Belew and Vose, 1997).
However, for most people who want to apply GAs to real problems, Davis’ experience-based
advice will be a very helpful starting point.

4



I say “starting point”, because readers cannot expect to go away and instantly build a
successful GA application. A good deal of tinkering with representations, operators, and
parameters will typically be necessary. The tutorial does not give detailed advice on how to
actually implement a GA—this is not a book of “GA recipes”. However, some help can be
found via the software packages Davis discusses, and also by reading the case studies found
in Part 2 of the book. The case studies—each given as a chapter written by a different
group of authors—detail real-world applications of GAs and GA hybrids. Many of these
applications were done in industrial rather than university settings; names such as Lockheed,
the US Bureau of Mines, Honeywell, General Electric, US West, and Hewlett Packard are
the author affiliations in about half the chapters. This is a striking demonstration of the
extent to which GAs have penetrated into industry and will probably soon be the source
of a number of marketed products. In addition to the industries represented in this book,
there is currently widespread work on using GAs in biotechnology and financial forecasting,
among other applications.

These case studies taken together give a very good answer to the question, “What are
some successful applications of GAs?” They include descriptions of how GAs have been used
to optimize the parametric design of aircraft, air-injected hydrocyclones (mineral-separating
devices), and in other engineering design problems. We also find descriptions of GAs opti-
mizing call routing in a US West telecommunications network, path planning for robot-arm
motion, and parameters for a model of international arms races. The GA is also seen evolv-
ing strategies (encoded as production systems) for aircraft missile avoidance, neural network
architectures, diagnoses for faults in a microwave communication network, and DNA con-
formations based on spectrometric data. Finally, we see a GA optimizing parameters for
an expert system that processes sonar signals, weights for a neural network that performs
a sonar-signal classification task, schedules for activities in a laboratory, and tours for the
Traveling Salesman Problem. These case studies make for very interesting reading for those
involved in the applications side of GAs. Many of the case studies include detailed compar-
isons between the GA and other methods, and numerous examples of hybridization, generally
following the guidelines Davis outlines in the tutorial section.

The Handbook of Genetic Algorithms is meant to be a practical guide for practitioners,
not, say, a textbook for a machine learning course. As a high-level introduction, the tutorial
serves this purpose well, and is strongly supplemented by the case studies. The book is
clearly written and enjoyable to read, and, short of hiring Davis himself as a consultant,
reading his book is probably the quickest and easiest way to get off the ground for a first
real GA application.

References

T. Bäck (1996). Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms. Oxford: Oxford University Press.

R. K. Belew and M. D. Vose (1997). Foundations of Genetic Algorithms 4. San Francisco,
CA: Morgan Kaufmann.

5



A. Bergman and M. Feldman (1992). Recombination dynamics and the fitness landscape.
Physica D, 56, 57–67.

W. Cedeno and V. Vemuri (1993). An investigation of DNA mapping with genetic algo-
rithms: Preliminary results. In Proceedings of the Fifth Workshop on Neural Networks: An
International Conference on Computational Intelligence: Neural Networks, Fuzzy Systems,
Evolutionary Programming, and Virtual Reality, 133–140. San Diego, CA: The Society for
Computer Simulation.

C. B. Congdon, C. F. Sing, and S. L. Reilly (1993). Genetic algorithms for identify-
ing combinations of genes and other risk factors associated with coronary artery disease.
Proceedings of the Workshop on Artificial Intelligence and the Genome. International Joint
Conference on Artificial Intelligence. Chambery, France.

D. B. Fogel (1995). Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence. IEEE Press.

D. E. Goldberg (1989). Genetic algorithms in search, optimization, and machine learning.
Reading, MA: Addison-Wesley.

E. Goodman (editor) (1997). Proceedings of the Seventh International Conference on
Genetic Algorithms. San Francisco, CA: Morgan Kaufmann.

J. H. Holland, (1992). Adaptation in natural and artificial systems. Cambridge, MA:
MIT Press. (First edition, 1975, University of Michigan Press.)

J. R. Koza, J. P. Rice, and J. Roughgarden (1992). Evolution of food foraging strategies
for the Caribbean Anolis lizard using genetic programming. Adaptive Behavior, 1(2), 47-74.

Z. Michalewicz (1992). Genetic Algorithms + Data Structures = Evolution Programs.
Berlin: Springer-Verlag.

M. Mitchell (1996). An Introduction to Genetic Algorithms. Cambridge, MA: MIT Press.

R. Parsons, S. Forrest, and C. Burks (1993). Genetic operators for the DNA fragment
assembly problem. Submitted to Machine Learning.

H.-P. Schwefel (1995). Evolution and Optimum Seeking. New York: Wiley.

H.-M. Voigt (editor) (1996). Parallel problem solving from nature. Berlin: Springer-
Verlag (Lecture Notes in Computer Science).

6


